Changes in the Determinism of the Gait Dynamics with the Intervention of a Robotic Walker
<p>Photograph of (<b>a</b>) the robotic walker provided by Panasonic Co., Japan and (<b>b</b>) walking experiment.</p> "> Figure 2
<p>Data measurement process from the robotic walker and accelerometers.</p> "> Figure 3
<p>(<b>a</b>) Local scaling exponents (LSEs) for gaussian white noise with different embedding dimensions, <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>b</b>) LSEs for Henon attractor of length 10,000 with and without 1.5% additive gaussian white noise; the embedding dimensions are set as <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>; the solid and dotted lines correspond to the noise free data and data with additive noise, respectively.</p> "> Figure 4
<p>LSEs of the trunk acceleration data for one subject in the anterior–posterior (AP) direction with different embedding dimensions (<math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>10</mn> </mrow> </semantics></math>) in (<b>a</b>) condition 1 and (<b>b</b>) condition 3. LSEs of the trunk acceleration data for another subject in the AP direction in (<b>c</b>) condition 1 and (<b>d</b>) condition 3.</p> "> Figure 5
<p>Time histories of interaction forces in the AP direction during walker-assisted walking in (<b>a</b>) condition 2 and (<b>b</b>) condition 3.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Experimental Devices
2.2. Participants and Protocol
2.3. Data Analysis
2.3.1. Recurrence Quantification Analysis
2.3.2. Correlation Sum
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Gait Alternation with the Intervention of Robotic Walker
4.2. Selection of Threshold
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
AP | Anterior–posterior |
IMU | Inertial measurement unit |
LSE | Local scaling exponent |
ML | Mediolateral |
NW | Normal walking |
RQA | Recurrence quantification analysis |
RW | Rollator-assisted walking |
RWW | Robotic walker-assisted walking |
V | Vertical |
%DET | Percentage of determinism |
References
- Lim, C.D.; Wang, C.M.; Cheng, C.Y.; Chao, Y.; Tseng, S.H.; Fu, L.C. Sensory cues guided rehabilitation robotic walker realized by depth image-based gait analysis. IEEE Trans. Autom. Sci. Eng. 2015, 13, 171–180. [Google Scholar] [CrossRef]
- Mun, K.R.; Yeo, B.B.S.; Guo, Z.; Chung, S.C.; Yu, H. Resistance training using a novel robotic walker for over-ground gait rehabilitation: A preliminary study on healthy subjects. Med Biol. Eng. Comput. 2017, 55, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Lee, G.; Chong, N.Y. Development of JARoW-II active robotic walker reflecting pelvic movements while walking. Intell. Serv. Robot. 2017, 10, 95–107. [Google Scholar] [CrossRef]
- Paulo, J.; Peixoto, P.; Nunes, U.J. ISR-AIWALKER: Robotic walker for intuitive and safe mobility assistance and gait analysis. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 1110–1122. [Google Scholar] [CrossRef]
- Chalvatzaki, G.; Papageorgiou, X.S.; Maragos, P.; Tzafestas, C.S. User-Adaptive Human-Robot Formation Control for an Intelligent Robotic Walker using Augmented Human State Estimation and Pathological Gait Characterization. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6016–6022. [Google Scholar]
- Neto, A.F.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Ohnuma, T.; Chong, N.Y. Design and control of JAIST active robotic walker. Intell. Serv. Robot. 2010, 3, 125–135. [Google Scholar] [CrossRef]
- Alkjær, T.; Larsen, P.K.; Pedersen, G.; Nielsen, L.H.; Simonsen, E.B. Biomechanical analysis of rollator walking. Biomed. Eng. Online 2006, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.; Euhardy, R.; Carnes, M. A Comparison of a Two-Wheeled Walker and a Three-Wheeled Walker in a Geriatric Population. J. Am. Geriatr. Soc. 1992, 40, 208–212. [Google Scholar] [CrossRef]
- Suica, Z.; Romkes, J.; Tal, A.; Maguire, C. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects. J. Bodyw. Mov. Ther. 2016, 20, 65–73. [Google Scholar] [CrossRef]
- Frizera, A.; Elias, A.; Del-Ama, A.J.; Ceres, R.; Bastos, T.F. Characterization of spatio-temporal parameters of human gait assisted by a robotic walker. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1087–1091. [Google Scholar]
- Dingwell, J.B.; Cusumano, J.P. Nonlinear time series analysis of normal and pathological human walking. CHAOS 2000, 10, 848–863. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Kang, H.G.; Marin, L.C. The effects of sensory loss and walking speed on the orbital dynamic stability of human walking. J. Biomech. 2007, 40, 1723–1730. [Google Scholar] [CrossRef]
- Chinimilli, P.T.; Sorkhabadi, S.M.R.; Zhang, W. Assessment of Human Dynamic Gait Stability with a Lower Extremity Assistive Device. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leverick, G.; Szturm, T.; Wu, C.Q. Using entropy measures to characterize human locomotion. J. Biomech. Eng.-Trans. ASME 2014, 136, 121002. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Buzzi, U.H.; Stergiou, N.; Kurz, M.J.; Hageman, P.A.; Heidel, J. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 2003, 18, 435–443. [Google Scholar] [CrossRef]
- England, S.A.; Granata, K.P. The influence of gait speed on local dynamic stability of walking. Gait Posture 2003, 25, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Caronni, A.; Gervasoni, E.; Ferrarin, M.; Anastasi, D.; Brichetto, G.; Confalonieri, P.; Di Giovanni, R.; Prosperini, L.; Tacchino, A.; Solaro, C.; et al. Local dynamic stability of gait in people with early multiple sclerosis and no-to-mild neurological impairment. In IEEE Transactions on Neural Systems and Rehabilitation Engineering; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Fino, P.C. A preliminary study of longitudinal differences in local dynamic stability between recently concussed and healthy athletes during single and dual-task gait. J. Biomech. 2016, 49, 1983–1988. [Google Scholar] [CrossRef] [Green Version]
- Sloot, L.H.; Van Schooten, K.S.; Bruijn, S.M.; Kingma, H.; Pijnappels, M.; van Dieën, J.H. Sensitivity of local dynamic stability of over-ground walking to balance impairment due to galvanic vestibular stimulation. Ann. Biomed. Eng. 2011, 39, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Van Schooten, K.S.; Rispens, S.M.; Pijnappels, M.; Daffertshofer, A.; van Dieen, J.H. Assessing gait stability: The influence of state space reconstruction on inter-and intra-day reliability of local dynamic stability during over-ground walking. J. Biomech. 2013, 46, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Yokoya, M.; Yamada, Y. Proposal of walking assistant robot for the elderly which is intended for use in home [in Japanese]. IEICE Tech. Rep. 2016, 116, 25–30. [Google Scholar]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin, Germany, 1981; pp. 366–381. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci. Ser. A 1995, 16, 441–446. [Google Scholar]
- Riva, F.; Toebes, M.; Pijnappels, M.; Stagni, R.; Van Dieen, J. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture 2013, 38, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.; Balasubramaniam, R.; Turvey, M. Recurrence quantification analysis of postural fluctuations. Gait Posture 1999, 9, 65–78. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994, 76, 965–973. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Anal.; Cambridge University Press: Cambridge, UK, 2004; pp. 77–78. [Google Scholar]
- Kantz, H.; Schreiber, T. Dimension estimates and physiological data. CHAOS 1995, 5, 143–154. [Google Scholar] [CrossRef]
- Casaleggio, A.; Corana, A.; Ridella, S. Correlation dimension estimation from electrocardiograms. Chaos Solitons Fractals 1995, 5, 713–726. [Google Scholar] [CrossRef]
- Perc, M. The dynamics of human gait. Eur. J. Phys. 2005, 26, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbaz, Y.; Towhidkhah, F.; Jafari, A.; Gharibzadeh, S. Do the chaotic features of gait change in Parkinson’s disease? J. Theor. Biol. 2012, 307, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Pontzer, H.; Holloway, J.H.; Raichlen, D.A.; Lieberman, D.E. Control and function of arm swing in human walking and running. J. Exp. Biol. 2009, 212, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; van Dieën, J.H. The effects of arm swing on human gait stability. J. Exp. Biol. 2010, 213, 3945–3952. [Google Scholar] [CrossRef] [Green Version]
- Martelli, D.; Luo, L.; Kang, J.; Kang, U.J.; Fahn, S.; Agrawal, S.K. Adaptation of stability during perturbed walking in Parkinson’s disease. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Roeles, S.; Rowe, P.; Bruijn, S.; Childs, C.; Tarfali, G.; Steenbrink, F.; Pijnappels, M. Gait stability in response to platform, belt, and sensory perturbations in young and older adults. Med Biol. Eng. Comput. 2018, 56, 2325–2335. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Zbilut, J.P. Recurrence quantification analysis of nonlinear dynamical systems. Tutorials Contemp. Nonlinear Methods Behav. Sci. 2005, 94, 26–94. [Google Scholar]
- Zbilut, J.P.; Zaldivar-Comenges, J.M.; Strozzi, F. Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Rev. A 2002, 297, 173–181. [Google Scholar] [CrossRef]
- Riva, F.; Bisi, M.C.; Stagni, R. Gait variability and stability measures: Minimum number of strides and within-session reliability. Comput. Biol. Med. 2014, 50, 9–13. [Google Scholar] [CrossRef]
- Bisi, M.C.; Riva, F.; Stagni, R. Measures of gait stability: Performance on adults and toddlers at the beginning of independent walking. J. Neuroeng. Rehabil. 2014, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labini, F.S.; Meli, A.; Ivanenko, Y.P.; Tufarelli, D. Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture 2012, 35, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Afsar, O.; Tirnakli, U.; Marwan, N. Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease. Sci. Rep. 2018, 8, 9102. [Google Scholar] [CrossRef]
Parameter | Condition 1 NW | Condition 2 RW | Condition 3 RWW |
---|---|---|---|
Stride time s | 1.15 ± 0.02 | 1.15 ± 0.03 | 1.16 ± 0.02 |
Walking speed m·s−1 | 1.18 ± 0.04 * | 1.13 ± 0.06 * | 1.16 ± 0.04 |
Measures | Condition 1 NW | Condition 2 RW | Condition 3 RWW |
---|---|---|---|
%DET (AP) | 0.51 ± 0.02 * | 0.49 ± 0.03 | 0.46 ± 0.02 * |
%DET (ML) | 0.49 ± 0.08 | 0.46 ± 0.05 | 0.44 ± 0.07 |
%DET (V) | 0.68 ± 0.04 | 0.69 ± 0.03 | 0.68 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Yamada, Y. Changes in the Determinism of the Gait Dynamics with the Intervention of a Robotic Walker. Appl. Sci. 2020, 10, 4939. https://doi.org/10.3390/app10144939
Wan X, Yamada Y. Changes in the Determinism of the Gait Dynamics with the Intervention of a Robotic Walker. Applied Sciences. 2020; 10(14):4939. https://doi.org/10.3390/app10144939
Chicago/Turabian StyleWan, Xianglong, and Yoji Yamada. 2020. "Changes in the Determinism of the Gait Dynamics with the Intervention of a Robotic Walker" Applied Sciences 10, no. 14: 4939. https://doi.org/10.3390/app10144939
APA StyleWan, X., & Yamada, Y. (2020). Changes in the Determinism of the Gait Dynamics with the Intervention of a Robotic Walker. Applied Sciences, 10(14), 4939. https://doi.org/10.3390/app10144939