Non-Destructive Testing of Aircraft Structures Using Microwire-Based Tensile Stress Sensor
<p>Glass-coated magnetic microwire. (<b>a</b>) Schematics with dimensions; (<b>b</b>) photo from the microscope.</p> "> Figure 2
<p>Measurement principle of the tensile stress sensor based on the magnetic microwire.</p> "> Figure 3
<p>Measurement block diagram.</p> "> Figure 4
<p>Glass-coated magnetic microwire (<b>a</b>) fabrication process; (<b>b</b>) implementation into the glass fiber fabric.</p> "> Figure 5
<p>Shark UL (<b>a</b>) before the placement of the sensing element; (<b>b</b>) after the placement of the sensing element.</p> "> Figure 6
<p>Shark UL aircraft with the prototype of the measurement workstation during the tests.</p> "> Figure 7
<p>Record of the microwire switching field deviation during the aircraft swing movement.</p> "> Figure 8
<p>FFT (Fast Fourier Transform) analysis of the signal obtained during the aircraft swing movement.</p> "> Figure 9
<p>FFT analysis of the accelerometer signal obtained during the aircraft wing step movement.</p> "> Figure 10
<p>Simulation model of the aircraft with the results of the modal analysis.</p> "> Figure 11
<p>FFT analysis results (<b>a</b>) for the temperature of 5 °C; (<b>b</b>) for the temperature of 30 °C.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Measurement Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Towsyfyan, H.; Biguri, A.; Boardman, R.; Blumensath, T. Successes and challenges in non-destructive testing of aircraft composite structures. Chin. J. Aeronaut. 2020, 33, 771–791. [Google Scholar] [CrossRef]
- Vyas, J.; Kazys, R.J. A review on nondestructive techniques and characteristics of composite materials for the aerospace system. MATEC Web Conf. 2018, 233, 3. [Google Scholar] [CrossRef]
- Asif, M.; Khan, M.A.; Khan, S.Z.; Choudhry, R.S.; Khan, K.A. Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review. J. Compos. Mater. 2018, 52, 3589–3599. [Google Scholar] [CrossRef] [Green Version]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Marušić, Ž.; Bartulović, D.; Maković, B. Methods to detect and prevent fatigue in ageing aircraft structures. Teh. Vjes. 2015, 22, 793–803. [Google Scholar] [CrossRef]
- Wronkowicz, A.; Dragan, K. Damage evaluation based on ultrasonic testing of composite aircraft elements and image analysis methods. MATEC Web Conf. 2018, 204, 6003. [Google Scholar] [CrossRef] [Green Version]
- Pelivanov, I.; Buma, T.; Xia, J.; Wei, C.-W.; O’Donnell, M. NDT of fiber-reinforced composites with a new fiber-optic pump-probe laser-ultrasound system. Photoacoustics 2014, 2, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Farmaki, S.; Exarchos, D.A.; Tragazikis, I.K.; Matikas, T.E.; Dassios, K.G. A novel infrared thermography sensing approach for rapid, quantitative assessment of damage in aircraft composites. Sensors 2020, 20, 4113. [Google Scholar] [CrossRef]
- Deane, S.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Zhang, H.; Nezhad, H.Y.; Williamson, A.A.; Mackley, T.; Maldague, X.; Tsourdos, A.; Nooralishahi, P. Comparison of cooled and uncooled ir sensors by means of signal-to-noise ratio for ndt diagnostics of aerospace grade composites. Sensors 2020, 20, 3381. [Google Scholar] [CrossRef]
- Poelman, G.; Hedayatrasa, S.; Segers, J.; Van Paepegem, W.; Kersemans, M. Adaptive spectral band integration in flash thermography: Enhanced defect detectability and quantification in composites. Compos. Part B-Eng. 2020, 202, 108305. [Google Scholar] [CrossRef]
- Deane, S.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Zhang, H.; Yazdani Nezhad, H.; Williamson, A.A.; Mackley, T.; Davis, M.J.; Maldague, X.; Tsourdos, A. Application of NDT thermographic imaging of aerospace structures. Infrared Phys. Technol. 2019, 97, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Smith, G.; Lu, D.; Hewitt, J. Rapid thermal non-destructive testing of aircraft components. Compos. Part. B-Eng. 2000, 31, 175–185. [Google Scholar] [CrossRef]
- Bang, H.-T.; Park, S.; Jeon, H. Defect identification in composite materials via thermography and deep learning techniques. Compos. Struct. 2020, 246, 112405. [Google Scholar] [CrossRef]
- Hill, M.; Faupel, B. A Robotized Non-destructive Quality Device for the Inspection of Glue Joints by Active Thermography. J. Nondestruct. Eval. 2020, 39, 72. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Y.; Liu, J.; He, W. Nondestructive inspection of curved clad composites with subsurface defects by combination active thermography and three-dimensional (3D) structural optical imaging. Infrared Phys. Technol. 2019, 97, 424–431. [Google Scholar] [CrossRef]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef] [Green Version]
- Dilonardo, E.; Nacucchi, M.; De Pascalis, F.; Zarrelli, M.; Giannini, C. High resolution X-ray computed tomography: A versatile non-destructive tool to characterize CFRP-based aircraft composite elements. Compos. Sci. Technol. 2020, 192, 108093. [Google Scholar] [CrossRef]
- Katunin, A.; Wronkowicz-Katunin, A.; Dragan, K. Impact damage evaluation in composite structures based on fusion of results of ultrasonic testing and x-ray computed tomography. Sensors 2020, 20, 1867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Yang, Q.; Xue, R.; Zhang, J.; Sun, Y.; Xu, D.; Krishnaswamy, S. Research on epoxy resin curing monitoring using laser ultrasonic. Measurement 2020, 158, 107737. [Google Scholar] [CrossRef]
- Matuda, M.Y.; Buiochi, F.; Adamowski, J.C. Experimental analysis of surface detection methods for two-medium imaging with a linear ultrasonic array. Ultrasonics 2019, 94, 50–59. [Google Scholar] [CrossRef]
- Capriotti, M.; Lanza di Scalea, F. Robust non-destructive inspection of composite aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-output scanning systems. J. Intell. Mater. Syst. Struct. 2020, 31, 651–664. [Google Scholar] [CrossRef]
- Lugovtsova, Y.; Bulling, J.; Boller, C.; Prager, J. Analysis of guided wave propagation in a multi-layered structure in view of structural health monitoring. Appl. Sci. 2019, 9, 4600. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; An, Y.-K.; Sohn, H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014, 100, 10–18. [Google Scholar] [CrossRef]
- Dubuc, B.; Ebrahimkhanlou, A.; Livadiotis, S.; Salamone, S. Inversion algorithm for Lamb-wave-based depth characterization of acoustic emission sources in plate-like structures. Ultrasonics 2019, 99, 105975. [Google Scholar] [CrossRef] [PubMed]
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Anisimov, A.G.; Serikova, M.G.; Groves, R.M. 3D shape shearography technique for surface strain measurement of free-form objects. Appl. Opt. 2019, 58, 498–508. [Google Scholar] [CrossRef]
- Bhaurkar, V.P.; Thakur, A.G. Investigation of crack in beams using anti-resonance technique and FEA approach. J. Eng. Des. Technol. 2019, 17, 1266–1284. [Google Scholar] [CrossRef]
- Tzitzilonis, V.; Malandrakis, K.; Zanotti Fragonara, L.; Gonzalez Domingo, J.A.; Avdelidis, N.P.; Tsourdos, A.; Forster, K. Inspection of aircraft wing panels using unmanned aerial vehicles. Sensors 2019, 19, 1824. [Google Scholar] [CrossRef] [Green Version]
- Papa, U.; Ponte, S. Preliminary design of an unmanned aircraft system for aircraft general visual inspection. Electronics (Switzerland) 2018, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhang, K.; Xu, H.; Avila, J.R.S.; Zhao, L.; Wang, M.; Han, Y.; Zhang, Z.; Yin, W. Measurement of CFRP surface crack based on electromagnetic measuring system. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20−23 May 2019. [Google Scholar] [CrossRef]
- Nunes, S.; Pimentel, M.; Carvalho, A. Non-destructive assessment of fibre content and orientation in UHPFRC layers based on a magnetic method. Cement Concrete Comp. 2016, 72, 66–79. [Google Scholar] [CrossRef]
- Abry, J.C.; Choi, Y.K.; Chateauminois, A.; Dalloz, B.; Giraud, G.; Salvia, M. In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos. Sci. Technol. 2001, 61, 855–864. [Google Scholar] [CrossRef]
- Witos, M.; Szymanski, M.; Oravec, M.; Bogucki, K. Magnetic state observer in NDT and SHM studies. In Proceedings of the 10th International Workshop NDT in Progress, Prague, Czech Republic, 7−9 October 2019. [Google Scholar]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-destructive techniques based on eddy current testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Luo, F.; Pan, M.; Weng, F.; Hu, X.; Gao, J.; Liu, B. Pulsed eddy current technique for defect detection in aircraft riveted structures. NDT&E Int. 2010, 43, 176–181. [Google Scholar] [CrossRef]
- Janovec, M.; Smetana, M.; Bugaj, M. Eddy current array inspection of Zlin 142 fuselage riveted joints. Trans. Res. Proc. 2019, 40, 279–286. [Google Scholar] [CrossRef]
- Faraj, M.A.; Abdalla, A.N.; Samsuri, F.B.; Rifai, D.; Ali, K. Construct Coil Probe Using GMR Sensor for Eddy Current Testing. MATEC Web Conf. 2018, 225, 2021. [Google Scholar] [CrossRef]
- Zhaoyuan, L.; Chan, L.; Walters, N.; Clarke, J.; Holmes, W.; Hayes, S. Structural health monitoring using magnetostrictive sensors. In Proceedings of the 2018 IEEE International Magnetic Conference (INTERMAG), Singapore, 23−27 April 2018. [Google Scholar] [CrossRef] [Green Version]
- Na, W.S.; Baek, J. Piezoelectric impedance-based non-destructive testing method for possible identification of composite debonding depth. Micromachines 2019, 10, 621. [Google Scholar] [CrossRef] [Green Version]
- Praslicka, D.; Blazek, J.; Hudak, J.; Mikita, I.; Moucha, V. Industrial Applications of Magnetometry. J. Electr. Eng. 2015, 66, 190–192. [Google Scholar]
- Varga, R.; Klein, P.; Sabol, R.; Richter, K.; Hudak, R.; Polaček, I.; Praslicka, D.; Šmelko, M.; Hudak, J.; Mikita, I.; et al. Magnetically bistable microwires: Properties and applications for magnetic field, temperature, and stress sensing. In High Performance Soft Magnetic Materials; Zhukov, A., Ed.; Springer: Cham, Switzerland, 2017; Volume 252, pp. 169–212. [Google Scholar]
- Ziman, J.; Onufer, J.; Kladivová, M. Dynamics of domain wall depinning from closure domain structure at the end of bistable glass coated microwire. J. Magn. Magn. Mater. 2020, 514, 167233. [Google Scholar] [CrossRef]
- Duranka, P.; Ziman, J.; Onufer, J.; Kardoš, S. Magnetoelastic Anisotropy in Glass-Coated Microwires Studied using SAMR Method. Acta Phys. Pol. A 2020, 137, 868–871. [Google Scholar] [CrossRef]
- Richter, K.; Thiaville, A.; Varga, R. Magneto-optical study of the surface reversal process in amorphous glass-coated Microwires with positive magnetostriction. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Fecova, L.; Richter, K.; Varga, R. Domain Wall Dynamics of Wires in Perpendicular Magnetic Field. Acta Phys. Pol. A 2020, 137, 849–851. [Google Scholar] [CrossRef]
- Spodniak, M.; Semrád, K.; Šmelko, M.; Fözö, L.; Andoga, R.; Draganová, K.; Szabo, S. Estimation of Magnetic Microwire Mechanical Properties by FEM Modeling. Acta Phys. Pol. A 2020, 137, 674–676. [Google Scholar] [CrossRef]
- Šmelko, M.; Praslička, D.; Draganová, K.; Lipovský, P.; Kán, V.; Bajús, J. Wireless strain gauge for composite materials. U.P.B. Sci. Bull. Ser. D 2016, 78, 59–66. [Google Scholar]
- Kašper, P.; Šmelko, M. Accumulator suply for defectoscopy system. Acta Avion. 2018, 1, 18–23. [Google Scholar]
Method | Resonant Acoustic | Eddy Current | Ultrasonic | Radiography | Magnetic Microwires |
---|---|---|---|---|---|
Defect/Issue | |||||
Cracks | 1 | 1 | 1 | 2 | 1 |
Material Properties | 1 | 3 | 3 | 2 | 3 |
Structural Integrity | 1 | 1 | 1 | 1 | 1 |
Product Lot Variation | 2 | 2 | 1 | 1 | 1 |
Defect Location | |||||
Surface (External) | 1 | 1 | 1 | 3 | 1 |
Internal | 1 | 3 | 1 | 1 | 1 |
Brazing/Bonding/Welding | 1 | 3 | 2 | 2 | 3 |
Speed/Cost | |||||
Time Demands | 1 | 2 | 1 | 3 | 2 |
Inspection Costs | 1 | 2 | 3 | 3 | 2 |
Automation Capacity | |||||
Quantitative Results | 1 | 3 | 2 | 3 | 2 |
Ease of Automation | 1 | 2 | 3 | 3 | 2 |
Monitoring/Diagnostics | |||||
Pre-Flight/Post-Flight | 3 | 3 | 3 | 3 | 1 |
In-Flight | 3 | 3 | 3 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmelko, M.; Draganová, K.; Lipovský, P.; Semrád, K.; Blišťanová, M.; Kašper, P. Non-Destructive Testing of Aircraft Structures Using Microwire-Based Tensile Stress Sensor. Appl. Sci. 2020, 10, 8218. https://doi.org/10.3390/app10228218
Šmelko M, Draganová K, Lipovský P, Semrád K, Blišťanová M, Kašper P. Non-Destructive Testing of Aircraft Structures Using Microwire-Based Tensile Stress Sensor. Applied Sciences. 2020; 10(22):8218. https://doi.org/10.3390/app10228218
Chicago/Turabian StyleŠmelko, Miroslav, Katarína Draganová, Pavol Lipovský, Karol Semrád, Monika Blišťanová, and Patrik Kašper. 2020. "Non-Destructive Testing of Aircraft Structures Using Microwire-Based Tensile Stress Sensor" Applied Sciences 10, no. 22: 8218. https://doi.org/10.3390/app10228218
APA StyleŠmelko, M., Draganová, K., Lipovský, P., Semrád, K., Blišťanová, M., & Kašper, P. (2020). Non-Destructive Testing of Aircraft Structures Using Microwire-Based Tensile Stress Sensor. Applied Sciences, 10(22), 8218. https://doi.org/10.3390/app10228218