Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest
<p>Sample non-contrast computed tomography (CT) slices with various intracranial hemorrhage (ICH) subtypes in the top row (<b>a</b>–<b>f</b>). Yellow arrows indicate the areas of hemorrhage. Complex cases are shown in the bottom row: combinations of multiple ICH subtypes simultaneously (<b>g</b>–<b>k</b>) or barely visible ICH symptoms (<b>l</b>).</p> "> Figure 2
<p>General scheme of a proposed hemorrhage detection model. The same architecture applies for each classification task (five ICH subtypes vs. healthy brain). The preprocessing is a common step for all five models.</p> "> Figure 3
<p>Illustration of the results of subsequent preprocessing stages in three sample CT slices (<b>a</b>–<b>c</b>). Columns (left to right): raw CT slice before region of interest (ROI) extraction, subdural-window image, brain-window image, bone-window image (first three before and next three after skull removal), a stack of three CT-windowed images (Branch #1), a stack of three neighboring slices (Branch #2).</p> "> Figure 4
<p>Illustration of the double-branch convolutional neural network (CNN) based on the ResNet-50 architecture (<b>a</b>). The feature extraction CNN is covered by a gray background. Dashed frames surround the full ResNet-50 structures. Rightmost blocks refer to the classification stage. Convolutional and identity blocks from ResNet-50 are presented in detail in (<b>b</b>,<b>c</b>), respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preprocessing
2.2.2. Double-Branch-CNN Feature Extraction
2.2.3. Classification
3. Results and Discussion
3.1. Evaluation Metrics
- accuracy:
- sensitivity (recall, true positive rate):
- specificity (true negative rate):
- F1 score (Dice index):
3.2. Experimental Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naidech, A.M. Intracranial Hemorrhage. Am. J. Respir. Crit. Care Med. 2011, 184, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Marcolini, E.; Stretz, C.; DeWitt, K.M. Intracranial Hemorrhage and Intracranial Hypertension. Emerg. Med. Clin. N. Am. 2019, 37, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Tominari, S.; Morita, A.; Ishibashi, T.; Yamazaki, T.; Takao, H.; Murayama, Y.; Sonobe, M.; Yonekura, M.; Saito, N.; Shiokawa, Y.; et al. Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in Japanese patients. Ann. Neurol. 2015, 77, 1050–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasugi, M.; Hossain, B.; Nii, M.; Kobashi, S. Relationship Between Cerebral Aneurysm Development and Cerebral Artery Shape. J. Adv. Comput. Intell. Intell. Inform. 2018, 22, 249–255. [Google Scholar] [CrossRef]
- Freeman, W.D.; Aguilar, M.I. Intracranial Hemorrhage: Diagnosis and Management. Neurol. Clin. 2012, 30, 211–240. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Arindra, A.; Setio, A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Hssayeni, M.D.; Croock, M.S.; Salman, A.D.; Al-khafaji, H.F.; Yahya, Z.A.; Ghoraani, B. Intracranial Hemorrhage Segmentation Using Deep Convolutional Model. Data 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Chabert, S.; Saavedra, C.; Salas, R. Convolutional neural networks for detection intracranial hemorrhage in CT images. In Proceedings of the 5th Congress on Robotics and Neuroscience, Valparaíso, Chile, 27–29 February 2020; Volume 2564. [Google Scholar]
- Arbabshirani, M.; Fornwalt, B.; Mongelluzzo, G.; Suever, J.; Geise, B.; Patel, A.; Moore, G. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Dig. Med. 2018, 1, 9. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Li, H.; Li, D.; Du, X.; Chen, Z.; Jia, F.; Hu, Q. Automatic detection of the existence of subarachnoid hemorrhage from clinical CT images. J. Med. Syst. 2012, 36, 1259–1270. [Google Scholar] [CrossRef]
- Nguyen, N.; Tran, D.; Nguyen, N.; Nguyen, H. A CNN-LSTM Architecture for Detection of Intracranial Hemorrhage on CT scans. Med. Imaging Deep Learn. 2020. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Gao, F.; Yin, Y.; Guo, D.; Zhao, P.; Lu, Y.; Wang, X.; Bai, J.; Cao, K.; Song, Q.; et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur. Radiol. 2019, 29, 6191–6201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, W.; Häne, C.; Mukherjee, P.; Malik, J.; Yuh, E.L. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22737–22745. [Google Scholar] [CrossRef] [Green Version]
- Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.; Venugopal, V.; Mahajan, V.; Rao, P.; Warier, P. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet 2018, 392, 2388–2396. [Google Scholar] [CrossRef]
- Anaya, E.; Beckinghausen, M. A Deep Learning Approach to Classifying Intracranial Hemorrhages. Available online: http://cs230.stanford.edu/projects_fall_2019/reports/26260039.pdf (accessed on 13 August 2020).
- Chang, P.; Kuoy, E.; Grinband, J.; Weinberg, B.; Thompson, M.; Homo, R.; Chen, J.; Abcede, H.; Shafie, M.; Sugrue, L.; et al. Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT. Am. J. Neuroradiol. 2018, 39, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, A.; Brattain, L.; Telfer, B.; Farris, C.; Scalera, J. Detecting Intracranial Hemorrhage with Deep Learning. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 583–587. [Google Scholar] [CrossRef]
- Toğaçar, M.; Cömert, Z.; Ergen, B.; Budak, Ü. Brain Hemorrhage Detection based on Heat Maps, Autoencoder and CNN Architecture. In Proceedings of the 2019 1st International Informatics and Software Engineering Conference (UBMYK), Ankara, Turkey, 6–7 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Danilov, G.; Kotik, K.; Negreeva, A.; Tsukanova, T.; Shifrin, M.; Zakharova, N.; Batalov, A.; Pronin, I.; Potapov, A. Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans. Stud. Health Technol. Inf. 2020, 272, 370–373. [Google Scholar] [CrossRef]
- Ker, J.; Singh, S.; Bai, Y.; Rao, J.; Lim, T.; Wang, L. Image Thresholding Improves 3-Dimensional Convolutional Neural Network Diagnosis of Different Acute Brain Hemorrhages on Computed Tomography Scans. Sensors 2019, 19, 2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawud, A.M.; Yurtkan, K.; Oztoprak, H. Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification Using Transfer Learning. Comput. Intell. Neurosci. 2019, 2019, 4629859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burduja, M.; Ionescu, R.T.; Verga, N. Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks. Sensors 2020, 20, 5611. [Google Scholar] [CrossRef]
- Cho, J.; Park, K.S.; Karki, M.; Lee, E.; Ko, S.; Kim, J.K.; Lee, D.; Choe, J.; Son, J.; Kim, M.; et al. Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models. J. Digit. Imaging 2019, 32, 450–461. [Google Scholar] [CrossRef]
- RSNA Intracranial Hemorrhage Detection. Available online: https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data (accessed on 5 August 2020).
- Flanders, A.; Prevedello, L.; Shih, G.; Halabi, S.; Kalpathy-Cramer, J.; Ball, R.; Mongan, J.; Stein, A.; Kitamura, F.; Lungren, M.; et al. Construction of a Machine Learning Dataset through Collaboration: The RSNA 2019 Brain CT Hemorrhage Challenge. Radiol. Artif. Intell. 2020, 2, e190211. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cervantes, J.; García-Lamont, F.; Rodríguez, L.; Lopez-Chau, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
Subdural (SDH) | Epidural (EDH) | Intraparen- Chymal (IPH) | Intraventri- Cular (IVH) | Subarachnoid (SAH) | None |
---|---|---|---|---|---|
24,912 | 1482 | 13,666 | 19,026 | 18,353 | 316,082 |
ICH Subtype | Feature-Extraction Branch | ACC (%) | TPR (%) | TNR (%) | F1 (%) |
---|---|---|---|---|---|
Subdural (SDH) | Branch #1 | 88.7 | 87.6 | 89.9 | 88.9 |
Branch #2 | 86.9 | 86.3 | 87.6 | 87.2 | |
Epidural (EDH) | Branch #1 | 58.6 | 56.2 | 61.0 | 57.5 |
Branch #2 | 66.4 | 47.7 | 85.1 | 58.6 | |
Intraparenchymal (IPH) | Branch #1 | 92.4 | 91.7 | 93.1 | 92.2 |
Branch #2 | 92.1 | 91.7 | 92.5 | 92.0 | |
Intraventricular (IVH) | Branch #1 | 95.5 | 94.9 | 96.0 | 95.1 |
Branch #2 | 95.7 | 96.0 | 95.4 | 95.6 | |
Subarachnoid (SAH) | Branch #1 | 88.0 | 87.3 | 88.8 | 87.8 |
Branch #2 | 88.2 | 91.0 | 85.4 | 88.7 |
ICH subtype | Classifier | ACC (%) | TPR (%) | TNR (%) | F1 (%) |
---|---|---|---|---|---|
Subdural (SDH) | SVM | 87.1 | 83.7 | 90.7 | 87.0 |
RF | 89.1 | 86.7 | 91.7 | 89.1 | |
Epidural (EDH) | SVM | 76.9 | 73.4 | 80.1 | 75.3 |
RF | 74.3 | 68.6 | 79.9 | 72.7 | |
Intraparenchymal (IPH) | SVM | 91.9 | 93.1 | 90.7 | 91.7 |
RF | 93.3 | 93.9 | 92.6 | 93.1 | |
Intraventricular (IVH) | SVM | 96.0 | 97.1 | 94.9 | 95.9 |
RF | 96.7 | 96.7 | 96.7 | 96.6 | |
Subarachnoid (SAH) | SVM | 86.8 | 86.1 | 87.6 | 87.6 |
RF | 89.7 | 90.0 | 89.4 | 89.9 |
Method | Dataset Size (No. of Slices) | SDH | EDH | IPH | IVH | SAH |
---|---|---|---|---|---|---|
Chang et al., 2018 [16] | 536,266 | {86.3} | 93.1 | — | 77.2 | |
Ye et al., 2019 [12] | 76,621 | 84.0 | 72.0 | 93.0 | 87.0 | 78.0 |
Danilov et al., 2020 [19] | 401 series × 32–64 slices | 54.1 | 62.3 | 81.3 | 82.2 | 61.8 |
Burduja et al., 2020 [22] | 870,301 slices | 71.8 | 48.9 | 83.8 | 88.4 | 73.2 |
Our approach (DB-RF) | 372,556 | 89.1 | 72.7 | 93.1 | 96.6 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sage, A.; Badura, P. Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest. Appl. Sci. 2020, 10, 7577. https://doi.org/10.3390/app10217577
Sage A, Badura P. Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest. Applied Sciences. 2020; 10(21):7577. https://doi.org/10.3390/app10217577
Chicago/Turabian StyleSage, Agata, and Pawel Badura. 2020. "Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest" Applied Sciences 10, no. 21: 7577. https://doi.org/10.3390/app10217577
APA StyleSage, A., & Badura, P. (2020). Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest. Applied Sciences, 10(21), 7577. https://doi.org/10.3390/app10217577