Analysis of Heart Rate Variability and Game Performance in Normal and Cognitively Impaired Elderly Subjects Using Serious Games
<p>Experiment flow.</p> "> Figure 2
<p>Cognitive Game based on Nostalgia Theory.</p> "> Figure 3
<p>Whack-a-Mole Game.</p> "> Figure 4
<p>Hit-the-Ball Game. The subject has to distinguish between the two ball types and press the correct button when the football reaches the target area.</p> "> Figure 5
<p>Traditional Machine Learning Pipeline.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Physiological Measurement and Signal Preprocessing
2.4. Feature Extraction
2.5. Statistical Analysis
2.6. Classification
3. Results
3.1. Demography and Characteristics of Subjects
3.2. Statistical Analysis Results
3.2.1. Measured HRV Features
3.2.2. Game Performance
3.3. Classification Results
3.3.1. HRV Features Only
3.3.2. Game Performance Features Only
3.3.3. Combination of HRV and Game Performance
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 3 July 2021).
- Taiwan Will Be a Super-Aged Society by 2026. Taiwan News, 12 February 2019. Available online: https://www.taiwannews.com.tw/en/news/3636704 (accessed on 3 July 2021).
- Murman, D. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.; Ruano, L.; Carvalho, O.P.; Barros, H. Global Cognitive Impairment Prevalence and Incidence in Community Dwelling Older Adults—A Systematic Review. Geriatrics 2020, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Johansson, G.; Zhu, F.; Kivipelto, M.; Winblad, B. Prevention of Cognitive Decline in Old Age—Varying Effects of Interventions in Different Populations. Ann. Transl. Med. 2019, 7, S142. [Google Scholar] [CrossRef] [PubMed]
- Perron, B.; Schröter, F. (Eds.) Video Games and the Mind: Essays on Cognition, Affect and Emotion; McFarland & Company, Inc.: Jefferson, NC, USA, 2016; ISBN 978-0-7864-9909-0. [Google Scholar]
- Wu, Y.; Zhang, Y.; Yuan, X.; Guo, J.; Gao, X. Influence of Education Level on MMSE and MoCA Scores of Elderly Inpatients. Appl. Neuropsychol. Adult 2021, 1–5. [Google Scholar] [CrossRef]
- Critchley, H.D.; Eccles, J.; Garfinkel, S.N. Interaction between cognition, emotion, and the autonomic nervous system. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 59–77. ISBN 978-0-444-53491-0. [Google Scholar]
- Laamarti, F.; Eid, M.; El Saddik, A. An Overview of Serious Games. Int. J. Comput. Games Technol. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Kim, J.; Lee, M. A Design of the U-Health Monitoring System Using a Nintendo DS Game Machine. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hilton, MN, USA, 2–6 September 2009; IEEE: Minneapolis, MN, USA, 2009; pp. 1695–1698. [Google Scholar]
- Finkelstein, J.; Wood, J.; Cha, E.; Orlov, A.; Dennison, C. Feasibility of Congestive Heart Failure Telemanagement Using a Wii-Based Telecare Platform. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2211–2214. [Google Scholar]
- Fergus, P.; Kifayat, K.; Cooper, S.; Merabti, M.; El Rhalibi, A. A Framework for Physical Health Improvement Using Wireless Sensor Networks and Gaming. In Proceedings of the 3rd International ICST Conference on Pervasive Computing Technologies for Healthcare, London, UK, 4 August 2009; ICST: London, UK, 2009. [Google Scholar]
- McKanna, J.A.; Jimison, H.; Pavel, M. Divided Attention in Computer Game Play: Analysis Utilizing Unobtrusive Health Monitoring. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hilton, MN, USA, 2–6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 6247–6250. [Google Scholar]
- Wang, Q.; Sourina, O.; Nguyen, M.K. EEG-Based “Serious” Games Design for Medical Applications. In Proceedings of the 2010 International Conference on Cyberworlds, Singapore, 20–22 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 270–276. [Google Scholar]
- Atkinson, S.D.; Narasimhan, V.L. Design of an Introductory Medical Gaming Environment for Diagnosis and Management of Parkinson’s Disease. In Proceedings of the Trendz in Information Sciences & Computing(TISC2010), Chennai, India, 17–19 December 2020; IEEE: Piscataway, NJ, USA, 2010; pp. 94–102. [Google Scholar]
- Bartolome, N.A.; Zorrilla, A.M.; Zapirain, B.G. A Serious Game to Improve Human Relationships in Patients with Neuro-Psychological Disorders. In Proceedings of the 2010 2nd International IEEE Consumer Electronics Society’s Games Innovations Conference, Hong Kong, 21–23 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Rego, P.; Moreira, P.M.; Reis, L.P. Serious Games for Rehabilitation: A Survey and a Classification towards a Taxonomy. In Proceedings of the 5th Iberian Conference on Information Systems and Technologies, Santiago de Compostela, Spain, 16–19 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar]
- Cameirão, M.S.; Bermúdez, I.; Badia, S.; Duarte Oller, E.; Verschure, P.F.M.J. The Rehabilitation Gaming System: A Review. Stud. Health Technol. Inform. 2009, 145, 65–83. [Google Scholar]
- Uzor, S.; Baillie, L. Investigating the Long-Term Use of Exergames in the Home with Elderly Fallers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM: New York, NU, USA, 2014; pp. 2813–2822. [Google Scholar]
- Nguyen, T.T.H.; Ishmatova, D.; Tapanainen, T.; Liukkonen, T.N.; Katajapuu, N.; Makila, T.; Luimula, M. Impact of Serious Games on Health and Well-Being of Elderly: A Systematic Review. In Proceedings of the 50th Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Sokolov, A.A.; Collignon, A.; Bieler-Aeschlimann, M. Serious Video Games and Virtual Reality for Prevention and Neurorehabilitation of Cognitive Decline Because of Aging and Neurodegeneration. Curr. Opin. Neurol. 2020, 33, 239–248. [Google Scholar] [CrossRef]
- Wortley, D.; An, J.-Y.; Heshmati, A. Tackling the Challenge of the Aging Society: Detecting and Preventing Cognitive and Physical Decline through Games and Consumer Technologies. Healthc. Inform. Res. 2017, 23, 87. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Elmaghraby, A.S.; El-Baz, A.; Sokhadze, E.M. Using Physiological Signal Analysis to Design Affective VR Games. In Proceedings of the 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, United Arab Emirates, 7–10 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 57–62. [Google Scholar]
- Difference between RR Interval and NN Interval. Available online: https://hexoskin.zendesk.com/hc/en-us/articles/360045123314-Difference-between-RR-interval-and-NN-interval (accessed on 15 April 2022).
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Grässler, B.; Hökelmann, A.; Cabral, R.H. Resting Heart Rate Variability as a Possible Marker of Cognitive Decline. Kinesiology 2020, 52, 72–84. [Google Scholar] [CrossRef]
- Hou, C.J.; Huang, M.W.; Zhou, J.Y.; Hsu, P.C.; Zeng, J.H.; Chen, Y.T. The Application of Individual Virtual Nostalgic Game Design to the Evaluation of Cognitive Function. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 2586–2589. [Google Scholar]
- Chen, Y.-T.; Hou, C.-J.; Derek, N.; Huang, S.-B.; Huang, M.-W.; Wang, Y.-Y. Evaluation of the Reaction Time and Accuracy Rate in Normal Subjects, MCI, and Dementia Using Serious Games. Appl. Sci. 2021, 11, 628. [Google Scholar] [CrossRef]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) Test Better Suited than the Mini-Mental State Examination (MMSE) in Mild Cognitive Impairment (MCI) Detection among People Aged over 60? Meta-Analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef]
- Tan, J.; Li, N.; Gao, J.; Wang, L.; Zhao, Y.; Yu, B.; Du, W.; Zhang, W.; Cui, L.; Wang, Q.; et al. Optimal Cutoff Scores for Dementia and Mild Cognitive Impairment of the Montreal Cognitive Assessment among Elderly and Oldest-Old Chinese Population. J. Alzheimer Dis. 2015, 43, 1403–1412. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Lee, W.-J.; Wang, S.-J.; Shia, B.-C.; Nasreddine, Z.; Fuh, J.-L. Psychometrics of the Montreal Cognitive Assessment (MoCA) and Its Subscales: Validation of the Taiwanese Version of the MoCA and an Item Response Theory Analysis. Int. Psychogeriatr. 2012, 24, 651–658. [Google Scholar] [CrossRef]
- Factors That Can Affect HRV and Stress—VitalScan. Available online: https://www.vitalscan.com/dt_factors_affect_stress.html (accessed on 14 April 2022).
- Sammito, S.; Böckelmann, I. Factors Influencing Heart Rate Variability. Int. Cardiovasc. Forum J. 2016, 6. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.-J.; Chen, Y.-T.; Capilayan, M.; Lin, Y.-S.; Huang, M.-W.; Huang, J.-J. Analysis of Heart Rate Variability in Response to Serious Games in Elderly People. Sensors 2021, 21, 6549. [Google Scholar] [CrossRef]
- Kaufmann, T.; Sütterlin, S.; Schulz, S.M.; Vögele, C. ARTiiFACT: A Tool for Heart Rate Artifact Processing and Heart Rate Variability Analysis. Behav. Res. Methods 2011, 43, 1161–1170. [Google Scholar] [CrossRef]
- Berntson, G.G.; Quigley, K.S.; Jang, J.F.; Boysen, S.T. An Approach to Artifact Identification: Application to Heart Period Data. Psychophysiology 1990, 27, 586–598. [Google Scholar] [CrossRef]
- Ramshur, J.T. Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS). Ph.D Thesis, University of Memphis, Memphis, TN, USA, 2010. [Google Scholar] [CrossRef]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.-K.; Schmidt, G.; Yamamoto, Y.; Gorenek, B.; Lip, G.Y.H.; et al. Advances in Heart Rate Variability Signal Analysis: Joint Position Statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association Co-Endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Mair, P.; Wilcox, R. Robust Statistical Methods in R Using the WRS2 Package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
- Cartacio, S. What Is Automated ML? AutoML—Azure Machine Learning. Available online: https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml (accessed on 15 April 2022).
- Le, T.T.; Fu, W.; Moore, J.H. Scaling Tree-Based Automated Machine Learning to Biomedical Big Data with a Feature Set Selector. Bioinformatics 2020, 36, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Olson, R.S.; Urbanowicz, R.J.; Andrews, P.C.; Lavender, N.A.; Kidd, L.C.; Moore, J.H. Automating Biomedical Data Science Through Tree-Based Pipeline Optimization. In Applications of Evolutionary Computation; Squillero, G., Burelli, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9597, pp. 123–137. ISBN 978-3-319-31203-3. [Google Scholar]
- Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; ACM: New York, NY, USA, 2016; pp. 485–492. [Google Scholar]
- HRV Demographics, Part 1—Age & Gender. Available online: https://elitehrv.com/hrv-demographics-age-gender (accessed on 18 February 2022).
- Brownlee, J. Recursive Feature Elimination (RFE) for Feature Selection in Python; Machine Learning Mastery: San Juan, Puerto Rico, 2020. [Google Scholar]
- Johnson, K.; Kuhn, M. 11.3 Recursive feature elimination. In Feature Engineering and Selection: A Practical Approach for Predictive Models; Taylor & Francis Group: New York, NY, USA, 2019. [Google Scholar]
- Fardeen, A. Decision Tree Classifier in Python Sklearn with Example. MLK Machine Learning Knowledge, 29 July 2019. [Google Scholar]
- sy2002. RBFSampler actually is not using any radial basis functions (RBFs). In Medium; GitHub, Inc.: San Francisco, CA, USA, 2019. [Google Scholar]
- Rahimi, A.; Recht, B. Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning. In Proceedings of the NIPS’08: Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008. [Google Scholar]
- Nonogaki, Z.; Umegaki, H.; Makino, T.; Suzuki, Y.; Kuzuya, M. Relationship between Cardiac Autonomic Function and Cognitive Function in Alzheimer’s Disease: Heart and Cognition in AD. Geriatr. Gerontol. Int. 2017, 17, 92–98. [Google Scholar] [CrossRef]
- Frewen, J.; Finucane, C.; Savva, G.M.; Boyle, G.; Coen, R.F.; Kenny, R.A. Cognitive Function Is Associated with Impaired Heart Rate Variability in Ageing Adults: The Irish Longitudinal Study on Ageing Wave One Results. Clin. Auton. Res. 2013, 23, 313–323. [Google Scholar] [CrossRef]
- Gillie, B.L.; Vasey, M.W.; Thayer, J.F. Heart Rate Variability Predicts Control Over Memory Retrieval. Psychol. Sci. 2014, 25, 458–465. [Google Scholar] [CrossRef]
- Britton, A.; Singh-Manoux, A.; Hnatkova, K.; Malik, M.; Marmot, M.G.; Shipley, M. The Association between Heart Rate Variability and Cognitive Impairment in Middle-Aged Men and Women. Neuroepidemiology 2008, 31, 115–121. [Google Scholar] [CrossRef]
- Zeki Al Hazzouri, A.; Elfassy, T.; Carnethon, M.R.; Lloyd-Jones, D.M.; Yaffe, K. Heart Rate Variability and Cognitive Function In Middle-Age Adults: The Coronary Artery Risk Development in Young Adults. Am. J. Hypertens. 2018, 31, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Mahinrad, S.; Jukema, J.W.; van Heemst, D.; Macfarlane, P.W.; Clark, E.N.; de Craen, A.J.M.; Sabayan, B. 10-Second Heart Rate Variability and Cognitive Function in Old Age. Neurology 2016, 86, 1120–1127. [Google Scholar] [CrossRef]
- Antonelli Incalzi, R.; Corsonello, A.; Trojano, L.; Pedone, C.; Acanfora, D.; Spada, A.; D’Addio, G.; Maestri, R.; Rengo, F.; Rengo, G. Heart Rate Variability and Drawing Impairment in Hypoxemic COPD. Brain Cogn. 2009, 70, 163–170. [Google Scholar] [CrossRef]
- Jennings, J.R.; Allen, B.; Gianaros, P.J.; Thayer, J.F.; Manuck, S.B. Focusing Neurovisceral Integration: Cognition, Heart Rate Variability, and Cerebral Blood Flow: Focusing Neurovisceral Integration. Psychophysiology 2015, 52, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, P.; Ciulla, M.M.; Malfatto, G.; Abbate, C.; Mari, D.; Rossi, P.D.; Pettenuzzo, E.; Magrini, F.; Consonni, D.; Lombardi, F. Autonomic Dysfunction in Mild Cognitive Impairment: Evidence from Power Spectral Analysis of Heart Rate Variability in a Cross-Sectional Case-Control Study. PLoS ONE 2014, 9, e96656. [Google Scholar] [CrossRef]
- Stenfors, C.U.D.; Hanson, L.M.; Theorell, T.; Osika, W.S. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults. Front. Psychol. 2016, 7, 1536. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.C.-C.; Tsai, S.-J.; Hong, C.-J.; Yang, C.-H.; Hsieh, C.-H.; Liu, M.-E. Association between Heart Rate Variability and Cognitive Function in Elderly Community-Dwelling Men without Dementia: A Preliminary Report: Letters to the Editor. J. Am. Geriatr. Soc. 2008, 56, 958–960. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Vagal Influence on Working Memory and Attention. Int. J. Psychophysiol. 2003, 48, 263–274. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Sollers, J.J.; Stenvik, K.; Thayer, J.F. Heart Rate Variability and Its Relation to Prefrontal Cognitive Function: The Effects of Training and Detraining. Eur. J. Appl. Physiol. 2004, 93, 263–272. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Relationship between Heart Rate Variability and Cognitive Function during Threat of Shock. Anxiety Stress Coping 2009, 22, 77–89. [Google Scholar] [CrossRef]
- Kimhy, D.; Crowley, O.V.; McKinley, P.S.; Burg, M.M.; Lachman, M.E.; Tun, P.A.; Ryff, C.D.; Seeman, T.E.; Sloan, R.P. The Association of Cardiac Vagal Control and Executive Functioning—Findings from the MIDUS Study. J. Psychiatr. Res. 2013, 47, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Slavych, B. Pros and Cons of Various Screening Tools for Dementia. Leader Live, 30 May 2019. [Google Scholar]
Dataset | Total Number of Features |
---|---|
HRV features only | 40 (4 sessions × 10 HRV features) |
Game features only | 13 |
HRV and Game features | 53 |
Factors | NC (n = 24) | MCI (n = 24) | p-Value |
---|---|---|---|
Gender (%) | 0.093 (Χ2) | ||
Male | 9 (37.5%) | 3 (12.5%) | |
Female | 15 (62.5%) | 21 (87.5%) | |
Age, years | 72.0833 ± 5.1068 | 76.6250 ± 7.0267 | 0.014 * |
Education, years | 10.3333 ± 3.5098 | 7.0833 ± 4.4224 | 0.004 * |
MoCA score | 26.6250 ± 1.81330 | 15.6250 ± 7.5746 | 0.000 * |
Normal Cognition | ||||
---|---|---|---|---|
Feature | Rest 1 | Game 1 | Rest 2 | Game 2&3 |
HR | 71.75 (11.73) | 73.90 (12.50) | 68.60 (11.13) | 69.25 (12.33) |
RRI | 839.50 (141.25) | 812.25 (135.02) | 876.10 (137.13) | 867.85 (147.73) |
SDNN | 34.40 (21.85) | 23.15 (13.30) | 27.90 (21.30) | 25.00 (15.50) |
pNN50 | 0.00 (4.68) | 0.15 (2.10) | 0.40 (7.50) | 0.30 (7.03) |
RMSSD | 17.15 (15.88) | 13.65 (10.03) | 18.10 (17.60) | 17.35 (14.45) |
TP | 149.735 (346.08) | 112.925 (170.71) | 162.090 (321.51) | 163.490 (163.93) |
LF | 34.205 (98.3525) | 37.08 (56.475) | 33.225 (89.9975) | 46.450 (82.78) |
HF | 43.23 (68.245) | 21.885 (30.415) | 40.05 (105.8) | 37.145 (53.3925) |
LF/HF | 0.614 (1.6123) | 1.6445 (1.6950) | 0.746 (1.1583) | 1.306 (1.2670) |
SampEn | 1.5040 (0.52) | 1.5500 (0.57) | 1.6770 (0.57) | 1.6460 (0.52) |
Mild Cognitive Impairment | ||||
Feature | Rest 1 | Game 1 | Rest 2 | Game 2&3 |
HR | 72.50 (15.53) | 76.95 (19.17) | 73.25 (18.15) | 72.45 (18.05) |
RRI | 828.40 (185.10) | 781.55 (193.60) | 820.75 (218.60) | 830.35 (215.12) |
SDNN | 26.0500 (20.68) | 26.45 (13.60) | 26.10 (20.75) | 24.65 (16.63) |
pNN50 | 0.90 (4.45) | 0.60 (7.08) | 0.25 (16.88) | 0.60 (11.30) |
RMSSD | 19.20 (14.30) | 16.95 (12.85) | 18.75 (22.65) | 18.15 (18.80) |
TP | 127.89 (417.74) | 142.43 (145.16) | 110.36 (277.21) | 126.58 (204.09) |
LF | 23.49 (53.32) | 32.18 (54.94) | 21.04 (71.78) | 41.38 (40.66) |
HF | 37.58 (58.935) | 24.175 (42.90) | 40.415 (75.545) | 27.205 (60.753) |
LF/HF | 0.697 (1.003) | 1.602 (2.024) | 1.018 (1.086) | 1.325 (1.955) |
SampEn | 1.6245 (0.66) | 1.5025 (0.67) | 1.8195 (0.56) | 1.7205 (0.54) |
Feature | Group | Session | Interaction (Group × Session) | |||
---|---|---|---|---|---|---|
F | p-Value | F | p-Value | F | p-Value | |
HR | 0.3465 | 0.5609 | 46.4722 | 0.0000 * | 0.6184 | 0.6099 |
RRI | 0.2623 | 0.6125 | 50.2898 | 0.0000 * | 0.6073 | 0.6168 |
SDNN | 0.0597 | 0.8087 | 1.7519 | 0.1849 | 0.5464 | 0.6556 |
pNN50 | 0.4471 | 0.5105 | 0.9443 | 0.4374 | 0.1001 | 0.9591 |
RMSSD | 0.1383 | 0.7127 | 3.4800 | 0.0319 * | 0.2237 | 0.8790 |
TP | 0.0791 | 0.7804 | 1.7584 | 0.1854 | 0.8876 | 0.4634 |
LF | 0.4417 | 0.5116 | 0.9289 | 0.4426 | 0.2199 | 0.8816 |
HF | 0.1752 | 0.6786 | 4.3286 | 0.0143 * | 0.8641 | 0.4733 |
LF/HF | 0.0732 | 0.7887 | 7.7473 | 0.0009 * | 0.7757 | 0.5189 |
SampEn | 0.5227 | 0.4753 | 2.2279 | 0.1124 | 1.2333 | 0.3206 |
Feature | Post-Hoc Analysis |
---|---|
HR | (2) > (1); (2) > (3); (2) > (4) |
RRI | (2) < (1); (2) < (3); (2) < (4) |
RMSSD | (2) < (1) |
HF | (2) < (1); (2) < (3); (2) < (4); (4) < (1) |
LF/HF | (2) > (1); (2) > (3); (4) > (1); (4) > (3) |
Game | NC | MCI | p-Value | |
---|---|---|---|---|
Nostalgic Game | 23.3333 (1.7110) | 19.1250 (4.7026) | 0.000 * | |
Whack-a-Mole Game | ||||
Level 1 | Hit Ratio | 0.9958 (0.0204) | 0.8318 (0.2476) | 0.001 * |
Response Time | 1.2318 (0.2083) | 1.8416 (0.8458) | 0.000 * | |
Level 2 | Hit Ratio | 0.9792 (0.0415) | 0.8455 (0.3035) | 0.051 |
Response Time | 1.0992 (0.1603) | 1.5788 (0.6251) | 0.000 * | |
Level 3 | Hit Ratio | 0.9167 (0.0637) | 0.7591 (0.2889) | 0.024 * |
Response Time | 1.0238 (0.1263) | 1.4606 (0.6348) | 0.000 * | |
Hit-the-Ball Game | ||||
Level 1 | Hit Ratio | 0.9500 (0.0780) | 0.9034 (0.1528) | 0.203 |
Response Time | 0.3212 (0.2770) | 0.5652 (0.5996) | 0.085 | |
Level 2 | Hit Ratio | 0.9958 (0.0204) | 0.8818 (0.2108) | 0.004 * |
Response Time | 0.1068 (0.1147) | 0.2490 (0.3424) | 0.090 | |
Level 3 | Hit Ratio | 1.0000 (0.0000) | 0.8818 (0.1991) | 0.000 * |
Response Time | 0.2005 (0.1073) | 0.4485 (0.3839) | 0.001 * |
Predicted | Total | Recall Rate | |||
---|---|---|---|---|---|
MCI | NC | ||||
Actual | MCI | 16 | 8 | 24 | 66.67% |
NC | 7 | 17 | 24 | 70.83% | |
Total | 23 | 25 | 48 | ||
Precision Rate | 69.57% | 68% | Accuracy: 68.75% |
Predicted | Total | Recall Rate | |||
---|---|---|---|---|---|
MCI | NC | ||||
Actual | MCI | 19 | 5 | 24 | 79.17% |
NC | 3 | 21 | 24 | 87.50% | |
Total | 22 | 26 | 48 | ||
Precision Rate | 86.36% | 80.77% | Accuracy: 83.33% |
Predicted | Total | Recall Rate | |||
---|---|---|---|---|---|
MCI | NC | ||||
Actual | MCI | 21 | 3 | 24 | 87.50% |
NC | 6 | 18 | 24 | 75% | |
Total | 27 | 21 | 48 | ||
Precision Rate | 77.78% | 85.71% | Accuracy: 81.20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, C.-J.; Chen, Y.-T.; Capilayan, M.A.; Huang, M.-W.; Huang, J.-J. Analysis of Heart Rate Variability and Game Performance in Normal and Cognitively Impaired Elderly Subjects Using Serious Games. Appl. Sci. 2022, 12, 4164. https://doi.org/10.3390/app12094164
Hou C-J, Chen Y-T, Capilayan MA, Huang M-W, Huang J-J. Analysis of Heart Rate Variability and Game Performance in Normal and Cognitively Impaired Elderly Subjects Using Serious Games. Applied Sciences. 2022; 12(9):4164. https://doi.org/10.3390/app12094164
Chicago/Turabian StyleHou, Chun-Ju, Yen-Ting Chen, Mycel A. Capilayan, Min-Wei Huang, and Ji-Jer Huang. 2022. "Analysis of Heart Rate Variability and Game Performance in Normal and Cognitively Impaired Elderly Subjects Using Serious Games" Applied Sciences 12, no. 9: 4164. https://doi.org/10.3390/app12094164
APA StyleHou, C.-J., Chen, Y.-T., Capilayan, M. A., Huang, M.-W., & Huang, J.-J. (2022). Analysis of Heart Rate Variability and Game Performance in Normal and Cognitively Impaired Elderly Subjects Using Serious Games. Applied Sciences, 12(9), 4164. https://doi.org/10.3390/app12094164