A Novel Algorithm for Local Network Alignment Based on Network Embedding
<p>Figure depicts the proposed approach. The input graphs are converted into a low-dimensional representation through network embeddings, which are then used to determine the similarity among the nodes of the input graphs and used as potential seed nodes. Finally, these nodes are integrated with the initial list of seed nodes to build the LNA.</p> "> Figure 2
<p>Workflow of the proposed approach.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Workflow of the Proposed Algorithm
4. Embedding Scenarios
4.1. Case Study 1: Evaluation of the Similarity of Embeddings
Algorithm 1 Comparing Node Similarities as Rankings |
|
4.2. Case Study 2: Alignment of the Protein Interaction Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PIN | Protein Interaction Network |
LNA | Local Network Alignment |
GNA | Global Network Alignment |
RBO | Rank-Biased Overlap Score |
GDV | Graphlet Degree Vector |
MCL | Markov Clustering Algorithm |
References
- Guzzi, P.H.; Milenković, T. Survey of local and global biological network alignment: The need to reconcile the two sides of the same coin. Briefings Bioinform. 2018, 19, 472–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agapito, G.; Cannataro, M.; Guzzi, P.H.; Marozzo, F.; Talia, D.; Trunfio, P. Cloud4SNP: Distributed analysis of SNP microarray data on the cloud. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, DC, USA, 22–25 September 2013; pp. 468–475. [Google Scholar]
- Bargmann, C.I.; Marder, E. From the connectome to brain function. Nat. Methods 2013, 10, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ortuso, F.; Mercatelli, D.; Guzzi, P.H.; Giorgi, F.M. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J. Biomol. Struct. Dyn. 2021, 1–11. [Google Scholar] [CrossRef]
- Guzzi, P.H.; Tradigo, G.; Veltri, P. Using dual-network-analyser for communities detecting in dual networks. BMC Bioinform. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Cristiano, F.; Veltri, P. Methods and techniques for miRNA data analysis. Methods Mol. Biol. 2016, 1375, 11–23. [Google Scholar]
- Cannataro, M.; Guzzi, P.H.; Mazza, T.; Tradigo, G.; Veltri, P. Using ontologies for preprocessing and mining spectra data on the Grid. Future Gener. Comput. Syst. 2007, 23, 55–60. [Google Scholar] [CrossRef]
- Guzzi, P.H.; Di Martino, M.T.; Tradigo, G.; Veltri, P.; Tassone, P.; Tagliaferri, P.; Cannataro, M. Automatic summarisation and annotation of microarray data. Soft Comput. 2011, 15, 1505–1512. [Google Scholar] [CrossRef]
- Tradigo, G.; De Rosa, S.; Vizza, P.; Fragomeni, G.; Guzzi, P.H.; Indolfi, C.; Veltri, P. Calculation of Intracoronary Pressure-Based Indexes with JLabChart. Appl. Sci. 2022, 12, 3448. [Google Scholar] [CrossRef]
- Ren, Y.; Sarkar, A.; Veltri, P.; Ay, A.; Dobra, A.; Kahveci, T. Pattern discovery in multilayer networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 741–752. [Google Scholar] [CrossRef]
- Cannataro, M.; Guzzi, P.H.; Sarica, A. Data Mining and Life Sciences Applications on the Grid. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; Wiley: Hoboken, NJ, USA, 2013; Volume 3, pp. 216–238. [Google Scholar]
- Tradigo, G.; Vizza, P.; Fragomeni, G.; Veltri, P. On the reliability of measurements for a stent positioning simulation system. Int. J. Med. Inform. 2019, 123, 23–28. [Google Scholar] [CrossRef]
- Cho, Y.R.; Mina, M.; Lu, Y.; Kwon, N.; Guzzi, P.H. M-finder: Uncovering functionally associated proteins from interactome data integrated with go annotations. Proteome Sci. 2013, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milenković, T.; Leong, W.; Pržulj, N. Optimal network Alignment with Graphlet Degree Vectors. Cancer Inf. 2010, 9, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Nassa, G.; Tarallo, R.; Guzzi, P.H.; Ferraro, L.; Cirillo, F.; Ravo, M.; Nola, E.; Baumann, M.; Nyman, T.A.; Cannataro, M.; et al. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. Mol. Biosyst. 2011, 7, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.; Guzzi, P.H. Improving the robustness of local network alignment: Design and extensive assessment of a Markov Clustering-based approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Grillone, K.; Riillo, C.; Scionti, F.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res. 2020, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, P.H.; Agapito, G.; Cannataro, M. coresnp: Parallel processing of microarray data. IEEE Trans. Comput. 2013, 63, 2961–2974. [Google Scholar] [CrossRef]
- Milano, M.; Milenković, T.; Cannataro, M.; Guzzi, P.H. L-HetNetAligner: A novel algorithm for local alignment of heterogeneous biological networks. Sci. Rep. 2020, 10, 3901. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Guzzi, P.H.; Tymofieva, O.; Xu, D.; Hess, C.; Veltri, P.; Cannataro, M. An extensive assessment of network alignment algorithms for comparison of brain connectomes. Bmc Bioinform. 2017, 18, 31–45. [Google Scholar] [CrossRef]
- Milano, M.; Guzzi, P.H.; Cannataro, M. Glalign: A novel algorithm for local network alignment. IEEE/Acm Trans. Comput. Biol. Bioinform. 2018, 16, 1958–1969. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584. [Google Scholar]
- Gu, S.; Jiang, M.; Guzzi, P.H.; Milenković, T. Modeling multi-scale data via a network of networks. Bioinformatics 2022, 38, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Kukic, P.; Mirabello, C.; Tradigo, G.; Walsh, I.; Veltri, P.; Pollastri, G. Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks. BMC Bioinform. 2014, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEE Trans. Knowl. Data Eng. 2018, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Tong, J.; Zhu, Y.; Cui, P.; Wang, F. Network embedding in biomedical data science. Briefings Bioinform. 2020, 21, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.; Zitnik, M.; Wang, B.; Leskovec, J.; Goldenberg, A.; Sharan, R. To embed or not: Network embedding as a paradigm in computational biology. Front. Genet. 2019, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl. Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Guzzi, P.H.; Cannataro, M. μ-CS: An extension of the TM4 platform to manage Affymetrix binary data. BMC Bioinform. 2010, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Mirarchi, D.; Petrolo, C.; Canino, G.; Vizza, P.; Cuomo, S.; Chiarella, G.; Veltri, P. Applying mining techniques to analyze vestibular data. Procedia Comput. Sci. 2016, 98, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, VIC, Australia, 19–23 October 2015; pp. 891–900. [Google Scholar]
- Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1105–1114. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Cao, S.; Lu, W.; Xu, Q. Deep neural networks for learning graph representations. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [Google Scholar]
- van Dongen, S. Graph Clustering by Flow Simulation. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 2000. [Google Scholar]
- NetworkX.org. NetworkX Libary for Network Analysis in Python. 2020. Available online: https://networkx.org/ (accessed on 20 April 2022).
- Webber, W.; Moffat, A.; Zobel, J. A similarity measure for indefinite rankings. Acm Trans. Inf. Syst. 2010, 28, 1–38. [Google Scholar] [CrossRef]
- Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.edu/data (accessed on 20 April 2022).
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [Green Version]
Networks | R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 |
---|---|---|---|---|---|---|---|
R1-0 | 0.98 | 0.96 | 0.93 | 0.94 | 0.97 | 0.95 | 0.97 |
R1-5 | 0.98 | 0.96 | 0.96 | 0.96 | 0.95 | 0.96 | 0.98 |
R1-10 | 0.98 | 0.96 | 0.96 | 0.93 | 0.96 | 0.95 | 0.96 |
R1-15 | 0.96 | 0.92 | 0.93 | 0.92 | 0.96 | 0.93 | 0.93 |
R1-20 | 0.95 | 0.96 | 0.93 | 0.96 | 0.96 | 0.96 | 0.96 |
R1-25 | 0.91 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.91 |
R1-50 | 0.92 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 | |
---|---|---|---|---|---|---|---|
R1-0 | 0.97 | 0.93 | 0.91 | 0.88 | 0.82 | 0.93 | 0.80 |
R1-5 | 0.98 | 0.93 | 0.93 | 0.95 | 0.92 | 0.76 | 0.91 |
R1-10 | 0.97 | 0.96 | 0.79 | 0.80 | 0.84 | 0.77 | 0.92 |
R1-15 | 0.95 | 0.81 | 0.89 | 0.83 | 0.74 | 0.90 | 0.89 |
R1-20 | 0.95 | 0.79 | 0.93 | 0.82 | 0.86 | 0.81 | 0.87 |
R1-25 | 0.90 | 0.91 | 0.83 | 0.73 | 0.92 | 0.90 | 0.73 |
R1-50 | 0.92 | 0.75 | 0.77 | 0.73 | 0.85 | 0.80 | 0.72 |
R2-0 | R2-5 | R2-10 | R2-15 | R2-20 | R2-25 | R2-50 | |
---|---|---|---|---|---|---|---|
R1-0 | 0.97 | 0.94 | 0.80 | 0.91 | 0.86 | 0.80 | 0.88 |
R1-5 | 0.97 | 0.88 | 0.89 | 0.89 | 0.85 | 0.85 | 0.81 |
R1-10 | 0.98 | 0.92 | 0.83 | 0.81 | 0.84 | 0.89 | 0.79 |
R1-15 | 0.95 | 0.85 | 0.86 | 0.84 | 0.87 | 0.81 | 0.77 |
R1-20 | 0.95 | 0.93 | 0.89 | 0.78 | 0.79 | 0.82 | 0.80 |
R1-25 | 0.91 | 0.91 | 0.85 | 0.86 | 0.80 | 0.85 | 0.82 |
R1-50 | 0.92 | 0.82 | 0.83 | 0.88 | 0.81 | 0.72 | 0.71 |
DEC vs. DEC-5 | DEC vs. DEC-10 | DEC vs. DEC-15 | DEC vs. DEC-20 | DEC vs. DEC-25 | DEC vs. DEC-50 | |
---|---|---|---|---|---|---|
EMB-Align | 0.97 | 0.90 | 0.80 | 0.83 | 0.75 | 0.66 |
Align-MCL | 0.92 | 0.88 | 0.75 | 0.71 | 0.64 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzzi, P.H.; Tradigo, G.; Veltri, P. A Novel Algorithm for Local Network Alignment Based on Network Embedding. Appl. Sci. 2022, 12, 5403. https://doi.org/10.3390/app12115403
Guzzi PH, Tradigo G, Veltri P. A Novel Algorithm for Local Network Alignment Based on Network Embedding. Applied Sciences. 2022; 12(11):5403. https://doi.org/10.3390/app12115403
Chicago/Turabian StyleGuzzi, Pietro Hiram, Giuseppe Tradigo, and Pierangelo Veltri. 2022. "A Novel Algorithm for Local Network Alignment Based on Network Embedding" Applied Sciences 12, no. 11: 5403. https://doi.org/10.3390/app12115403
APA StyleGuzzi, P. H., Tradigo, G., & Veltri, P. (2022). A Novel Algorithm for Local Network Alignment Based on Network Embedding. Applied Sciences, 12(11), 5403. https://doi.org/10.3390/app12115403