Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece
<p>(<b>a</b>) Location of the study area in Greece (<b>b</b>) and in Evros county. (<b>c</b>) Longitude and latitude of Natura 2000 area (GR1110005) that coincides with the National Park Forest of Dadia-Lefkimi-Soufli, including the protected zones A1 and A2.</p> "> Figure 2
<p>Flowchart of the applied methodology.</p> "> Figure 3
<p>Color infrared image of the study area produced by the combination of spectral bands B03, B04, and B08 (<b>a</b>) from September 2019 and (<b>b</b>) from September 2021.</p> "> Figure 4
<p>Final land cover map produced by the SMV algorithm (<b>a</b>) from September 2019 and (<b>b</b>) from September 2021.</p> "> Figure 5
<p>The fire risk classification of land cover (<b>a</b>) for September 2019 and (<b>b</b>) for September 2021.</p> "> Figure 6
<p>(<b>a</b>) Altitude. (<b>b</b>) Fire risk classification of altitude.</p> "> Figure 7
<p>(<b>a</b>) Aspect. (<b>b</b>) Fire risk classification of aspect.</p> "> Figure 8
<p>(<b>a</b>) Slope. (<b>b</b>) Fire risk classification of slope.</p> "> Figure 9
<p>(<b>a</b>) TWI. (<b>b</b>) Fire risk classification of TWI.</p> "> Figure 10
<p>(<b>a</b>) Rasterized buffer zones every 200 m from the road network. (<b>b</b>) Fire risk classification based on the road network.</p> "> Figure 11
<p>(<b>a</b>) Rasterized buffer zones of the distance from settlements. (<b>b</b>) Fire risk classification of the area around settlement locations.</p> "> Figure 12
<p>Fire risk in the National Park Forest of Dadia-Lefkimi-Soufli (<b>a</b>) for September 2019 and (<b>b</b>) for September 2021.</p> "> Figure 13
<p>(<b>a</b>) The extent of the fire on 5 October 2020 relative to the fire risk map of 2019. (<b>b</b>) The fire risk distribution inside the affected area before the fire on 5 October 2020.</p> "> Figure 14
<p>(<b>a</b>) The extent of the fire on 5 October 2020 relative to the fire risk map of 2021. (<b>b</b>) The updated fire risk distribution inside the affected area, after the fire on 5 October 2020.</p> "> Figure 15
<p>(<b>a</b>) The extent of the fire on 9 July 2021 relative to the fire risk map of September 2019. (<b>b</b>) The fire risk distribution inside the affected area, before the fire on 9 July 2021.</p> "> Figure 16
<p>(<b>a</b>) The extent of the fire on 9 July 2021 relative to the fire risk map of 2021. (<b>b</b>) The updated fire risk distribution inside the affected area, after the fire on 9 July 2021.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Factors
3.1.1. Land Cover (LC)
3.1.2. Altitude
3.1.3. Aspect
3.1.4. Slope
3.1.5. Topographic Wetness Index (TWI)
3.1.6. Distance from Roads
3.1.7. Distance from Settlements
3.2. Attribution of Weight to the Factors
4. Results
4.1. Impact of Fire in October 2020
4.2. Impact of Fire in July 2021
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tedim, F.; Xanthopoulos, G.; Leone, V. Forest Fires in Europe. In Wildfire Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–99. ISBN 978-0-12-410434-1. [Google Scholar]
- Martin, D.; Tomida, M.; Meacham, B. Environmental Impact of Fire. Fire Sci. Rev. 2016, 5, 5. [Google Scholar] [CrossRef]
- Dittrich, R.; McCallum, S. How to Measure the Economic Health Cost of Wildfires—A Systematic Review of the Literature for Northern America. Int. J. Wildland Fire 2020, 29, 961. [Google Scholar] [CrossRef]
- Butry, D.T.; Mercer, E.D.; Prestemon, J.P.; Pye, J.M.; Holmes, T.P. What Is the Price of Catastrophic Wildfire? J. For. 2001, 99, 9–17. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. Impacts of Human-Caused Fires on Biodiversity and Ecosystem Functioning, and Their Causes in Tropical, Temperate, and Boreal Forest Biomes; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2001. [Google Scholar]
- Strid, A. The Greek Mountain Flora, with Special Reference to the Central European Element. Bocconea 1995, 5, 99–112. [Google Scholar]
- Tan, K.; Stevanović, V.; Strid, A. Distribution and Centres of Diversity for Endemic Geophytic Monocots in the Balkans. Bocconea 2007, 21, 139–146. [Google Scholar]
- Blandford, D. “Burn Baby Burn”—Controlling the Risk of Wildfires in Greece. In Proceedings of the 93rd Annual Conference, Warwick University, Coventry, UK, 15–17 April 2019. [Google Scholar]
- Copernicus Emergency Management Service. Available online: https://Emergency.Copernicus.Eu/Mapping/List-of-Components/EMSR527 (accessed on 10 December 2021).
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-139-17724-5. [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artes, T.; Costa, H.; et al. Forest Fires in Europe, Middle East and North Africa 2017; Publications Officer of the European Union: Luxembourg, 2018; ISBN 978-92-79-92831-4. [Google Scholar]
- Ganteaume, A.; Syphard, A.D. Ignition Sources. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–17. ISBN 978-3-319-51727-8. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Nuthammachot, N.; Stratoulias, D. Multi-Criteria Decision Analysis for Forest Fire Risk Assessment by Coupling AHP and GIS: Method and Case Study. Environ. Dev. Sustain. 2021, 23, 17443–17458. [Google Scholar] [CrossRef]
- Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both Topography and Climate Affected Forest and Woodland Burn Severity in Two Regions of the Western US, 1984 to 2006. Ecosphere 2011, 2, art130. [Google Scholar] [CrossRef]
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Miller, J.D.; Preisler, H.K. Factors Influencing Fire Severity under Moderate Burning Conditions in the Klamath Mountains, Northern California, USA. Ecosphere 2017, 8, e01794. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying Influences and Relative Importance of Fire Weather, Topography, and Vegetation on Fire Size and Fire Severity in a Chinese Boreal Forest Landscape. For. Ecol. Manag. 2015, 356, 2–12. [Google Scholar] [CrossRef]
- Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Smith, A.M.S. Vegetation, Topography and Daily Weather Influenced Burn Severity in Central Idaho and Western Montana Forests. Ecosphere 2015, 6, art17. [Google Scholar] [CrossRef]
- Erten, E.; Kurgun, V.; Musaoglu, N. Forest Fire Risk Zone Mapping from Satellite Imagery and GIS: A Case Study; ISPRS: Bethesda, MD, USA, 2002. [Google Scholar]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Matsinos, I. Identifying Wildland Fire Ignition Factors through Sensitivity Analysis of a Neural Network. Nat. Hazards 2009, 50, 125–143. [Google Scholar] [CrossRef]
- Kopecký, M.; Macek, M.; Wild, J. Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yebra, M.; van Dijk, A.I.J.M.; Cary, G.J.; Matthews, S.; Sheridan, G. The Influence of Soil Moisture on Surface and Sub-Surface Litter Fuel Moisture Simulation at Five Australian Sites. Agric. For. Meteorol. 2021, 298–299, 108282. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of General Indicators Influencing on Forest Fire and Its Susceptibility Modeling Using Different Data Mining Techniques. Ecol. Indic. 2016, 64, 72–84. [Google Scholar] [CrossRef]
- Adaktylou, N.; Stratoulias, D.; Landenberger, R. Wildfire Risk Assessment Based on Geospatial Open Data: Application on Chios, Greece. IJGI 2020, 9, 516. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, F.; Lin, H.; Xu, S. GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing. Remote Sens. 2021, 13, 3704. [Google Scholar] [CrossRef]
- Gai, C.; Weng, W.; Yuan, H. GIS-Based Forest Fire Risk Assessment and Mapping. In Proceedings of the 2011 Fourth International Joint Conference on Computational Sciences and Optimization, Kunming, China, 15–19 April 2011; IEEE: Manhattan, NY, USA, 2011; pp. 1240–1244. [Google Scholar]
- Parajuli, A.; Gautam, A.P.; Sharma, S.P.; Bhujel, K.B.; Sharma, G.; Thapa, P.B.; Bist, B.S.; Poudel, S. Forest Fire Risk Mapping Using GIS and Remote Sensing in Two Major Landscapes of Nepal. Geomat. Nat. Hazards Risk 2020, 11, 2569–2586. [Google Scholar] [CrossRef]
- Tomar, J.S.; Kranjčić, N.; Đurin, B.; Kanga, S.; Singh, S.K. Forest Fire Hazards Vulnerability and Risk Assessment in Sirmaur District Forest of Himachal Pradesh (India): A Geospatial Approach. IJGI 2021, 10, 447. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Understanding the Analytic Hierarchy Process. In Practical Decision Making; Springer International Publishing: Cham, Switzerland, 2017; pp. 7–22. ISBN 978-3-319-33860-6. [Google Scholar]
- Ajin, R.S.; Ciobotaru, A.-M.; Vinod, P.G.; Jacob, M.K. Forest and Wildland Fire Risk Assessment Using Geospatial Techniques: A Case Study of Nemmara Forest Division, Kerala, India. J. Wetl. Biodivers. 2015, 5, 29–37. [Google Scholar]
- Nezhad, M.M.; Heydari, A.; Fusilli, L.; Laneve, G. Land Cover Classification by Using Sentinel-2 Images: A Case Study in the City of Rome. In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE’19), Rome, Italy, 7–9 April 2019. [Google Scholar]
- Cavur, M.; Duzgun, H.S.; Kemec, S.; Demirkan, D.C. Land Use and Land Cover Classification of Sentinel 2-A: St Petersburg Case Study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Usman, B. Satellite Imagery Land Cover Classification Using K-Means Clustering Algorithm Computer Vision for Environmental Information Extraction. Elixir Int. J. Comput. Sci. Eng. 2013, 63, 18671–18675. [Google Scholar]
- Norovsuren, B.; Tseveen, B.; Batomunkuev, V.; Renchin, T.; Natsagdorj, E.; Yangiv, A.; Mart, Z. Land Cover Classification Using Maximum Likelihood Method (2000 and 2019) at Khandgait Valley in Mongolia. IOP Conf. Ser. Earth Environ. Sci. 2019, 381, 012054. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X. Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Li, J., Yang, X., Eds.; Springer Remote Sensing/Photogrammetry; Springer: Dordrecht, The Netherlands, 2015; pp. 265–279. ISBN 978-94-017-9812-9. [Google Scholar]
- Matzarakis, A. The Climate of Evros; University of Freiburg: Freiburg, Germany, 2006; ISBN 978-3-00-020071-7. [Google Scholar]
- The Dadia-Lefkimi-Soufli Forest National Park. Available online: http://dadia-np.gr/?lang=en (accessed on 22 January 2022).
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 5 October 2021).
- Schindler, S.; Poirazidis, K.; Wrbka, T. Towards a Core Set of Landscape Metrics for Biodiversity Assessments: A Case Study from Dadia National Park, Greece. Ecol. Indic. 2008, 8, 502–514. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 10 December 2021).
- GEODATA.Gov. Available online: http://geodata.gov.gr/ (accessed on 20 October 2021).
- Open Street Map. Available online: http://download.geofabrik.de/europe/greece.html?fbclid=IwAR2V9xnHZnHf0dx3ztBfJA6vkLtMIVLf0GIz1LyAN9x9QVQyie4ntrE9RqU (accessed on 22 December 2021).
- The Dadia-Lefkimi-Soufli Forest National Park, Press Release, 07 October 2020. Available online: https://dadia-np.gr/?p=6370 (accessed on 22 January 2022).
- The Dadia-Lefkimi-Soufli Forest National Park, Press Release, 14 July 2021. Available online: https://dadia-np.gr/?p=6538 (accessed on 22 January 2022).
- NASA-FIRMS. Available online: https://localhost.modaps.eosdis.nasa.gov/map/ (accessed on 16 January 2022).
- Shima, L.J.; Anderson, R.R.; Carter, V.P. The Use of Aerial Color Infrared Photography in Mapping the Vegetation of a Freshwater Marsh. Chesap. Sci. 1976, 17, 74. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Calfapietra, C.; Fernandes, P. Fire Hazard and Flammability of European Forest Types. In Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 24, pp. 79–92. ISBN 978-94-007-2207-1. [Google Scholar]
- Romero-Calcerrada, R.; Novillo, C.J.; Millington, J.D.A.; Gomez-Jimenez, I. GIS Analysis of Spatial Patterns of Human-Caused Wildfire Ignition Risk in the SW of Madrid (Central Spain). Landsc. Ecol. 2008, 23, 341–354. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Samaniego, L.; Schulz, K. Supervised Classification of Agricultural Land Cover Using a Modified K-NN Technique (MNN) and Landsat Remote Sensing Imagery. Remote Sens. 2009, 1, 875–895. [Google Scholar] [CrossRef] [Green Version]
- Daily Fire Risk Map, Ministry for Climate Crisis and Civil Protection. Available online: https://www.civilprotection.gr/el/archive/daily_map/2021 (accessed on 30 January 2022).
- EFFIS—Current Situation. Available online: https://effis.jrc.ec.europa.eu/apps/effis_current_situation/ (accessed on 22 January 2022).
- Sze, L.T.; Cheaw, W.G.; Ahmad, Z.A.; Ling, C.A.; Chet, K.V.; Lateh, H.; Bayuaji, L. High Resolution DEM Generation Using Small Drone for Interferometry SAR. In Proceedings of the 2015 International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 10–12 August 2015; pp. 366–369. [Google Scholar]
Land Cover Class | Risk Class | Risk Description |
---|---|---|
Pine forest | 5 | Extremely high |
Oak forest | 4 | High |
Shrubs and low grass | 3 | Medium |
Bare land | 2 | Low |
Buildup | 1 | Extremely low |
Water body | 0 | No risk |
Altitude (m) | Risk Class | Risk Description |
---|---|---|
10–100 | 5 | Extremely high |
100–200 | 4 | High |
200–300 | 3 | Medium |
300–400 | 2 | Low |
>400 | 1 | Extremely low |
Aspect | Risk Class | Risk Description |
---|---|---|
South | 5 | Extremely high |
Southeast–East | 4 | High |
Northeast | 3 | Medium |
North | 2 | Low |
Flat–Southwest–West– Northwest | 1 | Extremely low |
Slope (%) | Risk Class | Risk Description |
---|---|---|
>30 | 5 | Extremely high |
20–30 | 4 | High |
10–20 | 3 | Medium |
5–10 | 2 | Low |
0–5 | 1 | Extremely low |
TWI | Risk Class | Risk Description |
---|---|---|
4–6 | 5 | Extremely high |
6–7 | 4 | High |
7–8 | 3 | Medium |
8–9 | 2 | Low |
>9 | 1 | Extremely low |
DfR (m) | Risk Class | Risk Description |
---|---|---|
0–200 | 5 | Extremely high |
200–400 | 4 | High |
400–600 | 3 | Medium |
600–800 | 2 | Low |
>800 | 1 | Extremely low |
DfS (m) | Risk Class | Risk Description |
---|---|---|
0–900 | 5 | Extremely high |
900–1300 | 4 | High |
1300–1700 | 3 | Medium |
1700–2100 | 2 | Low |
>2100 | 1 | Extremely low |
Land Cover | Altitude | Aspect | Slope | TWI | DfR | DfS | Weight | |
---|---|---|---|---|---|---|---|---|
Land cover | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 0.27 |
Altitude | 0.33 | 1 | 3 | 2 | 0.5 | 0.33 | 0.33 | 0.09 |
Aspect | 0.33 | 0.33 | 1 | 0.5 | 0.25 | 0.33 | 0.33 | 0.05 |
Slope | 0.33 | 0.5 | 2 | 1 | 0.5 | 0.33 | 0.33 | 0.07 |
TWI | 0.33 | 2 | 4 | 2 | 1 | 0.33 | 0.33 | 0.12 |
DfR | 0.5 | 3 | 3 | 3 | 3 | 1 | 3 | 0.23 |
DfS | 0.5 | 3 | 3 | 3 | 3 | 0.33 | 1 | 0.17 |
SUM | 3.32 | 12.83 | 19 | 14.5 | 11.25 | 4.65 | 7.32 | 1 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 |
Risk Class | Risk Description | Fire Risk Areas (Sept 2019) | Fire Risk Areas (Sept 2021) |
---|---|---|---|
5 | Extremely high | 5% | 5% |
4 | High | 50% | 48% |
3 | Medium | 33% | 34% |
2 | Low | 11% | 12% |
1 | Extremely low | 1% | 1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniatis, Y.; Doganis, A.; Chatzigeorgiadis, M. Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece. Appl. Sci. 2022, 12, 2938. https://doi.org/10.3390/app12062938
Maniatis Y, Doganis A, Chatzigeorgiadis M. Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece. Applied Sciences. 2022; 12(6):2938. https://doi.org/10.3390/app12062938
Chicago/Turabian StyleManiatis, Yannis, Athanasios Doganis, and Minas Chatzigeorgiadis. 2022. "Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece" Applied Sciences 12, no. 6: 2938. https://doi.org/10.3390/app12062938
APA StyleManiatis, Y., Doganis, A., & Chatzigeorgiadis, M. (2022). Fire Risk Probability Mapping Using Machine Learning Tools and Multi-Criteria Decision Analysis in the GIS Environment: A Case Study in the National Park Forest Dadia-Lefkimi-Soufli, Greece. Applied Sciences, 12(6), 2938. https://doi.org/10.3390/app12062938