Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest
<p>Block diagram of the automated sleep apnea detection algorithm.</p> "> Figure 2
<p>An example of 1-min apnea and normal segments [<a href="#B23-applsci-12-04218" class="html-bibr">23</a>]. (<b>a</b>,<b>b</b>) are normal ECG and SpO2 segments; (<b>c</b>,<b>d</b>) are apneic ECG and SpO2 segments.</p> "> Figure 3
<p>The main procedure of the RFECV method.</p> "> Figure 4
<p>Feature selection results using the RFECV algorithm on the training set. The best results occur when the number of features is 13.</p> "> Figure 5
<p>Box plots for the selected features corresponding to 0 and 1 classes, where 0 represents normal and 1 represents apnea.</p> "> Figure 6
<p>Receiver operating characteristic (ROC) curve analysis for RF, KNN, LR, and SVM classifier.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Proposed Framework
3.2. Dataset
3.3. Preprocessing
3.4. Feature Extraction and Fusion
3.4.1. RR Intervals Features
3.4.2. R-Wave Amplitudes Features
3.4.3. SpO2 Features
3.4.4. Feature Fusion
3.5. Feature Selection
3.6. Classfier
3.6.1. Random Forest
3.6.2. K-Nearest Neighbor
3.6.3. Support Vector Machine
3.6.4. Logistic Regression
3.7. Performance Evaluation
4. Results
4.1. Feature Selection and KW-ANOVA Test
4.2. Using Conbined ECG and SpO2 Feature Set
4.3. Using either ECG or SpO2 Feature Set
5. Discussion
5.1. Comparison among Different Signals
5.2. Comparison with Other Related Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chriskos, P.; Frantzidis, C.A.; Nday, C.M.; Gkivogkli, P.T.; Bamidis, P.D.; Kourtidou-Papadeli, C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med. Rev. 2021, 55, 101377. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lu, C.; Shen, G. Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network. BioMed Res. Int. 2019, 2019, 9768072. [Google Scholar] [CrossRef] [PubMed]
- Ainge-Allen, H.W.; Yee, B.J.; Ip, M.S.M. Contemporary Concise Review 2020: Sleep. Respirology 2021, 26, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive Sleep Apnea in Cardiovascular Disease: A Review of the Literature and Proposed Multidisciplinary Clinical Management Strategy. J. Am. Heart Assoc. 2019, 8, e010440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, O.; Razaghi, H.; Barika, R.; Ciaccio, E.J.; Acharya, U.R. A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput. Methods Programs Biomed. 2019, 176, 81–91. [Google Scholar] [CrossRef]
- Mendonca, F.; Mostafa, S.S.; Ravelo-Garcia, A.G.; Morgado-Dias, F.; Penzel, T. A Review of Obstructive Sleep Apnea Detection Approaches. IEEE J. Biomed. Health Inform. 2019, 23, 825–837. [Google Scholar] [CrossRef]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal Processing Control 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Nakayama, C.; Fujiwara, K.; Sumi, Y.; Matsuo, M.; Kano, M.; Kadotani, H. Obstructive sleep apnea screening by heart rate variability-based apnea/normal respiration discriminant model. Physiol. Meas. 2019, 40, 125001. [Google Scholar] [CrossRef]
- Ramachandran, A.; Karuppiah, A. A Survey on Recent Advances in Machine Learning Based Sleep Apnea Detection Systems. Healthcare 2021, 9, 914. [Google Scholar] [CrossRef]
- Roebuck, A.; Monasterio, V.; Gederi, E.; Osipov, M.; Behar, J.; Malhotra, A.; Penzel, T.; Clifford, G.D. A review of signals used in sleep analysis. Physiol. Meas. 2014, 35, R1-57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheta, A.; Turabieh, H.; Thaher, T.; Too, J.; Mafarja, M.; Hossain, M.S.; Surani, S.R. Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers. Appl. Sci. 2021, 11, 6622. [Google Scholar] [CrossRef]
- Adami, A.; Boostani, R.; Marzbanrad, F.; Charlton, P.H. A New Framework to Estimate Breathing Rate From Electrocardiogram, Photoplethysmogram, and Blood Pressure Signals. IEEE Access 2021, 9, 45832–45844. [Google Scholar] [CrossRef]
- Khandoker, A.H.; Palaniswami, M.; Karmakar, C.K. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 37–48. [Google Scholar] [CrossRef]
- Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.; Sharma, K.K. An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions. Comput. Biol. Med. 2016, 77, 116–124. [Google Scholar] [CrossRef]
- Magalang, U.J.; Dmochowski, J.; Veeramachaneni, S.; Draw, A.; Mador, M.J.; El-Solh, A.; Grant, B.J. Prediction of the apnea-hypopnea index from overnight pulse oximetry. Chest 2003, 124, 1694–1701. [Google Scholar] [CrossRef] [Green Version]
- Rashid, N.H.; Zaghi, S.; Scapuccin, M.; Camacho, M.; Certal, V.; Capasso, R. The Value of Oxygen Desaturation Index for Diagnosing Obstructive Sleep Apnea: A Systematic Review. Laryngoscope 2021, 131, 440–447. [Google Scholar] [CrossRef]
- Ling, I.T.; James, A.L.; Hillman, D.R. Interrelationships between body mass, oxygen desaturation, and apnea-hypopnea indices in a sleep clinic population. Sleep 2012, 35, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, D.; Hornero, R.; Abasolo, D.; del Campo, F.; Zamarron, C. Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection. Physiol. Meas. 2006, 27, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Hornero, R.; Alvarez, D.; Abasolo, D.; del Campo, F.; Zamarron, C. Utility of approximate entropy from overnight pulse oximetry data in the diagnosis of the obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Qian, Z.; Qin, B. A Survey of Data Representation for Multi-Modality Event Detection and Evolution. Appl. Sci. 2022, 12, 2204. [Google Scholar] [CrossRef]
- Obtaining CinC Challenge 2000 Scores. 2021. Available online: https://archive.physionet.org/physiobank/database/apnea-ecg/ (accessed on 11 January 2021).
- Chen, L.; Zhang, X.; Song, C. An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram. IEEE Trans. Autom. Sci. Eng. 2015, 12, 106–115. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G. Comparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detection. Neural Comput. Appl. 2018, 32, 15711–15731. [Google Scholar] [CrossRef]
- Cokelaer, T.; Hasch, J. ‘Spectrum’: Spectral Analysis in Python. J. Open Source Softw. 2017, 2, 348. [Google Scholar] [CrossRef]
- Gutiérrez-Tobal, G.; Hornero, R.; Alvarez, D.; Marcos, J.V.; Campo, F.D. Linear and nonlinear analysis of airflow recordings to help in sleep apnoea-hypopnoea syndrome diagnosis. Physiol. Meas. 2012, 33, 1261–1275. [Google Scholar] [CrossRef] [PubMed]
- Baltrusaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Oh, S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Appl. Sci. 2020, 10, 3211. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. Curr. Contents/Soc. Behav. Sci. 1987, 20, 583–621. [Google Scholar]
- Rajesh, K.; Dhuli, R.; Kumar, T.S. Obstructive sleep apnea detection using discrete wavelet transform-based statistical features. Comput. Biol. Med. 2021, 130, 104199. [Google Scholar] [CrossRef]
- Barroso-García, V.; Gutiérrez-Tobal, G.C.; Kheirandish-Gozal, L.; Álvarez, D.; Vaquerizo-Villar, F.; Crespo, A.; Del Campo, F.; Gozal, D.; Hornero, R. Irregularity and Variability Analysis of Airflow Recordings to Facilitate the Diagnosis of Paediatric Sleep Apnoea-Hypopnoea Syndrome. Entropy 2017, 19, 447. [Google Scholar] [CrossRef] [Green Version]
- Zarei, A.; Asl, B.M. Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal. IEEE J. Biomed. Health Inform. 2019, 23, 1011–1021. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhao, G.; Zhang, X.; Xu, W.; Han, D. A model for obstructive sleep apnea detection using a multi-layer feed-forward neural network based on electrocardiogram, pulse oxygen saturation, and body mass index. Sleep Breath. 2021, 25, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Adir, Y.; Humbert, M.; Chaouat, A. Sleep-related breathing disorders and pulmonary hypertension. Eur. Respir. J. 2021, 57, 2002258–2002308. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.; Mohammadzadeh Asl, B. Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal. Comput. Methods Programs Biomed. 2020, 195, 105626. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wu, Z.L.; Li, S.Y.; Benton, R.; Li, D.Q.; Huang, Y.L.; Kasukurthi, M.V.; Lin, J.W.; Borchert, G.M.; Tan, S.B.; et al. A SVM-Based Algorithm to Diagnose Sleep Apnea. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 1556–1560. [Google Scholar]
- Xie, B.; Minn, H. Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 469–477. [Google Scholar] [CrossRef] [Green Version]
Derived from | Feature | Description | |
---|---|---|---|
RR | RAMP | ||
RRmean | Mean of RR intervals | ||
RMSSD | Root mean square of differences between adjacent RR intervals | ||
SDNN | Standard deviation of RR intervals | ||
NN50 | Number of adjacent RR intervals exceeding 50 milliseconds | ||
pNN50 | Ratio of NN50 to the number of RR intervals | ||
HR | Mean of heart rates | ||
VLF1, VLF2 | Very low frequency (0~0.04 Hz) component of the corresponding signal | ||
LF1, LF2 | Low frequency (0.04~0.15 Hz) component of the corresponding signal | ||
HF1, HF2 | High frequency (0.15~0.4 Hz) component of the corresponding signal | ||
LF/HF1, LF/HF2 | Ratio of LF to HF | ||
LFnorm1, LFnorm2 | Normalized low frequency components | ||
HFnorm1, HFnorm2 | Normalized high frequency components |
Feature | Description |
---|---|
Smin | Minimum value of 1-min SpO2 segments |
Smean | Mean value of 1-min SpO2 segments |
Svar | Variance of 1-min SpO2 segments |
ApEn | Approximate entropy with Tolerence of 0.25 and Enbedding Dimension of 2 |
LZC | Lempel–Ziv complexity |
CTM | Central tendency measure with radius 0.25 |
Feature Number | Feature Name |
---|---|
2 | RMSSD |
5 | pNN50 |
6 | HR |
7 | VLF 1 |
9 | HF 1 |
11 | LFnorm 1 |
12 | HFnorm 1 |
19 | Smin |
20 | Smean |
21 | Svar |
22 | ApEn |
23 | LZC |
24 | CTM |
Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC |
---|---|---|---|---|
SVM | 96.1% | 93.4% | 97.8% | 0.956 |
LR | 97.4% | 95.5% | 98.2% | 0.971 |
KNN | 93.8% | 89.3% | 96.7% | 0.940 |
RF | 97.5% | 95.9% | 98.4% | 0.992 |
Signal | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC |
---|---|---|---|---|
ECG | 88.6% | 84.5% | 91.2% | 0.957 |
SpO2 | 96.6% | 93.8% | 98.4% | 0.988 |
Reference | Signal | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC |
---|---|---|---|---|---|
Zarei et al. [36] | ECG | 93.90% | 92.26% | 94.92% | 0.99 |
Sheta et al. [12] | ECG | 90.75% | 91.91% | / | 0.97 |
Rajesh et al. [31] | ECG | 89.70% | 85.07% | 92.42% | 0.96 |
Mostafa et al. [25] | SpO2 | 97.38% | 84.57% | 97.28% | / |
Ma et al. [37] | SpO2 | 90.20% | 87.6% | 94.1% | / |
Xie et al. [38] | ECG + SpO2 | 84.40% | 85.89% | 86.81% | / |
This Study | ECG + SpO2 | 97.5% | 95.9% | 98.4% | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhou, A.; Gong, Q.; Zhou, Y.; Huang, J.; Chen, Z. Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest. Appl. Sci. 2022, 12, 4218. https://doi.org/10.3390/app12094218
Zhu J, Zhou A, Gong Q, Zhou Y, Huang J, Chen Z. Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest. Applied Sciences. 2022; 12(9):4218. https://doi.org/10.3390/app12094218
Chicago/Turabian StyleZhu, Jianming, Aojie Zhou, Qiong Gong, Yu Zhou, Junxiang Huang, and Zhencheng Chen. 2022. "Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest" Applied Sciences 12, no. 9: 4218. https://doi.org/10.3390/app12094218
APA StyleZhu, J., Zhou, A., Gong, Q., Zhou, Y., Huang, J., & Chen, Z. (2022). Detection of Sleep Apnea from Electrocardiogram and Pulse Oximetry Signals Using Random Forest. Applied Sciences, 12(9), 4218. https://doi.org/10.3390/app12094218