Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application
<p>Geological map of the study area (modified from [<a href="#B36-applsci-10-07697" class="html-bibr">36</a>]). Legend: (<b>1</b>) Clay of lacustrine environment (lac, Holocene) (<b>2</b>) Landslide deposits (lan, Holocene) (<b>3</b>) Holistolits made by decametric blocks of limestone (pa, Upper Miocene); (<b>4</b>) Silt and marly clay (CVT2, Upper Miocene); (<b>5</b>) Coarse- to medium-grained sandstone with rare intercalation of lens of polygenic conglomerate (CVT1, Upper Miocene); (<b>6</b>) Calcareous breccia and grey shale (FYRa, Lower Cretaceous-Oligocene); (<b>7</b>) Alternance of chert, marly clay, calcarenites and calcareous breccia (FYR1, Lower Cretaceous-Oligocene); (<b>8</b>) Light-grey and greenish shale with intercalation of marls and limestone (FYG, Lower Cretaceous); (<b>9</b>) Alternance of calcarenite, calcilutite and varicoloured clay (FMS, Upper Cretaceous-Eocene); (<b>10</b>) Varicoloured clay (AVF, Lower Cretaceous); (<b>11</b>) High-angle fault (dashed if uncertain); (<b>12</b>) Thrust (dashed if uncertain); (<b>13</b>) Stratigraphic contact. (<b>A</b>) Geographical location of the study area.</p> "> Figure 2
<p>(<b>A</b>) DEM of the pre-dam removal landscape and drainage network of the study area. Hierarchization follows the Strahler’s scheme. Numbering of the catchments is shown in the frame to the left. (<b>B</b>) Land-use map. Legend: (<b>1</b>) Anthropic surfaces and roads; (<b>2</b>) Arable lands; (<b>3</b>) Sclerophyllous vegetation; (<b>4</b>) Broad-leaved and mixed forests; (<b>5</b>) Natural grasslands; (<b>6</b>) Water courses and water bodies. (<b>C</b>) Isopachs of soil thickness derived by a GIS-based interpolation of the results of a field-survey analysis. Modified after [<a href="#B34-applsci-10-07697" class="html-bibr">34</a>].</p> "> Figure 3
<p>Hillshades representing the initial DEMs used for the modeling of the different simulation scenarios: (<b>A</b>) pre-dam removal, initial topography (PreDR-T0); (<b>B</b>) post-dam removal, simulation period: 1 year (PostDR-T0).</p> "> Figure 4
<p>(<b>A</b>) Elevation difference map for the pre-dam removal scenario (simulation period: 20 years); (<b>B</b>) Numbering of the three sub-basins of the study area.</p> "> Figure 5
<p>Erosion/deposition classes in the catchment deriving from the analysis of the altitude difference map of <a href="#applsci-10-07697-f004" class="html-fig">Figure 4</a>. In the frame: distribution of the eroded volumes from the three sub-basins of the study area (numbering is shown in <a href="#applsci-10-07697-f004" class="html-fig">Figure 4</a>).</p> "> Figure 6
<p>(<b>A</b>) Landscape evolution models (LEM)-based elevation difference map for the post-dam removal scenario (simulation period: 20 years). (<b>B</b>) Numbering of the post-dam removal catchments.</p> "> Figure 7
<p>Statistical distribution of the altitude difference map of <a href="#applsci-10-07697-f006" class="html-fig">Figure 6</a> (Post-dam removal scenario). In the frame: distribution of the eroded volumes from the three sub-basins of the study area (numbering is shown in <a href="#applsci-10-07697-f006" class="html-fig">Figure 6</a>).</p> "> Figure 8
<p>Map showing the planimetric changes of the main channels from the present-day landscape (initial DEM, Pre-DR-T0 in <a href="#applsci-10-07697-t003" class="html-table">Table 3</a>) to the final stage of the post-dam removal scenario. To the bottom: comparison of longitudinal river profiles of the three main channels (channel 1, 2 and 3 in the map) deriving from the simulation scenarios. River profile analysis highlights the amount of incision related to the base-level fall as well as the development of pronounced knickpoints in the upper and lower reaches of the main channels. Higher rates of knickpoint retreat are associated with the lower reach of the channel 2.</p> "> Figure 9
<p>Topographic profiles for the different simulation scenarios (location of the profile is reported in the map) showing the landscape modification resulting from the simulation. Higher rates of fluvial incision occurred in the upper and lower reaches of the catchment (about 3 m over the 20-year simulation period, see for example profile a-a’ and i-i’). A deep incision of the reservoir top can be also observed.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Caesar–Lisflood LEM: Model Description and Calibration
3.2. Dam-Removal Scenario
4. Results
4.1. Scenario 1, Pre-Dam Removal
4.2. Scenario 2–Dam Removal
4.3. River Profile Analysis and Channel/Valley Modifications
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dente, E.; Lensky, N.G.; Morin, E.; Grodek, T.; Sheffer, N.A.; Enzel, Y. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea. J. Geophys. Res. Earth Surf. 2017, 122, 2468–2487. [Google Scholar] [CrossRef] [Green Version]
- Neave, M.; Rayburg, S.; Swan, A. River channel change following dam removal in an ephemeral stream. Aust. Geogr. 2009, 40, 235–246. [Google Scholar] [CrossRef]
- Joeckel, R.M.; Diffendal, R.F., Jr. Geomorphic and environmental change around a large, aging reservoir: Lake C. W. McConaughy, Western Nebraska, USA. Environ. Eng. Geosci. 2004, 10, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Struth, L.; Garcia-Castellanos, D.; Viaplana-Muzas, M.; Vergés, J. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphol 2019, 327, 554–571. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, L.; Antón, L.; Pallàs, R.; García-Castellanos, D.; Jiménez-Munt, I.; Pastor-Martín, C. A GIS method to identify flat surfaces and restore relict fluvial long-profiles from terrace remnants gives new clues on how large basins respond to endorheic–exorheic transitions (Duero basin, Iberian Peninsula). Earth Surf. Process. Landf. 2020, 45, 1013–1027. [Google Scholar] [CrossRef]
- Bilmes, A.; Veiga, G.D.; Ariztegui, D.; Castelltort, S.; D’Elia, L.; Franzese, J.R. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina. Geomorphology 2017, 283, 102–113. [Google Scholar] [CrossRef]
- Cunha, P.P.; Martins, A.A.; Gomes, A.; Stokes, M.; Cabral, J.; Lopes, F.C.; Antón, L. Mechanisms and age estimates of continental-scale endorheic to exorheic drainage transition: Douro River, Western Iberia. Glob. Planet. Chang. 2019, 181, 102985. [Google Scholar] [CrossRef]
- Buccolini, M.; Materazzi, M.; Aringoli, D.; Gentili, B.; Pambianchi, G.; Scarciglia, F. Late Quaternary catchment evolution and erosion rates in the Tyrrhenian side of central Italy. Geomorphology 2014, 204, 21–30. [Google Scholar] [CrossRef]
- Giano, S.I.; Gioia, D.; Schiattarella, M. Morphotectonic evolution of connected intermontane basins from the southern Apennines, Italy: The legacy of the pre-existing structurally controlled landscape. Rend. Lincei 2014, 25, 241–252. [Google Scholar] [CrossRef]
- Gioia, D.; Gallicchio, S.; Moretti, M.; Schiattarella, M. Landscape response to tectonic and climatic forcing in the foredeep of the southern Apennines, Italy: Insights from Quaternary stratigraphy, quantitative geomorphic analysis, and denudation rate proxies. Earth Surf. Process. Landf. 2014, 39, 814–835. [Google Scholar] [CrossRef]
- Amato, A.; Aucelli, P.P.C.; Cinque, A. The long-term denudation rate in the Southern Apennines Chain (Italy): A GIS-aided estimation of the rock volumes eroded since middle Pleistocene time. Quat. Int. 2003, 101, 3–11. [Google Scholar] [CrossRef]
- Capolongo, D.; Refice, A.; Bocchiola, D.; D’Addabbo, A.; Vouvalidis, K.; Soncini, A.; Stamatopoulos, L. Coupling multitemporal remote sensing with geomorphology and hydrological modeling for post flood recovery in the Strymonas dammed river basin (Greece). Sci. Total Environ. 2019, 651, 1958–1968. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, B.A.; Hayes, D.B.; Klomp, K.D.; Hansen, J.F.; Mistak, J. Effects of Stronach Dam removal on fluvial geomorphology in the Pine River, Michigan, United States. Geomorphology 2009, 110, 96–107. [Google Scholar] [CrossRef]
- Major, J.J.; East, A.E.; O’Connor, J.E.; Grant, G.E.; Wilcox, A.C.; Magirl, C.S.; Tullos, D.D. Geomorphic responses to dam removal in the United States—A two-decade perspective. Gravel Bed Rivers Process Disasters 2017, 355–383. [Google Scholar] [CrossRef]
- Wang, H.-W.; Kuo, W.C. Geomorphic Responses to a Large Check-Dam Removal on a Mountain River in Taiwan. River Res. Appl. 2015, 32, 1094–1105. [Google Scholar] [CrossRef]
- Randle, T.J.; Bountry, J.A.; Ritchie, A.; Wille, K. Large-scale dam removal on the Elwha River, Washington, USA: Erosion of reservoir sediment. Geomorphology 2015, 246, 709–728. [Google Scholar] [CrossRef]
- Gartner, J.D.; Magilligan, F.J.; Renshaw, C.E. Predicting the type, location and magnitude of geomorphic responses to dam removal: Role of hydrologic and geomorphic constraints. Geomorphology 2015, 251, 20–30. [Google Scholar] [CrossRef]
- Pearson, A.J.; Snyder, N.P.; Collins, M.J. Rates and processes of channel response to dam removal with a sand-filled impoundment. Water Resour. Res. 2011, 47, W08504. [Google Scholar] [CrossRef] [Green Version]
- Sawaske, S.R.; Freyberg, D.L. A comparison of past small dam removals in highly sediment-impacted systems in the U.S. Geomorphology 2012, 151, 50–58. [Google Scholar] [CrossRef]
- Walter, C.; Tullos, D.D. Downstream channel changes after a small dam removal: Using aerial photos and measurement error for context; Calapooia River, Oregon. River Res. Appl. 2010, 26, 1220–1245. [Google Scholar] [CrossRef]
- Wells, R.R.; Langendoen, E.J.; Simon, A. Modeling Pre- and Post-Dam Removal Sediment Dynamics: The Kalamazoo River, Michigan1. Jawra J. Am. Water Resour. Assoc. 2007, 43, 773–785. [Google Scholar] [CrossRef]
- Cui, Y.; Parker, G.; Braudrick, C.; Dietrich, W.E.; Cluer, B. Dam Removal Express Assessment Models (DREAM). J. Hydraul. Res. 2006, 44, 308–323. [Google Scholar] [CrossRef]
- Benaïchouche, A.; Stab, O.; Tessier, B.; Cojan, I. Evaluation of a landscape evolution model to simulate stream piracies: Insights from multivariable numerical tests using the example of the Meuse basin, France. Geomorphology 2016, 253, 168–180. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Hancock, G.R.; Lowry, J.B.C. Modelling soil erosion with a downscaled landscape evolution model. Earth Surf. Process. Landf. 2012, 37, 1046–1055. [Google Scholar] [CrossRef]
- Temme, A.J.A.M.; Peeters, I.; Buis, E.; Veldkamp, A.; Govers, G. Comparing landscape evolution models with quantitative field data at the millennial time scale in the Belgian loess belt. Earth Surf. Process. Landf. 2011, 36, 1300–1312. [Google Scholar] [CrossRef]
- Van Gorp, W.; Temme, A.J.; Baartman, J.E.; Schoorl, J.M. Landscape Evolution Modelling of naturally dammed rivers. Earth Surf. Process. Landf. 2014, 39, 1587–1600. [Google Scholar] [CrossRef]
- Refice, A.; Giachetta, E.; Capolongo, D. SIGNUM: A Matlab, TIN-based landscape evolution model. Comput. Geosci. 2012, 45, 293–303. [Google Scholar] [CrossRef]
- Coulthard, T.J.; van de Wiel, M.J. Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology 2017, 277, 265–281. [Google Scholar] [CrossRef]
- Hancock, G.R.; Coulthard, T.J.; Martinez, C.; Kalma, J.D. An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments. J. Hydrol. 2011, 398, 171–183. [Google Scholar] [CrossRef]
- Tucker, G.E.; Hancock, G.R. Modelling landscape evolution. Earth Surf. Process. Landf. 2010, 35, 28–50. [Google Scholar] [CrossRef]
- Lowry, J.B.C.; Narayan, M.; Hancock, G.R.; Evans, K.G. Understanding post-mining landforms: Utilising pre-mine geomorphology to improve rehabilitation outcomes. Geomorphology 2019, 328, 93–107. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Coulthard, T.; Keesstra, S.D.; Keiler, M. Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. Int. J. Sediment Res. 2019, 34, 537–549. [Google Scholar] [CrossRef]
- Temme AJ, A.M.; Claessens, L.; Veldkamp, A.; Schoorl, J.M. Evaluating choices in multi-process landscape evolution models. Geomorphology 2011, 125, 271–281. [Google Scholar] [CrossRef]
- Gioia, D.; Lazzari, M. Testing the Prediction Ability of LEM-Derived Sedimentary Budget in an Upland Catchment of the Southern Apennines, Italy: A Source to Sink Approach. Water 2019, 11, 911. [Google Scholar] [CrossRef] [Green Version]
- Schiattarella, M.; Giano, S.I.; Gioia, D. Long-term geomorphological evolution of the axial zone of the Campania-Lucania Apennine, southern Italy: A review. Geol. Carpathica 2017, 68, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Giannandrea, P.; Marino, M.; Romeo, M.; Schiattarella, M. Pliocene to Quaternary evolution of the Ofanto Basin in southern Italy: An approach based on the unconformity-bounded stratigraphic units. Ital. J. Geosci. 2013, 133, 27–44. [Google Scholar] [CrossRef]
- Labella, R.; Capolongo, D.; Giannandrea, P.; Giano, S.I.; Schiattarella, M. Morphometric analysis of fluvial network and age constraints of terraced surfaces of the Ofanto basin, Southern Italy. Rend. Lincei 2014, 25, 253–263. [Google Scholar] [CrossRef]
- Piccarreta, M.; Pasini, A.; Capolongo, D.; Lazzari, M. Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, southern Italy. Int. J. Climatol. 2013, 33, 3229–3248. [Google Scholar] [CrossRef]
- Büttner, G. CORINE land cover and land cover change products. In Remote Sensing and Digital Image Processing; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Ramirez, J.A.; Zischg, A.P.; Schürmann, S.; Zimmermann, M.; Weingartner, R.; Coulthard, T.; Keiler, M. Modeling the geomorphic response to early river engineering works using CAESAR-Lisflood. Anthropocene 2020, 32, 100266. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Neal, J.C.; Bates, P.D.; Ramirez, J.; de Almeida, G.A.; Hancock, G.R. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surf. Process. Landf. 2013, 38, 1897–1906. [Google Scholar] [CrossRef]
- Coulthard, T.J.; van de Wiel, M.J. Climate, tectonics or morphology: What signals can we see in drainage basin sediment yields? Earth Surf. Dyn. 2013, 1, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.R.; Lowry, J.B.C.; Coulthard, T.J.; Evans, K.G.; Moliere, D.R. A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surf. Process. Landf. 2010, 35, 863–875. [Google Scholar] [CrossRef]
- Skinner, C.J.; Coulthard, T.J.; Schwanghart, W.; Wiel, M.J.; Hancock, G. Global sensitivity analysis of parameter uncertainty in landscape evolution models. Geosci. Model Dev. 2018, 11, 4873–4888. [Google Scholar] [CrossRef] [Green Version]
- Einstein, H.A. The Bed-Load Function for Sediment Transportation in Open Channel Flows. Soil Conserv. Serv. 1950, 1026, 1–31. [Google Scholar]
- Ding, Y.; Jia, Y.; Sam, S.Y.W. Identification of Manning’s Roughness Coefficients in Shallow Water Flows. J. Hydraul. Eng. 2004, 130, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.V.; Tadayon, S. Selection of Manning’s Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central Arizona; Report 2006-5108; USGS: Washington, DC, USA, 2006.
- Aucelli, P.P.; Conforti, M.; Della Seta, M.; Del Monte, M.; D’uva, L.; Rosskopf, C.M.; Vergari, F. Multi-temporal Digital Photogrammetric Analysis for Quantitative Assessment of Soil Erosion Rates in the Landola Catchment of the Upper Orcia Valley (Tuscany, Italy). Land Degrad. Dev. 2016, 27, 1075–1092. [Google Scholar] [CrossRef]
- Llena, M.; Vericat, D.; Smith, M.W.; Wheaton, J.M. Geomorphic process signatures reshaping sub-humid Mediterranean badlands: 1. Methodological development based on high-resolution topography. Earth Surf. Process. Landf. 2020, 45, 1335–1346. [Google Scholar] [CrossRef]
- Del Monte, M.; Vergari, F.; Brandolini, P.; Capolongo, D.; Cevasco, A.; Ciccacci, S.; Zucca, F. Multi-method evaluation of denudation rates in small mediterranean catchments. In Engineering Geology for Society and Territory—Volume 1: Climate Change and Engineering Geology; Springer: Cham, Switzerland, 2015; pp. 563–567. [Google Scholar]
- Gioia, D.; Martino, C.; Schiattarella, M. Long- to short-term denudation rates in the southern Apennines: Geomorphological markers and chronological constraints. Geol. Carpathica 2011, 62, 27–41. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F.; Bentivenga, M. Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena 2006, 65, 138–151. [Google Scholar] [CrossRef]
- Doyle, M.W.; Stanley, E.H.; Harbor, J.M. Channel adjustments following two dam removals in Wisconsin. Water Resour. Res. 2003, 39, 1011. [Google Scholar] [CrossRef]
Number | Caesar–Lisflood Parameter | Value |
---|---|---|
1 | Grain-size features (m) | 0.0005, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128 |
2 | Grain-size distribution (total 1) | 0.20, 0.18, 0.12, 0.06, 0.03, 0.03, 0.1, 0.25 |
3 | Type of rainfall record | Hourly |
4 | Sediment transport equation | Einstein |
5 | Max erode limit (m) | 0.01 |
6 | Active layer thickness (m) | 0.1 |
7 | Lateral edge smoothing passes | 40 |
8 | Manning coefficient | 0.015–0.1 (derived by land-use map) |
9 | Soil creep/diffusion value | 0.0025 |
10 | Slope failure threshold | 40 |
11 | Vegetation critical stress | 100 |
Number | Land-Use Cover | Manning Coefficient |
---|---|---|
1 | Building and road | 0.015 |
2 | Agricultural areas | 0.035 |
3 | Sclerophyllous vegetation | 0.05 |
4 | Broad-leaved and mixed forests | 0.1 |
5 | Natural grasslands | 0.03 |
6 | Streams and water bodies | 0.04 |
Scenario | Period | Initial DEM | Final DEM | Description |
---|---|---|---|---|
1—Pre-dam removal | 0–20 yr | Pre-DR-T0 | Pre-Dr-T20 | Present-day landscape, analysis of erosion and sedimentation in the closed drainage system |
2—Post-dam removal | 0–20 yr | Post-DR-T0 | Post-Dr-T20 | Removal of dam and related geomorphic response to base-level fall |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioia, D.; Schiattarella, M. Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application. Appl. Sci. 2020, 10, 7697. https://doi.org/10.3390/app10217697
Gioia D, Schiattarella M. Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application. Applied Sciences. 2020; 10(21):7697. https://doi.org/10.3390/app10217697
Chicago/Turabian StyleGioia, Dario, and Marcello Schiattarella. 2020. "Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application" Applied Sciences 10, no. 21: 7697. https://doi.org/10.3390/app10217697
APA StyleGioia, D., & Schiattarella, M. (2020). Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application. Applied Sciences, 10(21), 7697. https://doi.org/10.3390/app10217697