Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate
<p>Schematic diagram of a typical ultrasonic atomizer device indicating the location mesh and its micro-aperture distribution.</p> "> Figure 2
<p>Frequencies calculated as a function of (<b>a</b>) the plate thickness and (<b>b</b>) Young’s modulus for the first three axisymmetric modes.</p> "> Figure 3
<p>Clamped circular plate used for the FEM study.</p> "> Figure 4
<p>(<b>a</b>) Geometry used for the FEM modal analysis. (<b>b</b>–<b>d</b>) Contour plots of the first three axisymmetric vibrational modes estimated for the homogeneous thin plate.</p> "> Figure 5
<p>Comparison between the analytical and FEM results of the resonant frequency of the vibration modes from a clamped circular plate.</p> "> Figure 6
<p>FEM model showing (<b>a</b>) a sectional view of the atomizer and boundary conditions and (<b>b</b>) mesh of the system.</p> "> Figure 7
<p>Geometrical shapes of the micro-apertures of (<b>a</b>) conical, (<b>b</b>) cylindrical, and (<b>c</b>) pyramidal holes. (<b>d</b>) Section view of a solid model of the atomizer disc with micro-apertures on the meshed thin plate.</p> "> Figure 8
<p>Displacement against the voltage amplitude.</p> "> Figure 9
<p>Distribution of the displacements along the cross-section of the thin plate for the 110 kHz (axisymmetric mode) resonance frequency as a function of the voltage.</p> "> Figure 10
<p>Dynamic deformation of a micro-aperture with a conical shape, (<b>a</b>) prior to deformation, (<b>b</b>) with deformation in upward direction, and (<b>c</b>) downward direction.</p> "> Figure 11
<p>Scheme of the atomization rate measurements.</p> "> Figure 12
<p>Numerical results of the frequency sweep for 20 V obtained by FEM. A schematic of the frequency mode cross-section is shown above every detected frequency.</p> "> Figure 13
<p>Comparison between the frequency sweep FEM results for different voltages and the experimental results of the atomization rate.</p> "> Figure 14
<p>FEM estimation of the maximum micro-aperture variations as a function of the cycling changes in the applied voltage.</p> "> Figure 15
<p>Approximation of the volume caused by the out-of-plane displacement distribution. On the left, the shell method for integration of the solid of the revolution about the z-axis is described. The function <math display="inline"><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is integrated along <math display="inline"><semantics> <mi>r</mi> </semantics></math>, with its value subtracted by the threshold function <math display="inline"><semantics> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 16
<p>Approximation of an effective pressure loss coefficient using the experimental results.</p> "> Figure 17
<p>Total atomization rate vs. voltage using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>a</mi> </msub> </mrow> </semantics></math>, with the result used as a reference threshold in the calculation of the displaced volume.</p> ">
Abstract
:1. Introduction
2. Ultrasonic Atomizer Fundamentals
2.1. Piezoelectricity Theory
2.2. Approximate Plate Theory
3. Finite Element Analysis
4. Model of Atomization Volume Flow
5. Experimental Setup
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Define the initial material and geometry parameters and element type (Solid-186). Attach the geometry (circular plate described before). Apply the mesh controls (discretize the domain). | |
A1: Modal analysis:
| A2: Harmonic analysis:
|
References
- Tinoco, H.A.; Cardona, C.I.; Peña, F.M.; Gómez, J.P.; Roldán-Restrepo, S.I.; Velasco-Mejía, M.A.; Barco, D.R. Evaluation of a Piezo-Actuated Sensor for Monitoring Elastic Variations of Its Support with Impedance-Based Measurements. Sensors 2019, 19, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Zhou, Y.; Lin, Y.; Wang, L.; Xi, W. Development of a microforce sensor and its array platform for robotic cell microinjection force measurement. Sensors 2016, 6, 483. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.B.; Aslam, N.; Underwood, C.P.; Danaher, S. Development of an ultrasonic airflow measurement device for ducted air. Sensors 2015, 15, 10705–10722. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.G.; Jung, W.S.; Kang, C.Y.; Yoon, S.J. Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators 2016, 5, 5. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Wang, T.; Xiao, H.; Huo, L.; Song, G. A multi-delay-and-sum imaging algorithm for damage detection using piezoceramic transducers. J. Intell. Mater. Syst. Struct. 2017, 28, 1150–1159. [Google Scholar] [CrossRef]
- Li, F.; Li, G. Application of ANSYS APDL in the design of piezoelectric transducer. In Proceedings of the 5th International Conference on Advanced Engineering Materials and Technology, Guangzhou, China, 22–23 August 2015. [Google Scholar]
- Olszewseki, O.Z.; MacLoughlin, R.; Blake, A.; O’Neill, M.; Mathewson, A.; Jackson, N. A silicon-based MEMS vibrating mesh nebulizer for inhaled drug delivery. In Proceedings of the 30th Eurosensors Conference, Budapest, Hungary, 4–7 September 2016. [Google Scholar]
- Fan, B.; Song, G.; Hussain, F. Simulation of a piezoelectrically actuated valveless micropump. Smart Mater. Struct. 2005, 14, 400. [Google Scholar] [CrossRef]
- Lee, H.J.; Prachaseree, P.; Loh, K.J. Rapid Soft Material Actuation Through Droplet Evaporation. Soft Robot. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Loh, K.J. Soft material actuation by atomization. Smart Mater. Struct. 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Manzanares-Martínez, B.; Flores, J.; Gutiérrez, L.; Méndez-Sánchez, R.A.; Monsivais, G.; Morales, A.; Ramos-Mendieta, F. Flexural vibrations of a rectangular plate for the lower normal modes. J. Sound Vib. 2009, 329, 5105–5115. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Zhu, C.; Huang, J.; Jiang, F. Theoretical Calculations and Experimental Verification for the Pumping Effect Caused by the Dynamic Micro-tapered Angle. Chin. J. Mech. Eng. 2016, 29, 615–623. [Google Scholar] [CrossRef]
- ANSI; IEEE. IEEE Standard on Piezoelectricity; IEEE: New York, NY, USA, 1987; p. 176. [Google Scholar]
- Maehara, N.; Ueha, S.; Mori, E. Influence of the vibrating system of a multipinhole-plate ultrasonic nebulizer on its performance. Rev. Sci. Instrum. 1986, 57, 2870. [Google Scholar] [CrossRef]
- Piao, C.; Kim, D.J.; Kim, J.O. Radial-mode vibration characteristics of piezoelectric hollow-disc transducers. In Proceedings of the 21st International Congress on Sound and Vibration, Beijin, China, 13–17 July 2014. [Google Scholar]
- Andrade, M.A.B.; Alvarez, N.; Buiochi, F.; Adamowski, J.C.; Negreira, C. Analysis of 1–3 Piezocomposite and Homogeneous Piezoelectric Rings for Power Ultrasonic Transducers. J. Braz. Soc. Mech. Sci. Eng. 2009, 31, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Lima-Rodríguez, A.; González-Herrera, A.; García-Manrique, J. Study of the Dynamic Behavior of Circular Membranes with Low Tension. Appl. Sci. 2019, 9, 4716. [Google Scholar] [CrossRef] [Green Version]
- Leissa, A.W. Vibration of Plates; National Aeronautics and Space Administration: Washington, DC, USA, 1969.
- Alger, M. Polymer Science Dictionary; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Dou, Y.; Luo, H.; Zhang, J. Elastic Properties of FeCr20Ni8Xn (X = Mo, Nb, Ta, Ti, V, W and Zr) Austenitic Stainless Steels: A First Principles Study. Metals 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.K. Vibration of circular plates in contact with water. ASME J. Appl. Mech. 1991, 58, 480–484. [Google Scholar] [CrossRef]
- Thompson, M.K.; Thompson, J.M. ANSYS Mechanical APDL for Finite Element Analysis; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Akiyoshi, O. Flow direction of piezoelectric pump with nozzle/diffuser-elements. Chin. J. Mech. Eng. 2004, 107–109. [Google Scholar]
- Jr, W.W.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Yan, Q.; Zhang, J.; Huang, J.; Wang, Y. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer. Sensors 2018, 18, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, A.; Stemme, G.; Stemme, E. Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens. Actuators 2000, 84, 165–175. [Google Scholar] [CrossRef]
- Yan, Q.; Wu, C.; Zhang, J. Effect of the Dynamic Cone Angle on the Atomization Performance of a Piezoceramic Vibrating Mesh Atomizer. Appl. Sci. 2019, 9, 1836. [Google Scholar] [CrossRef] [Green Version]
- Wrede, R.; Spiegel, M. Schaum’s Outline of Advanced Calculus; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
Material | Density | Poisson’s Ratio |
Inner/Outer Diameter (mm) | Thickness | |
---|---|---|---|---|---|
Values in Table 2 | |||||
Dielectric Constants | Piezoelectric Constant | Elastic Constant |
---|---|---|
Symmetric Modes | Frequency (kHz) | Shape | Max. Positive Displacement (μm) | Max. Negative Displacement (μm) |
---|---|---|---|---|
1 | 1.18 | −0.67 | ||
2 | 2.09 | −4.62 | ||
3 | 6.71 | −17.1 | ||
4 | 7.76 | −18.5 | ||
5 | 24 | −10.7 |
Physical Property | Value |
---|---|
Outer diameter of PZT ring | |
Inner diameter of PZT ring | |
Diameter of stainless-steel disk | |
Diameter of apertures zone | |
Thickness of thin plate | |
Thickness of PZT ring | |
Resonant frequency | |
Number of apertures | |
Large/Small diameter of cone aperture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Bravo, E.; Lee, H.-J.; Baltazar, A.; Loh, K.J. Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate. Appl. Sci. 2021, 11, 8350. https://doi.org/10.3390/app11188350
Guerra-Bravo E, Lee H-J, Baltazar A, Loh KJ. Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate. Applied Sciences. 2021; 11(18):8350. https://doi.org/10.3390/app11188350
Chicago/Turabian StyleGuerra-Bravo, Esteban, Han-Joo Lee, Arturo Baltazar, and Kenneth J. Loh. 2021. "Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate" Applied Sciences 11, no. 18: 8350. https://doi.org/10.3390/app11188350
APA StyleGuerra-Bravo, E., Lee, H.-J., Baltazar, A., & Loh, K. J. (2021). Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate. Applied Sciences, 11(18), 8350. https://doi.org/10.3390/app11188350