Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty
<p>Flowchart of the proposed hybrid intelligent algorithm.</p> "> Figure 2
<p>The latch lock mechanism of hatch. (<b>a</b>) The simulation model; (<b>b</b>) The visualized model.</p> "> Figure 3
<p>Reliability comparison for the latch lock mechanism.</p> "> Figure 4
<p>Schematic view of a passive vehicle suspension model.</p> "> Figure 5
<p>Reliability comparison for the suspension mechanical model.</p> "> Figure 6
<p>A vehicle disc brake system. (<b>a</b>) CAD model; (<b>b</b>) Finite element model.</p> "> Figure 7
<p>The comparative objective value of disc brakes under different reliability levels.</p> "> Figure 8
<p>The design history of the brake system problem.</p> "> Figure 9
<p>A welded beam structure.</p> "> Figure 10
<p>Comparison of optimal results under different weights.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Fundamental Concepts of Uncertainty Theory
2.2. Uncertain Programming
3. Uncertain Measure-Based Structural Reliability Assessment
3.1. Equivalent Analytical Model for Calculating the URI
3.2. Uncertain Simulation Algorithm for Calculating the URI
Algorithm 1. Uncertain simulation for URI |
|
4. URI-Based Structural Design Optimization
4.1. The Crisp Equivalent Programming Model for Solving the URBDO Model
4.2. Hybrid Intelligent Algorithm for Solving the URBDO Model
Algorithm 2. USGA for solving the URBDO model |
|
5. Example Analysis and Discussion
5.1. Reliability Analysis of a Latch Lock Mechanism
5.2. Reliability Analysis of a Vehicle’s Suspension Mechanics
5.3. Reliability-Based Optimization of a Vehicle Disc Brake System
5.4. Reliability-Based Optimization of a Welded Beam
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubourg, V.; Sudret, B.; Bourinet, J.-M. Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation. Struct. Multidiscip. Optim. 2011, 44, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhou, H. New Target Performance Approach for a Super Parametric Convex Model of Non-Probabilistic Reliability-Based Design Optimization. Comput. Methods Appl. Mech. Eng. 2018, 339, 644–662. [Google Scholar] [CrossRef]
- Hamza, F.; Ferhat, D.; Abderazek, H.; Dahane, M. A New Efficient Hybrid Approach for Reliability-Based Design Optimization Problems. Eng. Comput. 2020, 15, 1–24. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 21–146. [Google Scholar]
- Enevoldsen, I.; Sørensen, J. Reliability-Based Optimization in Structural Engineering. Struct. Saf. 1994, 15, 169–196. [Google Scholar] [CrossRef]
- Niu, X.-P.; Wang, R.-Z.; Liao, D.; Zhu, S.-P.; Zhang, X.-C.; Keshtegar, B. Probabilistic Modeling of Uncertainties in Fatigue Reliability Analysis of Turbine Bladed Disks. Int. J. Fatigue 2021, 142, 105912. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, C.; Hu, J.; Wang, X.; Qiu, Z. Sequential Multidisciplinary Design Optimization and Reliability Analysis under Interval Uncertainty. Aerosp. Sci. Technol. 2018, 80, 508–519. [Google Scholar] [CrossRef]
- Winyangkul, S.; Sleesongsom, S.; Bureerat, S. Reliability-Based Design of an Aircraft Wing Using a Fuzzy-Based Metaheuristic. Appl. Sci. 2021, 11, 6463. [Google Scholar] [CrossRef]
- Leimeister, M.; Kolios, A. Reliability-Based Design Optimization of a Spar-Type Floating Offshore Wind Turbine Support Structure. Reliab. Eng. Syst. Saf. 2021, 213, 107666. [Google Scholar] [CrossRef]
- Yuan, Y.; Han, W.; Li, G.; Xie, Q.; Guo, Q. Time-Dependent Reliability Assessment of Existing Concrete Bridges Including Non-Stationary Vehicle Load and Resistance Processes. Eng. Struct. 2019, 197, 109426. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, R.; Wen, M. Belief Reliability for Uncertain Random Systems. IEEE. Trans. Fuzzy Syst. 2018, 26, 3605–3614. [Google Scholar] [CrossRef]
- Kiureghian, A.D.; Ditlevsen, O. Aleatory or Epistemic? Does It Matter? Struct. Saf. 2009, 31, 105–112. [Google Scholar] [CrossRef]
- Celorrio, L.; Patelli, E. Reliability-Based Design Optimization under Mixed Aleatory/Epistemic Uncertainties: Theory and Applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 04021026. [Google Scholar] [CrossRef]
- Hamzehkolaei, N.S.; Miri, M.; Rashki, M. New Simulation-Based Frameworks for Multi-Objective Reliability-Based Design Optimization of Structures. Appl. Math. Model. 2018, 62, 1–20. [Google Scholar] [CrossRef]
- Yao, W.; Chen, X.; Huang, Y.; van Tooren, M. An Enhanced Unified Uncertainty Analysis Approach Based on First Order Reliability Method with Single-Level Optimization. Reliab. Eng. Syst. Saf. 2013, 116, 28–37. [Google Scholar] [CrossRef]
- Wang, P.; Yang, L.; Zhao, N.; Li, L.; Wang, D. A New SORM Method for Structural Reliability with Hybrid Uncertain Variables. Appl. Sci. 2021, 11, 346. [Google Scholar] [CrossRef]
- Luo, C.; Keshtegar, B.; Zhu, S.P.; Taylan, O.; Niu, X.-P. Hybrid Enhanced Monte Carlo Simulation Coupled with Advanced Machine Learning Approach for Accurate and Efficient Structural Reliability Analysis. Comput. Methods Appl. Mech. Eng. 2022, 388, 114218. [Google Scholar] [CrossRef]
- Tu, J.; Choi, K.; Park, Y. A New Study on Reliability-Based Design Optimization. J. Mech. Design 1999, 121, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Chun, J. Reliability-Based Design Optimization of Structures Using the Second-Order Reliability Method and Complex-Step Derivative Approximation. Appl. Sci. 2021, 11, 5312. [Google Scholar] [CrossRef]
- Zeng, Z.; Wen, M.; Kang, R. Belief Reliability: A New Metrics for Products’ Reliability. Fuzzy Optim. Decis. Mak. 2013, 12, 15–27. [Google Scholar] [CrossRef]
- Moens, D.; Vandepitte, D. Recent Advances in Non-Probabilistic Approaches for Non-Deterministic Dynamic Finite Element Analysis. Arch. Comput. Methods Eng. 2006, 13, 389–464. [Google Scholar] [CrossRef]
- Du, L.; Choi, K.K.; Youn, B.D.; Gorsich, D. Possibility-Based Design Optimization Method for Design Problems with Both Statistical and Fuzzy Input Data. J. Mech. Des. 2005, 128, 928–935. [Google Scholar] [CrossRef]
- Mourelatos, Z.; Zhou, J. Reliability Estimation and Design with Insufficient Data Based on Possibility Theory. AIAA J. 2005, 43, 1696–1705. [Google Scholar] [CrossRef]
- Jiang, C.; Han, X.; Lu, G.Y.; Liu, J.; Zhang, Z.; Bai, Y.C. Correlation Analysis of Non-Probabilistic Convex Model and Corresponding Structural Reliability Technique. Comput. Methods Appl. Mech. Eng. 2011, 200, 2528–2546. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Wu, Z.; Chen, W. Evidence Theory-Based Reliability Optimization for Cross-Scale Topological Structures with Global Stress, Local Displacement, and Micro-Manufacturing Constraints. Struct. Multidiscip. Optim. 2022, 65, 23. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, J.; Yang, T.; Li, F.; Deng, S. Evidence-Theory-Based Robust Optimization and Its Application in Micro-Electromechanical Systems. Appl. Sci. 2019, 9, 1457. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Y.; Chen, W.-B.; Li, F.-R.; Kang, R. Reliability Evaluation with Limited and Censored Time-to-Failure Data Based on Uncertainty Distributions. Appl. Math. Model. 2021, 94, 403–420. [Google Scholar] [CrossRef]
- Kang, R.; Zhang, Q.; Zeng, Z.; Zio, E.; Li, X. Measuring Reliability under Epistemic Uncertainty: Review on Non-Probabilistic Reliability Metrics. Chin. J. Aeronaut. 2016, 29, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, S.; Kang, R. Epistemic Uncertainty Quantification via Uncertainty Theory in the Reliability Evaluation of a System with Failure Trigger Effect. Reliab. Eng. Syst. Saf. 2021, 215, 107896. [Google Scholar] [CrossRef]
- Yu, W.; Linhan, G.; Meilin, W.; Rui, K. Belief Availability for Repairable Systems Based on Uncertain Alternating Renewal Process. IEEE. Trans. Reliab. 2021, 70, 1242–1254. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 205–228. [Google Scholar]
- Chen, X.; Gao, J. Uncertain Term Structure Model of Interest Rate. Soft Comput. 2013, 17, 597–604. [Google Scholar] [CrossRef]
- Hu, L.; Kang, R.; Pan, X.; Zuo, D. Uncertainty Expression and Propagation in the Risk Assessment of Uncertain Random System. IEEE. Syst. J. 2021, 15, 1604–1615. [Google Scholar] [CrossRef]
- Wen, M.; Han, Q.; Yang, Y.; Kang, R. Uncertain Optimization Model for Multi-Echelon Spare Parts Supply System. Appl. Soft Comput. 2017, 56, 646–654. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Zhai, H.; Qiu, J. A New Structural Reliability Index Based on Uncertainty Theory. Chin. J. Aeronaut. 2017, 30, 1451–1458. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, J.; You, L.; Zhang, Q. Uncertainty Propagation in Structural Reliability with Implicit Limit State Functions under Aleatory and Epistemic Uncertainties. Eksploat. Niezawodn. 2021, 23, 231–241. [Google Scholar] [CrossRef]
- Liu, B. Theory and Practice of Uncertain Programming, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–148. [Google Scholar]
- Zhang, B.; Peng, J. Uncertain Programming Model for Uncertain Optimal Assignment Problem. Appl. Math. Model. 2013, 37, 6458–6468. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, M.; Zhou, J.; Han, Y. The Operational Law of Uncertain Variables with Continuous Uncertainty Distributions. IEEE. Trans. Fuzzy Syst. 2018, 26, 2926–2937. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, K.; Yang, X.; Ni, Y. Special Issue on Decision Making and Uncertainty. Soft Comput. 2020, 24, 2391–2393. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y. Functions of Uncertain Variables and Uncertain Programming. J. Uncertain Syst. 2012, 4, 278–288. [Google Scholar]
- Ling, C.; Lu, Z. Support Vector Machine-Based Importance Sampling for Rare Event Estimation. Struct. Multidiscip. Optim. 2021, 63, 1609–1631. [Google Scholar] [CrossRef]
- Ameryan, A.; Ghalehnovi, M.; Rashki, M. AK-SESC: A Novel Reliability Procedure Based on the Integration of Active Learning Kriging and Sequential Space Conversion Method. Reliab. Eng. Syst. Saf. 2022, 217, 108036. [Google Scholar] [CrossRef]
- Xia, B.; Lü, H.; Yu, D.; Jiang, C. Reliability-Based Design Optimization of Structural Systems under Hybrid Probabilistic and Interval Model. Comput. Struct. 2015, 160, 126–134. [Google Scholar] [CrossRef]
- Harris, T.; Hardin, J.W. Exact Wilcoxon Signed-Rank and Wilcoxon Mann–Whitney Ranksum Tests. Stata. J. 2013, 13, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Moustapha, M.; Marelli, S.; Sudret, B. Active Learning for Structural Reliability: Survey, General Framework and Benchmark. Struct. Saf. 2022, 96, 102174. [Google Scholar] [CrossRef]
Input Factors | Proposed Method | Probabilistic Method |
---|---|---|
* | ||
Input Factors | Proposed Method | MCS Method |
---|---|---|
* | ||
Methods | Optimal Design (mm) | F-Evaluations | Time (s) | |
---|---|---|---|---|
RBDO | RIA | 14.79328 | 169 | 29.4403 |
URBDO | CEP | 14.97826 | 275 | 73.6282 |
URBDO | USGA | 14.97828 | 4387 | 6553.0074 |
Back Plate Thickness (mm) | Rank-Sum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pop_size = 20 | Pm = 0.01 | 14.9783 | 14.9776 | 14.9781 | 14.9784 | 14.9762 | 14.9782 | 14.9771 | 14.9785 | 52 |
Pm = 0.1 | 14.9781 | 14.9786 | 14.9793 | 14.9780 | 14.9784 | 14.9783 | 14.9789 | 14.9783 | ||
Pm = 0.2 | Pop_size = 15 | 14.9780 | 14.9782 | 14.9781 | 14.9774 | 14.9783 | 14.9771 | 14.9781 | 14.9764 | 53.5 |
Pop_size = 30 | 14.9783 | 14.9772 | 14.9788 | 14.9785 | 14.9780 | 14.9795 | 14.9779 | 14.9782 |
Input Factors | USGA Method | RIA Method |
---|---|---|
Weight Coefficient | Optimal Results | RBDO (RIA) | URBDO (USGA) |
---|---|---|---|
(5.51, 150.38, 271.59, 5.91) | (5.46, 159.18, 273.21, 5.91) | ||
Objective1 | 2.6917 | 2.7612 | |
Objective1 | 0.1961 | 0.1924 | |
(5.60, 161.08, 252.90, 5.99) | (5.54, 170.44, 254.47, 5.99) | ||
Objective1 | 2.6385 | 2.7092 | |
Objective1 | 0.2395 | 0.2349 | |
(5.68, 171.97, 236.11, 6.08) | (5.63, 182.03, 237.37, 6.08) | ||
Objective1 | 2.5971 | 2.6680 | |
Objective1 | 0.2901 | 0.2852 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhang, J.; Zhang, Q.; Huang, Y.; Wen, M. Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty. Appl. Sci. 2022, 12, 2846. https://doi.org/10.3390/app12062846
Zhou S, Zhang J, Zhang Q, Huang Y, Wen M. Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty. Applied Sciences. 2022; 12(6):2846. https://doi.org/10.3390/app12062846
Chicago/Turabian StyleZhou, Shuang, Jianguo Zhang, Qingyuan Zhang, Ying Huang, and Meilin Wen. 2022. "Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty" Applied Sciences 12, no. 6: 2846. https://doi.org/10.3390/app12062846
APA StyleZhou, S., Zhang, J., Zhang, Q., Huang, Y., & Wen, M. (2022). Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty. Applied Sciences, 12(6), 2846. https://doi.org/10.3390/app12062846