A Novel Fault Diagnosis Algorithm for Rolling Bearings Based on One-Dimensional Convolutional Neural Network and INPSO-SVM
<p>The framework of the proposed one-dimensional convolutional neural network improved novel particle swarm optimization support vector machine (1DCNN-INPSO-SVM) intelligent fault diagnosis method.</p> "> Figure 2
<p>Structure of the proposed 1DCNN model.</p> "> Figure 3
<p>INPSO-SVM flow chart.</p> "> Figure 4
<p>Convergence trends for INPSO versus other optimizers: (<b>a</b>) Sphere function, (<b>b</b>) Schwefel 2.22 function, (<b>c</b>) Schwefel 1.2 function, (<b>d</b>) Schwefel 2.21 function, (<b>e</b>) Rosenbrock function, (<b>f</b>) Rastrigin function, (<b>g</b>) Griewank function, (<b>h</b>) penalized function.</p> "> Figure 4 Cont.
<p>Convergence trends for INPSO versus other optimizers: (<b>a</b>) Sphere function, (<b>b</b>) Schwefel 2.22 function, (<b>c</b>) Schwefel 1.2 function, (<b>d</b>) Schwefel 2.21 function, (<b>e</b>) Rosenbrock function, (<b>f</b>) Rastrigin function, (<b>g</b>) Griewank function, (<b>h</b>) penalized function.</p> "> Figure 5
<p>The rolling bearing fault data acquisition experimental bench.</p> "> Figure 6
<p>The F1-measures of the bearing data using different methods.</p> "> Figure 7
<p>Scatter plots of the feature visualization by t-SNE: (<b>a</b>) feature distribution of raw data, (<b>b</b>) feature distribution of convolutional layer 1, (<b>c</b>) feature distribution of convolutional layer 2, (<b>d</b>) feature distribution of convolutional layer 3, (<b>e</b>) feature distribution of convolutional layer 4, and (<b>f</b>) feature distribution of the fully connected layer.</p> "> Figure 7 Cont.
<p>Scatter plots of the feature visualization by t-SNE: (<b>a</b>) feature distribution of raw data, (<b>b</b>) feature distribution of convolutional layer 1, (<b>c</b>) feature distribution of convolutional layer 2, (<b>d</b>) feature distribution of convolutional layer 3, (<b>e</b>) feature distribution of convolutional layer 4, and (<b>f</b>) feature distribution of the fully connected layer.</p> "> Figure 8
<p>Diagnosis accuracy of PSO-SVM algorithm.</p> "> Figure 9
<p>Diagnosis accuracy of INPSO-SVM algorithm.</p> "> Figure 10
<p>Experimental setup for the rolling bearing fault diagnosis.</p> "> Figure 11
<p>Bearing fault: (<b>a</b>) outer-race fault, (<b>b</b>) inner-race fault, and (<b>c</b>) roller element fault.</p> ">
Abstract
:1. Introduction
2. Fundamental Theories
2.1. Convolutional Neural Network
2.2. SVM Classifier Parameters Tuning
2.2.1. Support Vector Machine
2.2.2. Particle Swarm Optimization Algorithm
3. Fault Diagnosis Method Based on 1DCNN and INPSO-SVM
3.1. Overall Framework of the Proposed Method
3.2. Feature Extraction Based on 1DCNN
3.3. Fault Identification Based on INPSO-SVM Algorithm
3.3.1. An Improved New PSO Algorithm (INPSO)
Chaos Based Initialization
An Enhanced Particle Position Updating Strategy
3.3.2. Optimization of SVM Parameters Based on INPSO
4. Validation of the Proposed Method
4.1. INPSO Algorithm for Numerical Function Optimization
4.2. Case 1: Experiment Results on the CWRU Bearing Dataset and Performance Analysis
4.2.1. Data Collection
4.2.2. 1DCNN Feature Learning Verification and Analysis
4.2.3. Bearing Fault Diagnosis Experiment
Fault Diagnosis Results and Evaluation of the Proposed INPSO Optimization Method
Comparisons Among Different Fault Diagnosis Methods
4.3. Case 2: Experiment Results on the Jiang Nan University Bearing Dataset and Performance Analysis
4.3.1. Data Collection
4.3.2. Bearing Fault Diagnosis Experiment
Fault Diagnosis Results and Evaluation of the Proposed INPSO Optimization Method
Comparisons Among Different Fault Diagnosis Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Selesnick, I.; Cai, J.; Feng, Y.; Sui, X.; Chen, X. Nonconvex sparse regularization and convex optimization for bearing fault diagnosis. IEEE Trans. Ind. Electron. 2018, 65, 7332–7342. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.R.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Jiang, W.; Cheng, C.; Zhou, B.; Ma, G.; Yuan, Y. A Novel GAN-based Fault Diagnosis Approach for Imbalanced Industrial Time Series. arXiv 2019, arXiv:1904.00575. [Google Scholar]
- Lei, Y.; Jia, F.; Zhou, X.; Lin, J. A deep learning-based method for machinery health monitoring with big data. J. Mech. Eng. 2015, 51, 49–56. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, H.; Hong, X.; Song, H.; Liu, Q. Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018. [Google Scholar]
- Zhao, M.; Kang, M.; Tang, B.; Pecht, M. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [Google Scholar] [CrossRef]
- Bi, F.; Ma, T.; Wang, X. Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and EMD decomposition. Mech. Syst. Signal. Process. 2019, 117, 517–536. [Google Scholar] [CrossRef]
- Tong, Z.; Li, W.H.; Zhang, B.; Li, B. Bearing fault diagnosis based on domain adaptation using transferable features under different working conditions. Shock. Vib. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Chen, W.; Yi, H. Data-Driven detection and diagnosis of incipient faults in electrical drives of high-speed trains. IEEE Trans. Ind. Electron. 2019, 66, 4716–4725. [Google Scholar] [CrossRef]
- Pan, L.; Zhu, D.; Shen, S.; Song, A.; Shi, X.; Duan, S. Gear fault diagnosis method based on wavelet-packet independent component analysis and support vector machine with kernel function fusion. Adv. Mech. Eng. 2018, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Li, W.; Zhang, B.; Jiang, F.; Zhou, G. Online bearing fault diagnosis based on a novel multiple data streams transmission Scheme. IEEE Access 2019, 7, 66644–66654. [Google Scholar] [CrossRef]
- He, Z.; Cheng, J.L.; Yang, Y. Linear maximum margin tensor classification based on flexible convex hulls for fault diagnosis of rolling bearings. Knowl. Based Syst. 2019, 173, 62–73. [Google Scholar] [CrossRef]
- Imani, M.; Dougherty, E.R.; Braga-Neto, U. Boolean Kalman filter and smoother under model uncertainty. Automatica 2020, 111, 108609. [Google Scholar] [CrossRef]
- Imani, M.; Ghoreishi, S.F. Bayesian Optimization Objective-Based Experimental Design; American Control Conference (ACC): Denver, CO, USA, 2020. [Google Scholar]
- Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mech. Syst. Signal. Process. 2018, 102, 278–297. [Google Scholar] [CrossRef]
- Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion. Sensors 2019, 19, 1693. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yuan, L.; He, Y. Deep learning. Neurocomputing 2015, 521, 436–444. [Google Scholar]
- Hinton, G.E.; Salakhutdunov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yuan, L.; He, Y. Gearbox fault identification and classification with convolutional neural networks. Shock. Vib. 2016, 211, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, B.; Ma, H.; Chang, J.; Mao, G. Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 337, 331–345. [Google Scholar] [CrossRef]
- Fu, W.; Tan, J.; Zhang, X.; Chen, T.; Wang, K. Blind parameter identification of MAR model and mutation hybrid GWO-SCA optimized SVM for fault diagnosis of rotating machinery. Complexity 2019, 51, 1–17. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 2018, 313, 47–64. [Google Scholar] [CrossRef]
- Li, H.; He, C.; Malekian, R.; Li, Z. Weak defect identification for centrifugal compressor blade crack based on pressure sensors and genetic algorithm. Sensors 2018, 18, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, X.; Zhang, G.; Ma, S. Deep Learning. Proc. Int. J. Semant. Comput. 2016, 10, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Li, T.; Xu, L.; Liu, L.; Silva, C. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mechatron. 2018, 23, 101–110. [Google Scholar] [CrossRef]
- Zheng, J.; Pan, H.; Cheng, J. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Signal Process. 2017, 85, 746–759. [Google Scholar] [CrossRef]
- Vapnik, V.; Liu, L. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Teng, Z.; Lv, J.; Guo, L. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019, 23, 6617–6631. [Google Scholar] [CrossRef]
- Oliveira, J.; Oliveira, P.M.; Cunha, J.B.; Pinho, T. Chaos-based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator. Nonlinear Dyn. 2017, 90, 1353–1362. [Google Scholar] [CrossRef]
- Yuan, X.; Jin, P.; Zhou, G. An improved QPSO algorithm integrating social learning with levy flights. Syst. Sci. Control. Eng. 2019, 6, 362–373. [Google Scholar]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y. Antlion optimization algorithm integrating with Levy flight and golden sine. Appli. Res. Comput. 2018, 37, 1–6. [Google Scholar]
- Loparo, K. Case Western Reserve University Bearing Data Center, Cleveland, OH, USA, Tech. Rep. 2012. Available online: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file (accessed on 28 September 2018).
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Li, K. School of Mechanical Engineering, Jiangnan University. 2019. Available online: http://mad-net.org:8765/explore.html?t=0.5831516555847212 (accessed on 12 September 2019).
No. | Layer Type | Kernel Size | Strides | Kernel Number | Output Size (Width × Depth) |
---|---|---|---|---|---|
1 | Conv1 | 64 × 1 | 16 × 1 | 16 | 128 × 16 |
2 | Pool1 | 2 × 1 | 2 × 1 | 16 | 64 × 16 |
3 | Conv2 | 3 × 1 | 1 × 1 | 32 | 64 × 32 |
4 | Pool2 | 2 × 1 | 2 × 1 | 32 | 32 × 32 |
5 | Conv3 | 3 × 1 | 1 × 1 | 64 | 32 × 64 |
6 | Pool3 | 2 × 1 | 2 × 1 | 64 | 16 × 64 |
7 | Conv4 | 3 × 1 | 1 × 1 | 64 | 16 × 64 |
8 | Pool4 | 2 × 1 | 2 × 1 | 64 | 8 × 64 |
9 | F | 300 | 1 | 300 × 1 | |
10 | F | 10 | 1 | 10 × 1 |
Function Expression | Name | d | Search Interval | |
---|---|---|---|---|
Sphere | 30 | [−100, 100]n | 0 | |
Schwefel 2.22 | 30 | [−10, 10]n | 0 | |
Schwefel 1.2 | 30 | [−100, 100]n | 0 | |
Schwefel 2.21 | 30 | [−100, 100]n | 0 | |
Rosenbrock | 30 | [−30, 30]n | 0 | |
Rastrigin | 30 | [−5.12, 5.12]n | 0 | |
Griewank | 30 | [−50, 50]n | 0 | |
Penalized | 30 | [−50, 50]n | 0 |
Function | Indicators | Algorithms | |||
---|---|---|---|---|---|
SCA | CS | PSO | INPSO | ||
Mean | 38.9414 | 11.5363 | 1.26 × 10−4 | 5.97 × 10−63 | |
S.D. | 72.5009 | 3.9837 | 0.0002 | 3.27 × 10−62 | |
Best | 0.0866 | 5.7200 | 5.61 × 10−6 | 1.49 × 10−84 | |
Mean | 0.0364 | 5.9192 | 7.0456 | 1.34 × 10−54 | |
S.D. | 0.0508 | 1.9614 | 9.5127 | 6.91 × 10−54 | |
Best | 0.0012 | 3.2551 | 0.0084 | 5.94 × 10−67 | |
Mean | 8023.4889 | 2475.35 | 82.4309 | 0.0010 | |
S.D. | 4265.1060 | 607.633 | 40.6034 | 0.0038 | |
Best | 867.6201 | 1310.4708 | 91.9355 | 2.58 × 10−6 | |
Mean | 36.2101 | 11.1260 | 1.0780 | 7.63 × 10−9 | |
S.D. | 10.7971 | 1.7631 | 0.2270 | 4.12 × 10−8 | |
Best | 17.3797 | 7.7900 | 0.5766 | 3.04 × 10−15 | |
Mean | 30779.15 | 623.5256 | 177.5357 | 26.5895 | |
S.D. | 44845.7 | 354.2101 | 551.9438 | 0.1765 | |
Best | 17.3797 | 242.6105 | 21.6433 | 26.1215 | |
Mean | 36.2101 | 100.6785 | 102.8620 | 13.4779 | |
S.D. | 38.1728 | 14.0177 | 27.3967 | 24.7228 | |
Best | 0.0088 | 77.2391 | 47.6199 | 0 | |
Mean | 0.9152 | 1.1088 | 0.0080 | 0.0041 | |
S.D. | 0.3664 | 0.0389 | 0.0088 | 0.0226 | |
Best | 0.0971 | 1.0470 | 8.27 × 10−7 | 0 | |
Mean | 100,099 | 3.8871 | 0.0622 | 0.0231 | |
S.D. | 417,103 | 0.8850 | 0.0843 | 0.0818 | |
Best | 0.0689 | 1.9252 | 8.91 × 10−7 | 3.44 × 10−7 |
Bearing Condition | Methods | |||||||
---|---|---|---|---|---|---|---|---|
1DCNN-SVM | WPT-SVM | CAE-SVM | LSTM-SVM | |||||
P(%) | R(%) | P(%) | R(%) | P(%) | R(%) | P(%) | R(%) | |
Condition 0 | 100 | 100 | 96 | 80 | 85 | 97 | 100 | 100 |
Condition 1 | 86 | 80 | 74 | 67 | 70 | 87 | 66 | 77 |
Condition 2 | 97 | 100 | 81 | 83 | 100 | 100 | 100 | 100 |
Condition 3 | 96 | 90 | 69 | 83 | 88 | 93 | 59 | 100 |
Condition 4 | 100 | 83 | 91 | 70 | 97 | 97 | 86 | 60 |
Condition 5 | 94 | 100 | 100 | 97 | 94 | 97 | 100 | 100 |
Condition 6 | 91 | 97 | 52 | 43 | 100 | 67 | 100 | 100 |
Condition 7 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Condition 8 | 86 | 100 | 100 | 100 | 97 | 97 | 69 | 30 |
Condition 9 | 100 | 97 | 45 | 67 | 96 | 83 | 100 | 100 |
Average value | 95 | 94.7 | 80.8 | 79 | 92.7 | 91.8 | 88 | 86.7 |
Run Number | Accuracy | ||
---|---|---|---|
SVM | PSO-SVM | INPSO-SVM | |
1 | 94.67 | 75.33 | 95.33 |
2 | 93.67 | 97 | 97 |
3 | 91 | 75.33 | 97.33 |
4 | 95.33 | 97.33 | 97 |
5 | 94.67 | 97.33 | 97 |
6 | 94.67 | 97.33 | 96.33 |
7 | 94 | 96.33 | 97.67 |
8 | 91.67 | 97.33 | 97 |
9 | 94.67 | 75.33 | 97.33 |
10 | 91.67 | 97 | 97.67 |
Data | Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1DCNN-INPSO-SVM | 92.33 | 92 | 92.33 | 92.33 | 92 | 92 | 92.33 | 92 | 92.33 | 92.33 | 92.198 |
WPT-INPSO-SVM | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
B | 1DCNN-INPSO-SVM | 93.33 | 93.33 | 92.67 | 93.33 | 93.33 | 92.67 | 93.33 | 91 | 92.67 | 93.67 | 92.933 |
WPT-INPSO-SVM | 83.67 | 83.67 | 84 | 83.67 | 83.67 | 83.67 | 83.67 | 83.67 | 83.67 | 83.67 | 83.703 | |
C | 1DCNN-INPSO-SVM | 93.33 | 93.67 | 93.67 | 93.33 | 94 | 93.67 | 93.67 | 94 | 93.67 | 93.67 | 93.668 |
WPT-INPSO-SVM | 85 | 84.67 | 85 | 85 | 85 | 84.67 | 84.67 | 85 | 84.67 | 85 | 84.868 | |
D | 1DCNN-INPSO-SVM | 94.33 | 93 | 94.33 | 94.33 | 93.67 | 91.67 | 94.33 | 92 | 91 | 91.33 | 92.999 |
WPT-INPSO-SVM | 85 | 85.33 | 85.33 | 85 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.264 | |
E | 1DCNN-INPSO-SVM | 95.67 | 91.33 | 96 | 96 | 95.33 | 95.33 | 95.33 | 95.33 | 95.33 | 96 | 95.165 |
WPT-INPSO-SVM | 83 | 82.67 | 83 | 83 | 83 | 83 | 82.67 | 83 | 83 | 83 | 82.934 | |
F | 1DCNN-INPSO-SVM | 90 | 88.67 | 89.33 | 90 | 89.67 | 90.33 | 90 | 90 | 90.33 | 90.33 | 89.866 |
WPT-INPSO-SVM | 83.67 | 83.67 | 83.67 | 83.33 | 83.33 | 83.67 | 83.67 | 83.67 | 83.33 | 83.67 | 83.568 | |
G | 1DCNN-INPSO-SVM | 97.67 | 97.67 | 97.33 | 97.67 | 98 | 97.33 | 98 | 97.67 | 97.67 | 97.67 | 97.668 |
WPT-INPSO-SVM | 82.33 | 82.33 | 82.67 | 82 | 82.33 | 82.33 | 82.67 | 83 | 83 | 83 | 82.566 | |
H | 1DCNN-INPSO-SVM | 92.33 | 92.33 | 92.33 | 91.67 | 92.33 | 92.33 | 92.33 | 92.33 | 92.33 | 92.33 | 92.264 |
WPT-INPSO-SVM | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | |
I | 1DCNN-INPSO-SVM | 95 | 95 | 95 | 95.67 | 95.33 | 96 | 95.33 | 96 | 95 | 95.33 | 95.366 |
WPT-INPSO-SVM | 83.33 | 88 | 83.33 | 83.33 | 83.33 | 83.33 | 83.33 | 83.33 | 83.33 | 83.33 | 83.797 | |
J | 1DCNN-INPSO-SVM | 92.67 | 92.67 | 92 | 92.67 | 92.67 | 92.33 | 92.33 | 92.67 | 92.67 | 92.33 | 92.501 |
WPT-INPSO-SVM | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 | 79.67 |
Run Number | Accuracy | ||
---|---|---|---|
SVM | PSO-SVM | INPSO-SVM | |
1 | 92 | 93.17 | 94.17 |
2 | 93.33 | 93.17 | 94.17 |
3 | 92 | 93.33 | 94.17 |
4 | 91.5 | 93.33 | 94.17 |
5 | 93.33 | 93.17 | 94.17 |
6 | 90.33 | 93.17 | 94.17 |
7 | 91.16 | 93.33 | 94.33 |
8 | 92.66 | 93.5 | 94.17 |
9 | 92.16 | 93.5 | 94.17 |
10 | 91.33 | 93.33 | 94.17 |
Data | Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1DCNN-INPSO-SVM | 94.17 | 94.17 | 94.17 | 94.17 | 94.17 | 94.17 | 94.33 | 94.17 | 94.17 | 94.17 | 94.186 |
WPT-INPSO-SVM | 84 | 84 | 84 | 84.17 | 83.17 | 84 | 83.83 | 84.17 | 84 | 84 | 83.934 | |
B | 1DCNN-INPSO-SVM | 97.17 | 97.17 | 97.17 | 97.17 | 97.17 | 97.17 | 97.17 | 97.33 | 97.17 | 97.17 | 97.186 |
WPT-INPSO-SVM | 86.83 | 87.17 | 86.83 | 86.83 | 86.83 | 87 | 86.83 | 86.83 | 86.83 | 87 | 86.898 | |
C | 1DCNN-INPSO-SVM | 94.33 | 94.33 | 94.33 | 94.33 | 94.33 | 94.33 | 93.5 | 94.33 | 94.33 | 94.33 | 94.247 |
WPT-INPSO-SVM | 85 | 84.67 | 84.67 | 84.67 | 85 | 84.67 | 84.67 | 84.67 | 84.67 | 84.67 | 84.736 | |
D | 1DCNN-INPSO-SVM | 90.33 | 90.33 | 90.5 | 90.33 | 90.33 | 90.33 | 90.5 | 90.5 | 90.33 | 90.33 | 90.381 |
WPT-INPSO-SVM | 86.33 | 86.33 | 86.33 | 86.33 | 86.5 | 86.5 | 86.33 | 86.17 | 86.67 | 86.33 | 86.382 | |
E | 1DCNN-INPSO-SVM | 93.33 | 93 | 93 | 93.33 | 93.33 | 93.33 | 93.33 | 93.33 | 93.33 | 92.83 | 93.214 |
WPT-INPSO-SVM | 85.67 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.33 | 85.364 | |
F | 1DCNN-INPSO-SVM | 94.67 | 94.67 | 95.33 | 94.83 | 94.83 | 94.83 | 94.83 | 94.83 | 95 | 94.67 | 94.849 |
WPT-INPSO-SVM | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | 84.17 | |
G | 1DCNN-INPSO-SVM | 95.5 | 95.5 | 95.5 | 95.67 | 95.5 | 95.5 | 95.5 | 95.5 | 95.5 | 95.5 | 95.517 |
WPT-INPSO-SVM | 83.67 | 83.67 | 83.67 | 83.17 | 83.67 | 83.67 | 83.67 | 83.67 | 83.67 | 82.67 | 83.52 | |
H | 1DCNN-INPSO-SVM | 94.5 | 94.5 | 94.5 | 94.5 | 94.5 | 94.5 | 94.5 | 94.5 | 94.5 | 94.33 | 94.483 |
WPT-INPSO-SVM | 84.33 | 84.33 | 84.33 | 84.33 | 84.33 | 84.33 | 84.33 | 84.17 | 84.17 | 84.33 | 84.298 | |
I | 1DCNN-INPSO-SVM | 93.5 | 93.5 | 93.5 | 93.5 | 93.67 | 93.5 | 93.67 | 93.67 | 93.5 | 93.67 | 93.568 |
WPT-INPSO-SVM | 85.67 | 85.67 | 85.67 | 85.5 | 85.67 | 85.67 | 85.67 | 85.67 | 85.5 | 85.67 | 85.636 | |
J | 1DCNN-INPSO-SVM | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
WPT-INPSO-SVM | 83.5 | 83.5 | 83.5 | 83.5 | 83.5 | 83.5 | 83.5 | 83.5 | 83.5 | 83.33 | 83.483 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Yuan, X.; Zhang, C.; Song, Y.; Xu, Q. A Novel Fault Diagnosis Algorithm for Rolling Bearings Based on One-Dimensional Convolutional Neural Network and INPSO-SVM. Appl. Sci. 2020, 10, 4303. https://doi.org/10.3390/app10124303
Shao Y, Yuan X, Zhang C, Song Y, Xu Q. A Novel Fault Diagnosis Algorithm for Rolling Bearings Based on One-Dimensional Convolutional Neural Network and INPSO-SVM. Applied Sciences. 2020; 10(12):4303. https://doi.org/10.3390/app10124303
Chicago/Turabian StyleShao, Yang, Xianfeng Yuan, Chengjin Zhang, Yong Song, and Qingyang Xu. 2020. "A Novel Fault Diagnosis Algorithm for Rolling Bearings Based on One-Dimensional Convolutional Neural Network and INPSO-SVM" Applied Sciences 10, no. 12: 4303. https://doi.org/10.3390/app10124303
APA StyleShao, Y., Yuan, X., Zhang, C., Song, Y., & Xu, Q. (2020). A Novel Fault Diagnosis Algorithm for Rolling Bearings Based on One-Dimensional Convolutional Neural Network and INPSO-SVM. Applied Sciences, 10(12), 4303. https://doi.org/10.3390/app10124303