Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings
<p>Management of the building environment and the HVAC system using a BMS.</p> "> Figure 2
<p>Diagram of the internal structure of an LSTM network.</p> "> Figure 3
<p>Flow diagram of the model development.</p> "> Figure 4
<p>Example of use of sliding window method to transform time series data to supervised learning.</p> "> Figure 5
<p>Example of the early stopping regularization technique.</p> "> Figure 6
<p>Architecture proposal and training flow of the model for forecasting the daily energy consumption of the HVAC system in buildings.</p> "> Figure 7
<p>Evaluation of training and validation for the best configurations obtained.</p> "> Figure 8
<p>Comparison of the observed values with those predicted by the configurations obtained (C1-T50, C2-T60, C3-T50, C4-T50) for the daily energy consumption of the heat pump.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Problem Formulation
3.1. HVAC System in Buildings
3.2. Long Short-Term Memory (LSTM)
4. Methodology
4.1. Data Acquisition
4.2. Data Pre-Processing
4.3. Data Split
4.4. Configuration of Hyperparameters
4.4.1. Number of Neurons
4.4.2. Activation Functions
- Hyperbolic Tangent (TanH): This activation function is shaped like an “S” similar to the sigmoid function. However, unlike the latter, which has an output value of 0 to 1, the Tanh has an output value that ranges from −1 to 1. Therefore, it allows the layer output to be normalized around zero when starting the training, helping to accelerate the convergence of the model [29].
- Scaled exponential linear unit (SeLu): This was introduced by Günter Klambauer as a variant of the exponential linear unit (ELU) [85]. An advantage of this activation function is that it performs an internal normalization (self-normalized) of the data; that is, the outputs of this function are normally distributed. Therefore, it has fast convergence and solves the problem of gradients vanishing and exploding [29,42,86].
4.5. Regularization Techniques
4.5.1. Dropout
4.5.2. Early Stopping
4.6. Build LSTM-Based Model
4.7. Validation and Metrics
5. Evaluations
6. Results and Discussion
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | Description |
HVAC | Heating, ventilating, and air conditioning |
BMS | Building management system |
ML | Machine learning |
DL | Deep learning |
DNN | Deep neural network |
LSTM | Long short-term memory |
RNN | Recurrent neural network |
MLR | Multiple-linear regression |
ARIMA | Autoregressive integrated moving average |
DT | Decision Tree |
RF | Random Forest |
SVM | Support vector machine |
ANN | Artificial neural network |
MLP | Multilayer perceptron |
HPs | Hyperparameters |
SGD | Stochastic gradient descent |
AdaGrad | Adaptive gradient algorithm |
RMSprop | Root mean square propagation |
Adam | Adaptive moment estimation |
ReLu | Rectified linear unit |
Leaky ReLu | Leaky rectified linear unit |
ELU | Exponential linear unit |
SeLu | Scaled exponential linear unit |
Tanh | Hyperbolic tangent |
LF | Loss function |
MSE | Mean squared error |
MAE | Mean absolute error |
MAPE | Mean average percentage error |
WFV | Walk-forward validation |
R2 | Coefficient of determination |
RMSE | Root mean square error |
CVRMSE | Coefficient of variation of root mean square error |
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
IPMVP | International Performance Measurement and Verification Protocol |
FEMP | Federal Energy Management Program |
References
- Burcin, B.-G.; Ioannis, B.; Omar, E.-A.; Nora, E.-G.; Tarek, M.; Shuai, L. Civil Engineering Grand Challenges: Opportunities for Data Sensing, Information Analysis, and Knowledge Discovery. J. Comput. Civ. Eng. 2014, 28, 4014013. [Google Scholar] [CrossRef]
- European Commission. Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 7 March 2021).
- Hwang, J.K.; Yun, G.Y.; Lee, S.; Seo, H.; Santamouris, M. Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system. Renew. Energy 2020, 149, 1227–1245. [Google Scholar] [CrossRef]
- Sendra-Arranz, R.; Gutiérrez, A. A long short-term memory artificial neural network to predict daily HVAC consumption in buildings. Energy Build. 2020, 216, 109952. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Sproul, A.B. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104–1122. [Google Scholar] [CrossRef]
- Kusiak, A.; Xu, G. Modeling and optimization of HVAC systems using a dynamic neural network. Energy 2012, 42, 241–250. [Google Scholar] [CrossRef]
- Aguilar, J.; Garcés-Jiménez, A.; Gallego-Salvador, N.; Gutiérrez de Mesa, J.A.; Gomez-Pulido, J.M.; García-Tejedor, Á.J. Autonomic Management Architecture for Multi-HVAC systems in Smart Buildings. IEEE Access 2019, 7, 123402–123415. [Google Scholar] [CrossRef]
- Sun, Y.; Haghighat, F.; Fung, B.C.M. A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020, 221, 110022. [Google Scholar] [CrossRef]
- Spandagos, C.; Ng, T.L. Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities. Appl. Energy 2017, 189, 352–368. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical systematic review. Sustain. Cities Soc. 2017, 35, 257–270. [Google Scholar] [CrossRef]
- Gonzalez-Romera, E.; Jaramillo-Moran, M.A.; Carmona-Fernandez, D. Monthly Electric Energy Demand Forecasting Based on Trend Extraction. IEEE Trans. Power Syst. 2006, 21, 1946–1953. [Google Scholar] [CrossRef]
- Friedrich, L.; Afshari, A. Short-term Forecasting of the Abu Dhabi Electricity Load Using Multiple Weather Variables. Energy Procedia 2015, 75, 3014–3026. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Zhang, X.; Mahdiyar, A. A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing 2019, 340, 55–75. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ngo, N.-T. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl. Energy 2016, 177, 751–770. [Google Scholar] [CrossRef]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Bourdeau, M.; Zhai, X.Q.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Liu, T.; Xu, C.; Guo, Y.; Chen, H. A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction. Int. J. Refrig. 2019, 107, 39–51. [Google Scholar] [CrossRef]
- Shao, X.; Pu, C.; Zhang, Y.; Kim, C.S. Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting. IEEE Access 2020, 8, 188352–188362. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 2014, 127, 1–10. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6. [Google Scholar] [CrossRef]
- Chou, J.-S.; Truong, D.-N. Multistep energy consumption forecasting by metaheuristic optimization of time-series analysis and machine learning. Int. J. Energy Res. 2021, 45, 4581–4612. [Google Scholar] [CrossRef]
- Zhou, C.; Fang, Z.; Xu, X.; Zhang, X.; Ding, Y.; Jiang, X.; Ji, Y. Using long short-term memory networks to predict energy consumption of air-conditioning systems. Sustain. Cities Soc. 2020, 55, 102000. [Google Scholar] [CrossRef]
- Walter, T.; Price, P.N.; Sohn, M.D. Uncertainty estimation improves energy measurement and verification procedures. Appl. Energy 2014, 130, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Somu, N.; Raman M R, G.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhao, Y.; Li, T.; Chen, Q.; Zhang, X. A hybrid deep learning-based method for short-term building energy load prediction combined with an interpretation process. Energy Build. 2020, 225, 110301. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Newton, MA, USA, 2019; ISBN 1492032611. [Google Scholar]
- Proyecto CEI “Energía Inteligente”. Available online: https://www.campusenergiainteligente.es/en/ (accessed on 7 April 2021).
- Mendoza-Pittí, L.; Garcés-Jiménez, A.; Aguilar, J.; Gómez-Pulido, J.M.; Vargas-Lombardo, M. Proposal of Physical Models of Multi-HVAC Systems for Energy Efficiency in Smart Buildings. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 9–11 October 2019; pp. 641–646. [Google Scholar]
- Mendoza-Pitti, L.; Calderón-Gómez, H.; Vargas-Lombardo, M.; Gómez-Pulido, J.M.; Castillo-Sequera, J.L. Towards a Service-Oriented Architecture for the Energy Efficiency of Buildings: A Systematic Review. IEEE Access 2021, 9, 26119–26137. [Google Scholar] [CrossRef]
- Aguilar, J.; Garcés-Jiménez, A.; Gómez-Pulido, J.M.; R-Moreno, M.D.; Gutiérrez-de-Mesa, J.-A.; Gallego, N. Autonomic Management of a Building’s multi-HVAC System Start-Up. IEEE Access 2021. [Google Scholar] [CrossRef]
- Le Cun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Mabrouk, A.; Redondo, R.P.D.; Kayed, M. Deep Learning-Based Sentiment Classification: A Comparative Survey. IEEE Access 2020, 8, 85616–85638. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big Data 2020, 9, 3–21. [Google Scholar] [CrossRef]
- Elhariri, E.; Taie, S.A. H-Ahead Multivariate microclimate Forecasting System Based on Deep Learning. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 168–173. [Google Scholar]
- Chandramitasari, W.; Kurniawan, B.; Fujimura, S. Building Deep Neural Network Model for Short Term Electricity Consumption Forecasting. In Proceedings of the 2018 International Symposium on Advanced Intelligent Informatics (SAIN), Yogyakarta, Indonesia, 29–30 August 2018; pp. 43–48. [Google Scholar]
- Hadri, S.; Naitmalek, Y.; Najib, M.; Bakhouya, M.; Fakhri, Y.; Elaroussi, M. A Comparative Study of Predictive Approaches for Load Forecasting in Smart Buildings. In Proceedings of the Procedia Computer Science, Coimbra, Portugal, 4–7 November 2019; Volume 160, pp. 173–180. [Google Scholar]
- Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Alden, R.E.; Gong, H.; Ababei, C.; Ionel, D.M. LSTM Forecasts for Smart Home Electricity Usage. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020; pp. 434–438. [Google Scholar]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Alawadi, S.; Mera, D.; Fernández-Delgado, M.; Alkhabbas, F.; Olsson, C.M.; Davidsson, P. A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. Energy Syst. 2020. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Son, H.; Kim, S. Short term electricity load forecasting for institutional buildings. Energy Rep. 2019, 5, 1270–1280. [Google Scholar] [CrossRef]
- Kuo, P.-H.; Huang, C.-J. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy Load Forecasting using Deep Learning Approach-LSTM and GRU in Spark Cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 12–13 January 2018; pp. 1–4. [Google Scholar]
- Fan, C.; Wang, J.; Gang, W.; Li, S. Assessment of deep recurrent neural network-based strategies for short-term building energy predictions. Appl. Energy 2019, 236, 700–710. [Google Scholar] [CrossRef]
- Wang, L.; Lee, E.W.M.; Yuen, R.K.K. Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach. Appl. Energy 2018, 228, 1740–1753. [Google Scholar] [CrossRef]
- Roy, S.S.; Samui, P.; Nagtode, I.; Jain, H.; Shivaramakrishnan, V.; Mohammadi-ivatloo, B. Forecasting heating and cooling loads of buildings: A comparative performance analysis. J. Ambient Intell. Humaniz. Comput. 2020, 11, 1253–1264. [Google Scholar] [CrossRef]
- Cho, J.S.; Hu, Z.; Sartipi, M. A/C Load Forecasting Using Deep Learning. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; pp. 1840–1841. [Google Scholar]
- Machida, Y.; Honoki, H.; Kawano, H.; Sato, F.; Ishikawa, J. Power Consumption Estimation for Building Air Conditioning Systems Using Recurrent Neural Network. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 854–861. [Google Scholar]
- Ellis, M.J.; Chinde, V. An encoder–decoder LSTM-based EMPC framework applied to a building HVAC system. Chem. Eng. Res. Des. 2020, 160, 508–520. [Google Scholar] [CrossRef]
- Hwang, I.; Cho, H.; Ji, Y.; Kim, H. Estimating Power Consumption of Air-conditioners Using a Sequence-to-sequence Model. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 295–300. [Google Scholar]
- Mtibaa, F.; Nguyen, K.-K.; Azam, M.; Papachristou, A.; Venne, J.-S.; Cheriet, M. LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings. Neural Comput. Appl. 2020, 32, 17569–17585. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Hong, T.; Ji, C.; Kim, J.; Lee, M.; Jeong, K.; Koo, C. Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification. Appl. Energy 2017, 189, 257–270. [Google Scholar] [CrossRef]
- Gao, D.; Sun, Y.; Lu, Y. A robust demand response control of commercial buildings for smart grid under load prediction uncertainty. Energy 2015, 93, 275–283. [Google Scholar] [CrossRef]
- Xue, X.; Wang, S.; Sun, Y.; Xiao, F. An interactive building power demand management strategy for facilitating smart grid optimization. Appl. Energy 2014, 116, 297–310. [Google Scholar] [CrossRef]
- Qian, F.; Gao, W.; Yang, Y.; Yu, D. Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption. Energy 2020, 193, 116724. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Almalaq, A.; Zhang, J.J. Evolutionary Deep Learning-Based Energy Consumption Prediction for Buildings. IEEE Access 2019, 7, 1520–1531. [Google Scholar] [CrossRef]
- Mellouli, N.; Akerma, M.; Hoang, M.; Leducq, D.; Delahaye, A. Deep Learning Models for Time Series Forecasting of Indoor Temperature and Energy Consumption in a Cold Room. In Computational Collective Intelligence; Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 133–144. ISBN 978-3-030-28374-2. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ge, Z.; Song, Z.; Gao, F. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annu. Rev. Control 2018, 46, 107–133. [Google Scholar] [CrossRef]
- Pal, B.; Tarafder, A.K.; Rahman, M.S. Synthetic Samples Generation for Imbalance Class Distribution with LSTM Recurrent Neural Networks. In Proceedings of the International Conference on Computing Advancements; Association for Computing Machinery, New York, NY, USA, 10–12 January 2020; pp. 1–5. [Google Scholar]
- Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In European Conference on Principles of Data Mining and Knowledge Discovery; Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2003; pp. 107–119. [Google Scholar]
- Lepot, M.; Aubin, J.-B.; Clemens, F.H.L.R. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water 2017, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, F.N.; Carlson, R.E. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- Panapongpakorn, T.; Banjerdpongchai, D. Short-Term Load Forecast for Energy Management Systems Using Time Series Analysis and Neural Network Method with Average True Range. In Proceedings of the 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 16–18 January 2019; pp. 86–89. [Google Scholar]
- Chou, J.-S.; Tran, D.-S. Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 2018, 165, 709–726. [Google Scholar] [CrossRef]
- Chae, Y.T.; Horesh, R.; Hwang, Y.; Lee, Y.M. Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy Build. 2016, 111, 184–194. [Google Scholar] [CrossRef]
- Tsay, R.S. Multivariate Time Series Analysis: With R and Financial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Vafaeipour, M.; Rahbari, O.; Rosen, M.A.; Fazelpour, F.; Ansarirad, P. Application of sliding window technique for prediction of wind velocity time series. Int. J. Energy Environ. Eng. 2014, 5, 105. [Google Scholar] [CrossRef] [Green Version]
- Paoli, C.; Voyant, C.; Muselli, M.; Nivet, M.-L. Forecasting of preprocessed daily solar radiation time series using neural networks. Sol. Energy 2010, 84, 2146–2160. [Google Scholar] [CrossRef] [Green Version]
- Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. arXiv 2019, arXiv:1907.09207. [Google Scholar]
- Somu, N.; Raman M R, G.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Rätz, M.; Javadi, A.P.; Baranski, M.; Finkbeiner, K.; Müller, D. Automated data-driven modeling of building energy systems via machine learning algorithms. Energy Build. 2019, 202, 109384. [Google Scholar] [CrossRef]
- Choi, D.; Shallue, C.J.; Nado, Z.; Lee, J.; Maddison, C.J.; Dahl, G.E. On empirical comparisons of optimizers for deep learning. arXiv 2019, arXiv:1910.05446. [Google Scholar]
- Okewu, E.; Adewole, P.; Sennaike, O. Experimental Comparison of Stochastic Optimizers in Deep Learning. In Proceedings of the Computational Science and Its Applications—ICCSA 2019, Saint Petersburg, Russia, 1–4 July 2019; Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 704–715. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Abbasimehr, H.; Shabani, M.; Yousefi, M. An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 2020, 143, 106435. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Chen, L. A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm. Energy Convers. Manag. 2018, 173, 123–142. [Google Scholar] [CrossRef]
- Rasamoelina, A.D.; Adjailia, F.; Sinčák, P. A Review of Activation Function for Artificial Neural Network. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 23–25 January 2020; pp. 281–286. [Google Scholar]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the Advances in Neural InformationProcessing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Long Beach, CA, USA; pp. 972–981. [Google Scholar]
- Kuan, L.; Yan, Z.; Xin, W.; Yan, C.; Xiangkun, P.; Wenxue, S.; Zhe, J.; Yong, Z.; Nan, X.; Xin, Z. Short-term electricity load forecasting method based on multilayered self-normalizing GRU network. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Aggarwal, C.C. Teaching Deep Learners to Generalize BT—Neural Networks and Deep Learning: A Textbook; Aggarwal, C.C., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 169–216. ISBN 978-3-319-94463-0. [Google Scholar]
- Goodfelow, I.; Bengio, Y.; Courville, A. Deep Learning (Adaptive Computation and Machine Learning Series); MIT Press: Cambridge, MA, USA, 2016; Volume 10. [Google Scholar]
- Aggarwal, C.C. An Introduction to Neural Networks BT—Neural Networks and Deep Learning: A Textbook; Aggarwal, C.C., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–52. ISBN 978-3-319-94463-0. [Google Scholar]
- Bergmeir, C.; Benítez, J.M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. 2012, 191, 192–213. [Google Scholar] [CrossRef]
- Udeh, K.; Wanik, D.W.; Bassill, N.; Anagnostou, E. Time Series Modeling of Storm Outages with Weather Mesonet Data for Emergency Preparedness and Response. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 499–505. [Google Scholar]
- ASHRAE. ASHRAE Guideline 14-2014—Measurement of Energy, Demand and Water Savings; American Society of Heating, Refrigeration and Air Conditioning Engineers: Atlanta, GA, USA, 2014. [Google Scholar]
- Runge, J.; Zmeureanu, R. Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies 2019, 12, 3254. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. Ashrae Guideline 14: Measurement of Energy and Demand Savings; American Society of Heating, Refrigeration and Air Conditioning Engineers: Atlanta, GA, USA, 2002; Volume 35. [Google Scholar]
- Ruiz, G.R.; Bandera, C.F. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F. Others Keras. 2015. Available online: https://keras.io (accessed on 5 April 2021).
- Dustin, F. Jetson Nano Brings AI Computing to Everyone. Available online: https://developer.nvidia.com/blog/jetson-nano-ai-computing/ (accessed on 5 April 2021).
- Sarowar, G.; Naser, M.; Nizamuddin, S.M.; Imtiaz Bin Hamid, N.; Mahmud, A. Enhancing Bengali character recognition process applying heuristics on Neural Network. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 154. [Google Scholar]
- Djenouri, D.; Laidi, R.; Djenouri, Y.; Balasingham, I. Machine Learning for Smart Building Applications: Review and Taxonomy. ACM Comput. Surv. 2019, 52. [Google Scholar] [CrossRef]
- Calderon-Gomez, H.; Mendoza-Pitti, L.; Vargas-Lombardo, M.; Gomez-Pulido, J.M.; Castillo-Sequera, J.L.; Sanz-Moreno, J.; Sencion, G. Telemonitoring System for Infectious Disease Prediction in Elderly People Based on a Novel Microservice Architecture. IEEE Access 2020, 8, 118340–118354. [Google Scholar] [CrossRef]
Stats | Outside Temperature | Indoor Temperature | Heat Pump Power |
---|---|---|---|
Mean | 8.717577 | 20.942005 | 80.989117 |
Std | 3.214003 | 1.715789 | 50.924245 |
Minimum | −0.768667 | 16.068332 | 0.48 |
25% | 6.5815 | 19.617981 | 26.405333 |
50% | 8.534667 | 21.256344 | 94.066675 |
75% | 10.816498 | 22.388645 | 117.143975 |
Maximum | 18.72963 | 23.722167 | 143.04 |
Activation Function | Strengths | Weaknesses |
---|---|---|
ReLu |
|
|
ELU |
|
|
Leaky ReLu |
|
|
Hyperparameters | Values |
---|---|
Activation function for LSTM layer | [SeLu, Tanh] |
Number of neurons for LSTM layer | [50,60,70] |
Number of neurons for output layer | 96 |
Iterations or Epochs | 50 |
Optimizer | Adam |
Learning rate | 0.001 |
Time Lags | Evaluation Metrics | S50 | S60 | S70 | T50 | T60 | T70 |
---|---|---|---|---|---|---|---|
1 | R2 (%) | 0.817 | 0.818 | 0.818 | 0.826 | 0.825 | 0.824 |
RMSE (kWh) | 22.61 | 22.53 | 22.55 | 22.05 | 22.09 | 22.14 | |
CVRMSE (%) | 0.249 | 0.248 | 0.248 | 0.243 | 0.243 | 0.244 | |
2 | R2 (%) | 0.829 | 0.826 | 0.821 | 0.832 | 0.830 | 0.827 |
RMSE (kWh) | 21.86 | 22.06 | 22.34 | 21.64 | 21.76 | 21.96 | |
CVRMSE (%) | 0.240 | 0.243 | 0.246 | 0.238 | 0.239 | 0.242 | |
3 | R2 (%) | 0.841 | 0.837 | 0.843 | 0.847 | 0.846 | 0.849 |
RMSE (kWh) | 21.07 | 21.33 | 20.96 | 20.69 | 20.71 | 20.55 | |
CVRMSE (%) | 0.232 | 0.235 | 0.231 | 0.228 | 0.228 | 0.226 | |
4 | R2 (%) | 0.846 | 0.854 | 0.836 | 0.862 | 0.860 | 0.864 |
RMSE (kWh) | 20.75 | 20.20 | 21.37 | 19.65 | 19.77 | 19.52 | |
CVRMSE (%) | 0.228 | 0.222 | 0.235 | 0.216 | 0.217 | 0.215 | |
5 | R2 (%) | 0.849 | 0.858 | 0.852 | 0.871 | 0.874 | 0.869 |
RMSE (kWh) | 20.56 | 19.91 | 20.25 | 18.99 | 18.74 | 19.10 | |
CVRMSE (%) | 0.226 | 0.219 | 0.223 | 0.209 | 0.206 | 0.210 | |
6 | R2 (%) | 0.860 | 0.861 | 0.856 | 0.874 | 0.874 | 0.875 |
RMSE (kWh) | 19.75 | 19.72 | 20.07 | 18.75 | 18.73 | 18.68 | |
CVRMSE (%) | 0.217 | 0.217 | 0.221 | 0.206 | 0.206 | 0.205 | |
7 | R2 (%) | 0.858 | 0.852 | 0.840 | 0.876 | 0.874 | 0.876 |
RMSE (kWh) | 19.94 | 20.30 | 21.06 | 18.61 | 18.74 | 18.64 | |
CVRMSE (%) | 0.219 | 0.223 | 0.232 | 0.205 | 0.206 | 0.205 |
Time Lags | Evaluation Metrics | S50 | S60 | S70 | T50 | T60 | T70 |
---|---|---|---|---|---|---|---|
1 | R2 (%) | 0.800 | 0.793 | 0.805 | 0.813 | 0.820 | 0.813 |
RMSE (kWh) | 23.60 | 23.92 | 23.30 | 22.82 | 22.39 | 22.85 | |
CVRMSE (%) | 0.260 | 0.263 | 0.256 | 0.251 | 0.246 | 0.251 | |
2 | R2 (%) | 0.736 | 0.807 | 0.792 | 0.804 | 0.806 | 0.806 |
RMSE (kWh) | 26.84 | 23.14 | 24.03 | 23.39 | 23.25 | 23.22 | |
CVRMSE (%) | 0.295 | 0.255 | 0.264 | 0.257 | 0.256 | 0.255 | |
3 | R2 (%) | 0.817 | 0.817 | 0.832 | 0.826 | 0.840 | 0.823 |
RMSE (kWh) | 22.60 | 22.56 | 21.65 | 22.06 | 21.15 | 22.23 | |
CVRMSE (%) | 0.249 | 0.248 | 0.238 | 0.243 | 0.233 | 0.245 | |
4 | R2 (%) | 0.829 | 0.835 | 0.844 | 0.858 | 0.855 | 0.849 |
RMSE (kWh) | 21.72 | 21.44 | 20.84 | 19.88 | 20.12 | 20.55 | |
CVRMSE (%) | 0.239 | 0.236 | 0.229 | 0.219 | 0.221 | 0.226 | |
5 | R2 (%) | 0.857 | 0.850 | 0.840 | 0.866 | 0.863 | 0.862 |
RMSE (kWh) | 19.97 | 20.49 | 21.07 | 19.37 | 19.54 | 19.65 | |
CVRMSE (%) | 0.220 | 0.225 | 0.232 | 0.213 | 0.215 | 0.216 | |
6 | R2 (%) | 0.850 | 0.856 | 0.857 | 0.873 | 0.874 | 0.875 |
RMSE (kWh) | 20.37 | 20.01 | 20.01 | 18.82 | 18.76 | 18.71 | |
CVRMSE (%) | 0.224 | 0.220 | 0.220 | 0.207 | 0.206 | 0.206 | |
7 | R2 (%) | 0.862 | 0.785 | 0.847 | 0.866 | 0.877 | 0.872 |
RMSE (kWh) | 19.61 | 23.82 | 20.68 | 19.36 | 18.56 | 18.89 | |
CVRMSE (%) | 0.216 | 0.262 | 0.227 | 0.213 | 0.204 | 0.208 |
Time Lags | Evaluation Metrics | S50 | S60 | S70 | T50 | T60 | T70 |
---|---|---|---|---|---|---|---|
1 | R2 (%) | 0.819 | 0.821 | 0.823 | 0.832 | 0.832 | 0.832 |
RMSE (kWh) | 22.48 | 22.35 | 22.23 | 21.69 | 21.67 | 21.68 | |
CVRMSE (%) | 0.247 | 0.246 | 0.244 | 0.239 | 0.238 | 0.238 | |
2 | R2 (%) | 0.824 | 0.831 | 0.825 | 0.838 | 0.838 | 0.837 |
RMSE (kWh) | 22.20 | 21.71 | 22.09 | 21.28 | 21.27 | 21.32 | |
CVRMSE (%) | 0.244 | 0.239 | 0.243 | 0.234 | 0.234 | 0.235 | |
3 | R2 (%) | 0.849 | 0.852 | 0.848 | 0.855 | 0.853 | 0.858 |
RMSE (kWh) | 20.57 | 20.32 | 20.62 | 20.15 | 20.26 | 19.92 | |
CVRMSE (%) | 0.226 | 0.224 | 0.227 | 0.222 | 0.223 | 0.219 | |
4 | R2 (%) | 0.855 | 0.859 | 0.842 | 0.865 | 0.868 | 0.869 |
RMSE (kWh) | 20.13 | 19.83 | 20.96 | 19.39 | 19.17 | 19.15 | |
CVRMSE (%) | 0.221 | 0.218 | 0.230 | 0.213 | 0.211 | 0.211 | |
5 | R2 (%) | 0.860 | 0.781 | 0.872 | 0.882 | 0.880 | 0.879 |
RMSE (kWh) | 19.76 | 23.33 | 18.93 | 18.19 | 18.28 | 18.36 | |
CVRMSE (%) | 0.217 | 0.257 | 0.208 | 0.200 | 0.201 | 0.202 | |
6 | R2 (%) | 0.863 | 0.871 | 0.860 | 0.882 | 0.882 | 0.877 |
RMSE (kWh) | 19.51 | 19.01 | 19.72 | 18.16 | 18.16 | 18.53 | |
CVRMSE (%) | 0.215 | 0.209 | 0.217 | 0.200 | 0.200 | 0.204 | |
7 | R2 (%) | 0.724 | 0.873 | 0.869 | 0.886 | 0.883 | 0.885 |
RMSE (kWh) | 24.85 | 18.83 | 19.09 | 17.88 | 18.10 | 17.89 | |
CVRMSE (%) | 0.273 | 0.207 | 0.210 | 0.197 | 0.199 | 0.197 |
Time Lags | Evaluation Metrics | S50 | S60 | S70 | T50 | T60 | T70 |
---|---|---|---|---|---|---|---|
1 | R2 (%) | 0.757 | 0.766 | 0.763 | 0.828 | 0.817 | 0.805 |
RMSE (kWh) | 25.90 | 25.38 | 25.63 | 21.94 | 22.59 | 23.28 | |
CVRMSE (%) | 0.285 | 0.279 | 0.282 | 0.241 | 0.248 | 0.256 | |
2 | R2 (%) | 0.812 | 0.790 | 0.787 | 0.814 | 0.828 | 0.792 |
RMSE (kWh) | 22.93 | 24.10 | 24.27 | 22.77 | 21.89 | 23.94 | |
CVRMSE (%) | 0.252 | 0.265 | 0.267 | 0.250 | 0.241 | 0.263 | |
3 | R2 (%) | 0.759 | 0.786 | 0.804 | 0.823 | 0.829 | 0.817 |
RMSE (kWh) | 25.32 | 24.32 | 23.33 | 22.25 | 21.86 | 22.61 | |
CVRMSE (%) | 0.278 | 0.268 | 0.257 | 0.245 | 0.240 | 0.249 | |
4 | R2 (%) | 0.829 | 0.787 | 0.821 | 0.857 | 0.853 | 0.847 |
RMSE (kWh) | 21.83 | 24.22 | 22.30 | 19.96 | 20.23 | 20.65 | |
CVRMSE (%) | 0.240 | 0.266 | 0.245 | 0.219 | 0.223 | 0.227 | |
5 | R2 (%) | 0.842 | 0.826 | 0.829 | 0.871 | 0.866 | 0.858 |
RMSE (kWh) | 20.95 | 21.99 | 21.83 | 18.99 | 19.36 | 19.91 | |
CVRMSE (%) | 0.230 | 0.242 | 0.240 | 0.209 | 0.213 | 0.219 | |
6 | R2 (%) | 0.803 | 0.842 | 0.825 | 0.878 | 0.878 | 0.876 |
RMSE (kWh) | 22.67 | 20.94 | 22.01 | 18.47 | 18.48 | 18.59 | |
CVRMSE (%) | 0.249 | 0.230 | 0.242 | 0.203 | 0.203 | 0.204 | |
7 | R2 (%) | 0.845 | 0.775 | 0.827 | 0.879 | 0.878 | 0.872 |
RMSE (kWh) | 20.77 | 24.88 | 21.92 | 18.37 | 18.49 | 18.91 | |
CVRMSE (%) | 0.228 | 0.274 | 0.241 | 0.202 | 0.203 | 0.208 |
Forecast Day | Avg. EC * by Day (Y *) | Avg. EC * by Day (Ŷ *) | Relative Error (Avg. EC * by Day) | Max. EC * by Day (Y *) | Max. EC * by Day (Ŷ *) | Relative Error (Max. EC * by Day) |
---|---|---|---|---|---|---|
1 | 99.24 | 84.44 | 14.92% | 141.600 | 124.988 | 11.73% |
2 | 82.15 | 84.82 | 3.25% | 142.075 | 124.824 | 12.14% |
3 | 92.41 | 84.90 | 8.12% | 142.080 | 125.786 | 11.47% |
4 | 89.93 | 84.76 | 5.74% | 142.400 | 124.654 | 12.46% |
5 | 90.87 | 84.85 | 6.62% | 141.189 | 125.379 | 11.20% |
Avg. | 90.92 | 84.753 | 7.73% | 141.869 | 125.126 | 11.80% |
Forecast Day | Avg. EC * by Day (Y *) | Avg. EC * by Day (Ŷ *) | Relative Error (Avg. EC * by Day) | Max. EC * by Day (Y *) | Max. EC * by Day (Ŷ *) | Relative Error (Max. EC * by Day) |
---|---|---|---|---|---|---|
1 | 99.24 | 84.39 | 14.96% | 141.60 | 126.08 | 10.96% |
2 | 82.15 | 85.20 | 3.71% | 142.07 | 130.55 | 8.11% |
3 | 92.41 | 85.02 | 8.00% | 142.08 | 125.93 | 11.37% |
4 | 89.93 | 84.85 | 5.64% | 142.40 | 126.01 | 11.51% |
5 | 90.87 | 84.87 | 6.61% | 141.19 | 125.90 | 10.83% |
Avg. | 90.92 | 84.86 | 7.78% | 141.87 | 126.90 | 10.55% |
Forecast Day | Avg. EC * by Day (Y *) | Avg. EC * by Day (Ŷ *) | Relative Error (Avg. EC * by Day) | Max. EC * by Day (Y *) | Max. EC * by Day (Ŷ *) | Relative Error (Max. EC * by Day) |
---|---|---|---|---|---|---|
1 | 99.24 | 85.18 | 14.16% | 141.60 | 132.07 | 7.58% |
2 | 82.15 | 85.36 | 3.91% | 142.07 | 129.79 | 8.65% |
3 | 92.41 | 84.75 | 8.28% | 142.08 | 128.39 | 9.64% |
4 | 89.93 | 84.80 | 5.70% | 142.40 | 127.69 | 10.33% |
5 | 90.87 | 84.56 | 6.94% | 141.19 | 127.79 | 9.49% |
Avg. | 90.92 | 84.93 | 7.80% | 141.87 | 129.15 | 9.14% |
Forecast Day | Avg. EC * by Day (Y *) | Avg. EC * by Day (Ŷ *) | Relative Error (Avg. EC * by Day) | Max. EC * by Day (Y *) | Max. EC * by Day (Ŷ *) | Relative Error (Max. EC * by Day) |
---|---|---|---|---|---|---|
1 | 99.24 | 84.58 | 14.77% | 141.60 | 127.40 | 10.03% |
2 | 82.15 | 84.61 | 3.00% | 142.07 | 126.88 | 10.69% |
3 | 92.41 | 84.86 | 8.17% | 142.08 | 127.64 | 10.16% |
4 | 89.93 | 84.77 | 5.73% | 142.40 | 127.36 | 10.56% |
5 | 90.87 | 84.82 | 6.65% | 141.19 | 127.81 | 9.47% |
Avg. | 90.92 | 84.73 | 7.66% | 141.87 | 127.42 | 10.18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Pittí, L.; Calderón-Gómez, H.; Gómez-Pulido, J.M.; Vargas-Lombardo, M.; Castillo-Sequera, J.L.; de Blas, C.S. Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings. Appl. Sci. 2021, 11, 6722. https://doi.org/10.3390/app11156722
Mendoza-Pittí L, Calderón-Gómez H, Gómez-Pulido JM, Vargas-Lombardo M, Castillo-Sequera JL, de Blas CS. Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings. Applied Sciences. 2021; 11(15):6722. https://doi.org/10.3390/app11156722
Chicago/Turabian StyleMendoza-Pittí, Luis, Huriviades Calderón-Gómez, José Manuel Gómez-Pulido, Miguel Vargas-Lombardo, José Luis Castillo-Sequera, and Clara Simon de Blas. 2021. "Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings" Applied Sciences 11, no. 15: 6722. https://doi.org/10.3390/app11156722
APA StyleMendoza-Pittí, L., Calderón-Gómez, H., Gómez-Pulido, J. M., Vargas-Lombardo, M., Castillo-Sequera, J. L., & de Blas, C. S. (2021). Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings. Applied Sciences, 11(15), 6722. https://doi.org/10.3390/app11156722