Continuous-Time Perfect Control Algorithm—A State Feedback Approach
<p>Perfect control plots: <span class="html-italic">T</span>-inverse, case <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> s.</p> "> Figure 2
<p>Perfect control plots: <span class="html-italic">T</span>-inverse, case <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> s.</p> "> Figure 3
<p>Perfect control plots: <math display="inline"><semantics> <mi>σ</mi> </semantics></math>-inverse, case <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> s.</p> ">
Abstract
:1. Introduction
2. System Representation
3. (Non)unique Right Inverses
4. New Perfect Control Law
5. Stability Properties of the New Perfect Control Law
6. Simulation Examples
6.1. Two-By-One System
6.2. Three-By-One System
7. Conclusions and Open Problems
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BIBS | Bounded-Input Bounded-State |
CTPC | Continuous-Time Perfect Control |
IMC | Inverse Model Control |
MIMO | Multi-Input Multi-Output |
MVC | Minimum Variance Control |
SISO | Single-Input Single-Output |
References
- Molloy, T.L.; Inga, J.; Flad, M.; Ford, J.J.; Perez, T.; Hohmann, S. Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control. IEEE Trans. Autom. Control. 2020, 65, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Yang, T.; Li, Y.; Tong, S. Adaptive Neural Inverse Optimal Control for a Class of Strict Feedback Stochastic Nonlinear Systems. In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019; pp. 432–436. [Google Scholar]
- Ma, H.; Chen, M.; Wu, Q. Disturbance Observer-Based Inverse Optimal Tracking Control of the Unmanned Aerial Helicopter. In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019; pp. 448–452. [Google Scholar]
- Asadzadeh, M.Z.; Raninger, P.; Prevedel, P.; Ecker, W.; Mücke, M. Inverse model for the control of induction heat treatments. Materials 2019, 12, 2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Chen, H.; Wang, C.; Xue, K. Inverse model control for a quad-rotor aircraft using TS-fuzzy support vector regression. J. Harbin Inst. Technol. 2017, 24, 73–79. [Google Scholar]
- Zhiteckii, L.S.; Solovchuk, K.Y. Analysis of multivariable regulation systems using pseudo-inverse model-based controllers. In Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 29 May–2 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 894–899. [Google Scholar]
- Li, Y.; Yao, Y.; Hu, X. Continuous-time inverse quadratic optimal control problem. Automatica 2020, 117, 108977. [Google Scholar] [CrossRef] [Green Version]
- Filip, I.; Dragan, F.; Szeidert, I.; Albu, A. Minimum-Variance Control System with Variable Control Penalty Factor. Appl. Sci. 2020, 10, 2274. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.A.; Trierweiler, J.O.; Farenzena, M. A new approach to estimate the Minimum Variance Control law for Nonminimum phase Multivariable Systems. IFAC-PapersOnLine 2019, 52, 886–891. [Google Scholar] [CrossRef]
- Dube, D.Y.; Patel, H.G. Discrete time minimum variance control of satellite system. In International Conference on Mathematical Modelling and Scientific Computation; Springer: Singapore, 2018; pp. 337–346. [Google Scholar]
- Silveira, A.; Silva, A.; Coelho, A.; Real, J.; Silva, O. Design and real-time implementation of a wireless autopilot using multivariable predictive generalized minimum variance control in the state-space. Aerosp. Sci. Technol. 2020, 105, 106053. [Google Scholar] [CrossRef]
- Majewski, P.; Hunek, W.; Krok, M. Perfect Control for Continuous-Time LTI State-Space Systems: The Nonzero Reference Case Study. IEEE Access 2021, 9, 82848–82856. [Google Scholar] [CrossRef]
- Liang, M.; Zheng, B. Further results on Moore–Penrose inverses of tensors with application to tensor nearness problems. Comput. Math. Appl. 2019, 77, 1282–1293. [Google Scholar] [CrossRef]
- Shen, S.; Liu, W.; Feng, L. Inverse and Moore-Penrose inverse of Toeplitz matrices with classical Horadam numbers. Oper. Matrices 2017, 11, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wu, Q.J.; Yang, Y.; Akilan, T. Multimodel Feature Reinforcement Framework Using Moore-Penrose Inverse for Big Data Analysis. IEEE Trans. Neural Netw. Learn. Syst. 2020. [Google Scholar] [CrossRef]
- Zhang, B.; Uhlmann, J. A Generalized Matrix Inverse with Applications to Robotic Systems. arXiv 2018, arXiv:1806.01776. [Google Scholar]
- Kafetzis, I.S.; Karampetakis, N.P. On the algebraic structure of the Moore–Penrose inverse of a polynomial matrix. IMA J. Math. Control. Inf. 2021. [CrossRef]
- Nayan Bhat, K.; Karantha, M.P.; Eagambaram, N. Inverse complements of a matrix and applications. J. Algebra Appl. 2020, 2150144. [Google Scholar] [CrossRef]
- Krok, M.; Hunek, W.P. Pole-Free vs. Minimum-Norm Right Inverse in Design of Minimum-Energy Perfect Control for Nonsquare State-Space Systems. In Biomedical Engineering and Neuroscience, Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, Opole, Poland, 13–14 March 2017; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; pp. 184–194. [Google Scholar] [CrossRef]
- De la Sen, M. On pole-placement controllers for linear time-delay systems with commensurate point delays. Math. Probl. Eng. 2005, 2005, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Cacace, F.; Conte, F.; Germani, A. State feedback stabilization of linear systems with unknown input time delay. IFAC-PapersOnLine 2017, 50, 1245–1250. [Google Scholar] [CrossRef]
- Uthman, A.; Sudin, S. Antenna Azimuth Position Control System using PID Controller & State-Feedback Controller Approach. Int. J. Electr. Comput. Eng. (IJECE) 2018, 8, 1539–1550. [Google Scholar]
- Cai, X.; Bekiaris-Liberis, N.; Krstic, M. Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica 2019, 103, 549–557. [Google Scholar] [CrossRef]
- Postawa, K.; Szczygieł, J.; Kułażyński, M. A comprehensive comparison of ODE solvers for biochemical problems. Renew. Energy 2020, 156, 624–633. [Google Scholar] [CrossRef]
- Torres-Del Carmen, F.d.J.; Jaramillo-Gernández, R.; Díaz-Sánchez, A.; Núñez-Altamirano, D.A. Comparison of numerical methods in code as solvers for simulation of robotic systems. J. Appl. Comput. 2020, 4–15. [Google Scholar] [CrossRef]
- Hunek, W.P.; Krok, M. Towards a new minimum-energy criterion for nonsquare LTI state-space perfect control systems. In Proceedings of the 5th International Conference on Control, Decision and Information Technologies, CoDIT 2018, Thessaloniki, Greece, 10–13 April 2018; pp. 122–127. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses, Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Hunek, W.P.; Krok, M. A study on a new criterion for minimum-energy perfect control in the state-space framework. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng. 2019, 233, 779–787. [Google Scholar] [CrossRef]
- Hunek, W.P. An Application of New Polynomial Matrix σ-Inverse in Minimum-Energy Design of Robust Minimum Variance Control for Nonsquare LTI MIMO Systems. IFAC-PapersOnLine 2015, 48, 150–154. [Google Scholar] [CrossRef]
- Hunek, W.P.; Krok, M. Pole-free perfect control for nonsquare LTI discrete-time systems with two state variables. In Proceedings of the 2017 13th IEEE International Conference on Control Automation (ICCA), Ohrid, Macedonia, 3–6 July 2017; pp. 329–334. [Google Scholar] [CrossRef]
- Krok, M.; Hunek, W.P. Pole-Free Perfect Control: Theory vs. Simulation Examples. In Proceedings of the 23rd International Conference on Methods & Models in Automation & Robotics (MMAR’18), Miȩdzyzdroje, Poland, 27–30 August 2018. [Google Scholar] [CrossRef]
- Hunek, W.P. Towards a General Theory of Control Zeros for LTI MIMO Systems; Opole University of Technology Press: Opole, Poland, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krok, M.; Hunek, W.P.; Majewski, P. Continuous-Time Perfect Control Algorithm—A State Feedback Approach. Appl. Sci. 2021, 11, 7466. https://doi.org/10.3390/app11167466
Krok M, Hunek WP, Majewski P. Continuous-Time Perfect Control Algorithm—A State Feedback Approach. Applied Sciences. 2021; 11(16):7466. https://doi.org/10.3390/app11167466
Chicago/Turabian StyleKrok, Marek, Wojciech P. Hunek, and Paweł Majewski. 2021. "Continuous-Time Perfect Control Algorithm—A State Feedback Approach" Applied Sciences 11, no. 16: 7466. https://doi.org/10.3390/app11167466
APA StyleKrok, M., Hunek, W. P., & Majewski, P. (2021). Continuous-Time Perfect Control Algorithm—A State Feedback Approach. Applied Sciences, 11(16), 7466. https://doi.org/10.3390/app11167466