Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process
<p>Particle size analysis.</p> "> Figure 2
<p>SEM micrographs of EAFS sample (magnification of (<b>a</b>) 100×; (<b>b</b>) 500×; (<b>c</b>) 5000×; (<b>d</b>) 1000×).</p> "> Figure 2 Cont.
<p>SEM micrographs of EAFS sample (magnification of (<b>a</b>) 100×; (<b>b</b>) 500×; (<b>c</b>) 5000×; (<b>d</b>) 1000×).</p> "> Figure 3
<p>EDS coupled to SEM of EAFS sample.</p> "> Figure 4
<p>XRD pattern; (<b>a</b>) EAFS; (<b>b</b>) EAFS—TGA.</p> "> Figure 5
<p>Slump values for mortar mixes (WRA content of (<b>a</b>) 0.5% and; (<b>b</b>) 1.0%).</p> "> Figure 6
<p>Average compressive strength: (<b>a</b>) 4% sodium concentration; (<b>b</b>) 6% sodium concentration; (<b>c</b>) 8% sodium concentration; (<b>d</b>) 10% and 12% sodium concentration (Mix code-C represents carbonated specimens).</p> "> Figure 7
<p>Efflorescence caused by Na<sub>2</sub>CO<sub>3</sub> on the surface of a mortar specimen.</p> "> Figure 8
<p>Average flexural strength: (<b>a</b>) 4% sodium concentration; (<b>b</b>) 6% sodium concentration; (<b>c</b>) 8% sodium concentration; (<b>d</b>) 10% and 12% sodium concentration (Mix code-C represents carbonated specimens).</p> "> Figure 9
<p>Flexural vs. compressive strengths of mortars from this study compared with other studies from the literature [<a href="#B59-applsci-12-01662" class="html-bibr">59</a>,<a href="#B60-applsci-12-01662" class="html-bibr">60</a>,<a href="#B61-applsci-12-01662" class="html-bibr">61</a>,<a href="#B62-applsci-12-01662" class="html-bibr">62</a>,<a href="#B63-applsci-12-01662" class="html-bibr">63</a>,<a href="#B64-applsci-12-01662" class="html-bibr">64</a>,<a href="#B65-applsci-12-01662" class="html-bibr">65</a>,<a href="#B66-applsci-12-01662" class="html-bibr">66</a>].</p> "> Figure 10
<p>Shrinkage for AAEAFS mortars: (<b>a</b>) values for mixes with silicate modulus of 1.0; (<b>b</b>) values for mixes with silicate modulus of 0.5 and 1.5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electric Arc Furnace Slag (EAFS)
2.2. Alkaline Activator
2.3. Fine Aggregate
2.4. Water-Reducing Admixture
2.5. Mortar Mix Design
2.6. Production Method
2.7. Curing Conditions and Testing Methods
3. Results
3.1. Characterization of EAFS
3.2. Fresh State Mortar Properties
3.3. Hardened State Mortar Properties
3.3.1. Compressive Strength
3.3.2. Flexural Strength
3.3.3. Carbonation
3.3.4. Shrinkage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Worldometer. Current World Population, World Population Sections. 2020. Available online: https://www.worldometers.info/world-population/ (accessed on 29 November 2021).
- DBS Group Research. Production of cement in China from 1970 to 2020. DBS Group Research; CEIC; National Bureau of Statistics of China, Statista Research Department. 2018. Available online: https://www.statista.com/statistics/307647/china-production-volume-of-cement/ (accessed on 29 November 2021).
- US Geological Survey. Cement Production Worldwide from 1995 to 2020, USGS Mineral Commodity Summaries; US Geological Survey: Reston, Virginia, 2021; p. 43.
- IEA. Cement; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/cement (accessed on 10 December 2021).
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Habert, G.; Roussel, N. Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cem. Concr. Compos. 2009, 31, 397–402. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, Y.; Jiang, X.; Polaczyk, P.; Ma, Y.; Huang, B. Alkali-activated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis. J. Clean. Prod. 2021, 286, 125554. [Google Scholar] [CrossRef]
- Alberici, S.; de Beer, J.G.; van der Hoorn, I.; Staats, M. Fly Ash and Blast Furnace Slag for Cement Manufacturing. BEIS Res. Pap. 2017, 19, 1–34. [Google Scholar]
- Teo, P.T.; Zakaria, S.K.; Salleh, S.Z.; Taib, M.A.A.; Mohd Sharif, N.; Abu Seman, A.; Mohamed, J.J.; Yusoff, M.; Yusoff, A.H.; Mohamad, M. Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: A review. Metals 2020, 10, 1347. [Google Scholar] [CrossRef]
- Fisher, L.V.; Barron, A.R. The recycling and reuse of steelmaking slags—A review. Resour. Conserv. Recy. 2019, 146, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Manso, J.M.; Gonzalez, J.J.; Polanco, J.A. Electric arc furnace slag in concrete. J. Mater. Civ. Eng. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Electric arc furnace slags in cement-treated materials for road construction: Mechanical and durability properties. Constr. Build. Mater. 2016, 113, 280–289. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; El-Dieb, A.S.; Bedir, M.S. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 2012, 34, 249–256. [Google Scholar] [CrossRef]
- Adegoloye, G.; Beaucour, A.-L.; Ortola, S.; Noumowé, A. Concretes made of EAF slag and AOD slag aggregates from stainless steel process: Mechanical properties and durability. Constr. Build. Mater. 2015, 76, 313–321. [Google Scholar] [CrossRef]
- Alharbi, Y.R.; Abadel, A.A.; Elsayed, N.; Mayhoub, O.; Kohail, M. Mechanical properties of EAFS concrete after subjected to elevated temperature. Ain Shams Eng. J. 2021, 12, 1305–1311. [Google Scholar] [CrossRef]
- Coppola, L.; Buoso, A.; Coffetti, D.; Kara, P.; Lorenzi, S. Electric arc furnace granulated slag for sustainable concrete. Constr. Build. Mater. 2016, 123, 115–119. [Google Scholar] [CrossRef]
- Lam, M.N.-T.; Le, D.-H.; Jaritngam, S. Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Constr. Build. Mater. 2018, 191, 912–922. [Google Scholar] [CrossRef]
- Monosi, S.; Ruello, M.L.; Sani, D. Electric arc furnace slag as natural aggregate replacement in concrete production. Cem. Concr. Compos. 2016, 66, 66–72. [Google Scholar] [CrossRef]
- Rooholamini, H.; Sedghi, R.; Ghobadipour, B.; Adresi, M. Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete. Constr. Build. Mater. 2019, 211, 88–98. [Google Scholar] [CrossRef]
- San-José, J.T.; Vegas, I.; Arribas, I.; Marcos, I. The performance of steel-making slag concretes in the hardened state. Mater. Des. 2014, 60, 612–619. [Google Scholar] [CrossRef]
- Santamaría, A.; Roji, E.; Skaf, M.; Marcos, I.; Gonzalez, J.J. The use of steelmaking slags and fly ash in structural mortars. Constr. Build. Mater. 2016, 106, 364–373. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Choi, J.-S.; Yuan, T.-F.; Yoon, Y.-S.; Mitchell, D. Comparing properties of concrete containing electric arc furnace slag and granulated blast furnace slag. Materials 2019, 12, 1371. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ling, T.-C.; Shi, C.; Pan, S.-Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recy. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.; Bankir, M.B.; Bolukbasi, O.S.; Sevim, U.K. Alkali activation of electric arc furnace slag: Mechanical properties and micro analyzes. J. Build. Eng. 2019, 21, 97–105. [Google Scholar] [CrossRef]
- Hafez, H.; Kassim, D.; Kurda, R.; Silva, R.V.; de Brito, J. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Constr. Build. Mater. 2021, 281. [Google Scholar] [CrossRef]
- Bernardo, G.; Marroccoli, M.; Nobili, M.; Telesca, A.; Valenti, G. The use of oil well-derived drilling waste and electric arc furnace slag as alternative raw materials in clinker production. Resour. Conserv. Recy. 2007, 52, 95–102. [Google Scholar] [CrossRef]
- Muhmood, L.; Vitta, S.; Venkateswaran, D. Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem. Concr. Res. 2009, 39, 102–109. [Google Scholar] [CrossRef]
- Parron-Rubio, M.E.; Perez-García, F.; Gonzalez-Herrera, A.; Rubio-Cintas, M.D. Concrete properties comparison when substituting a 25% cement with slag from different provenances. Materials 2018, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, D.; Yan, P. Design and experimental study of a ternary blended cement containing high volume steel slag and blast-furnace slag based on Fuller distribution model. Constr. Build. Mater. 2017, 140, 248–256. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Saleem, M.U.; Khurram, N.; Niazi, M.U.K. Influence of mechanically activated electric arc furnace slag on compressive strength of mortars incorporating curing moisture and temperature effects. Sustainability 2017, 9, 1178. [Google Scholar] [CrossRef] [Green Version]
- Roslan, N.H.; Ismail, M.; Khalid, N.H.A.; Muhammad, B. Properties of concrete containing electric arc furnace steel slag and steel sludge. J. Build. Eng. 2020, 28, 101060. [Google Scholar] [CrossRef]
- Traven, K.; Češnovar, M.; Ducman, V. Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM. Ceram. Int. 2019, 45, 22632–22641. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Rose, V.; Mejía de Gutierrez, R. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Türker, H.T.; Balçikanli, M.; Durmuş, İ.H.; Özbay, E.; Erdemir, M. Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr. Build. Mater. 2016, 104, 169–180. [Google Scholar] [CrossRef]
- Roslan, N.H.; Ismail, M.; Abdul-Majid, Z.; Ghoreishiamiri, S.; Muhammad, B. Performance of steel slag and steel sludge in concrete. Constr. Build. Mater. 2016, 104, 16–24. [Google Scholar] [CrossRef]
- Nikolić, I.; Drinčić, A.; Djurović, D.; Karanović, L.; Radmilović, V.V.; Radmilović, V.R. Kinetics of electric arc furnace slag leaching in alkaline solutions. Constr. Build. Mater. 2016, 108, 1–9. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.-B. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 1999, 29, 1619–1625. [Google Scholar] [CrossRef]
- Češnovar, M.; Traven, K.; Horvat, B.; Ducman, V. The potential of ladle slag and electric arc furnace slag use in synthesizing alkali activated materials; the influence of curing on mechanical properties. Materials 2019, 12, 1173. [Google Scholar] [CrossRef] [Green Version]
- Monkman, S.; Shao, Y. Assessing the carbonation behavior of cementitious materials. J. Mater. Civ. Eng. 2006, 18, 768–776. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Adhikari, R.; Chen, Y.-H.; Li, P.; Chiang, P.-C. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J. Clean. Prod. 2016, 137, 617–631. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Bartolomeo, E.; Polettini, A.; Pomi, R. Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valoriz. 2010, 1, 467–477. [Google Scholar] [CrossRef]
- Europeia, U. Diretiva 98/83/CE do Conselho, de 3 de Novembro de 1998, Relativa à Qualidade da água Destinada ao Consumo Humano. 1998, Volume 330, pp. 32–54. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:01998L0083-20151027&from=EN (accessed on 10 December 2021).
- EN-196-1; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Bruxelles, Belgium, 2005; p. 36.
- EN-1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). European Committee for Standardization: Bruxelles, Belgium, 1999; p. 10.
- EN-1015-13; Methods of Test for Mortar for Masonry—Part 13: Determination of Dimensional Stability of Hardened Mortars. European Committee for Standardization: Bruxelles, Belgium, 1993; p. 20.
- EN-1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization: Bruxelles, Belgium, 1999; p. 12.
- EN-13295; Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Resistance to Carbonation. European Committee for Standardization: Bruxelles, Belgium, 2004; p. 18.
- Ozturk, M.; Akgol, O.; Sevim, U.K.; Karaaslan, M.; Demirci, M.; Unal, E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr. Build. Mater. 2018, 165, 58–63. [Google Scholar] [CrossRef]
- Peys, A.; Arnout, L.; Blanpain, B.; Rahier, H.; Van Acker, K.; Pontikes, Y. Mix-design parameters and real-life considerations in the pursuit of lower environmental impact inorganic polymers. Waste Biomass Valori. 2018, 9, 879–889. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Jesus, C.M.; Pacheco-Torgal, F.; Aguiar, J. One-part geopolymers versus Ordinary Portland Cement (OPC) mortars: Durability assessment. In Proceedings of the 2nd International Conference on Wastes: “Solutions, Treatments and Opportunities”, Braga, Portugal, 11–13 September 2013; pp. 115–120. [Google Scholar]
- Shearer, C.R.; Provis, J.L.; Bernal, S.A.; Kurtis, K.E. Alkali-activation potential of biomass-coal co-fired fly ash. Cem. Concr. Compos. 2016, 73, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Jennings, H.M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem. Concr. Res. 1999, 29, 159–170. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L.; Pratt, P.L. Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Gu, Y.-m.; Fang, Y.-h.; You, D.; Gong, Y.-f.; Zhu, C.-h. Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature. Constr. Build. Mater. 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Caijun, S.; Yinyu, L. Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem. Concr. Res. 1989, 19, 527–533. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; De La Torre, A.; Aranda, M.; Palomo, A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 2007, 37, 671–679. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Ghosh, S. Effect of silicate content on the properties of alkali-activated blast furnace slag paste. Arab. J. Sci. Eng. 2014, 39, 5905–5916. [Google Scholar] [CrossRef]
- Corinaldesi, V. Mechanical behavior of masonry assemblages manufactured with recycled-aggregate mortars. Cem. Concr. Compos. 2009, 31, 505–510. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G. Behaviour of cementitious mortars containing different kinds of recycled aggregate. Constr. Build. Mater. 2009, 23, 289–294. [Google Scholar] [CrossRef]
- Vegas, I.; Azkarate, I.; Juarrero, A.; Frías, M. Design and performance of masonry mortars made with recycled concrete aggregates. Mater. De Construcción 2009, 59, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.; Ayuso, J.; López, M.; Fernández, J.; De Brito, J. Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 2013, 40, 679–690. [Google Scholar] [CrossRef]
- Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; De Brito, J. Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production-Part-I: Ceramic masonry waste. J. Clean. Prod. 2015, 87, 692–706. [Google Scholar] [CrossRef]
- Corinaldesi, V. Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 2012, 35, 778–784. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 2014, 70, 71–79. [Google Scholar] [CrossRef]
- Silva, R.; De Brito, J.; Dhir, R. Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 2016, 105, 400–415. [Google Scholar] [CrossRef]
- Atiş, C.D.; Kilic, A.; Sevim, U.K. Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash. Cem. Concr. Res. 2004, 34, 99–102. [Google Scholar] [CrossRef]
Aggregates | NS | ρa | ρrd | ρssd | ρb | WA24 |
---|---|---|---|---|---|---|
mm | kg/m3 | kg/m3 | kg/m3 | kg/m3 | % | |
Fine sand | 0/1 | 2652 | 2624 | 2637 | 1544 | 0.4 |
Coarse sand | 0/4 | 2636 | 2601 | 2617 | 1556 | 0.5 |
Na2O (%) | SiO2/Na2O | |||||
---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | |
4 | N4S0 | N4S0.5 | N4S1 | N4S1.5 | N4S2 | N4S2.5 |
6 | N6S0 | N6S0.5 | N6S1 | N6S1.5 | N6S2 | - |
8 | N8S0 | N8S0.5 | N8S1 | N8S1.5 | - | - |
10 | N10S0 | N10S0.5 | N10S1 | - | - | - |
12 | N12S0 | N12S0.5 | N12S1 | - | - | - |
Test | Standard | No. of Specimens | Curing Conditions |
---|---|---|---|
Flexural strength | EN 1015-11 [47] | 6 | Sealed specimens in a dry chamber until testing age. |
Compressive strength | |||
Accelerated carbonation | EN 13295 [48] | 4 | 14 days sealed + 14 days unsealed in the dry chamber; then placed in the carbonation chamber until testing age. |
Shrinkage | EN 1015-13 [46] | 2 | Sealed specimens in a dry chamber after demoulding until the end of the test. |
Fe2O3 | CaO | SiO2 | Al2O3 | MgO | MnO2 | Cr2O3 | TiO2 | P2O5 | SO3 | Na2O | BaO | K2O | V2O5 | CuO | ZnO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.48 | 28.18 | 17.66 | 10.13 | 5.66 | 5.44 | 2.38 | 0.65 | 0.42 | 0.33 | 0.19 | 0.17 | 0.03 | 0.11 | 0.02 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassim, D.; Lamaa, G.; Silva, R.V.; de Brito, J. Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process. Appl. Sci. 2022, 12, 1662. https://doi.org/10.3390/app12031662
Kassim D, Lamaa G, Silva RV, de Brito J. Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process. Applied Sciences. 2022; 12(3):1662. https://doi.org/10.3390/app12031662
Chicago/Turabian StyleKassim, Dany, Ghandy Lamaa, Rui Vasco Silva, and Jorge de Brito. 2022. "Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process" Applied Sciences 12, no. 3: 1662. https://doi.org/10.3390/app12031662
APA StyleKassim, D., Lamaa, G., Silva, R. V., & de Brito, J. (2022). Performance Enhancement of Alkali-Activated Electric Arc Furnace Slag Mortars through an Accelerated CO2 Curing Process. Applied Sciences, 12(3), 1662. https://doi.org/10.3390/app12031662