Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price
<p>Monthly variation of iron ore price. * Description: China import Iron Ore Fines 62% FE spot (CFR Tianjin port).</p> "> Figure 2
<p>Ten-fold cross-validation.</p> "> Figure 3
<p>Residual plots of (ACF) and (PACF) by using ARIMA (0-1-1).</p> "> Figure 4
<p>Regression tress developed for iron ore price.</p> "> Figure 5
<p>Scatter plot of the predicted vs. actual iron ore price through the use of classification and regression tree (CART) model.</p> "> Figure 6
<p>The concept of the ε-insensitive loss function.</p> "> Figure 7
<p>Scatter plot of the predicted vs. actual iron ore price developing support vector regression (SVR) model.</p> "> Figure 8
<p>Structure of a simple neural cell with leading nutrition.</p> "> Figure 9
<p>Scatter plot of the predicted vs. actual iron ore price developing artificial neural network (ANN) model.</p> "> Figure 10
<p>Comparison between the measured and the predicted by ARIMA model for test stage.</p> "> Figure 11
<p>Comparison between the measured and the predicted by CART model for test stage.</p> "> Figure 12
<p>Comparison between the measured and the predicted by ANN model for test stage.</p> "> Figure 13
<p>Comparison between the measured and the predicted by SVR model for test stage.</p> "> Figure 14
<p>Comparison between the measured and the predicted by group method of data handling (GMDH) model for test stage.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Input and Output Parameters
4. Applied Methods
4.1. Autoregressive Integrated Moving Average (ARIMA)
4.2. Classification and Regression Tree (CART)
4.3. Support Vector Regression
4.4. Artificial Neural Networks
4.5. Group Method of Data Handling
5. Model Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pustov, A.; Malanichev, A.; Khobotilov, I. Long-Term iron ore price modeling: Marginal costs vs. incentive price. Resour. Policy 2013, 38, 558–567. [Google Scholar] [CrossRef]
- Ewees, A.A.; Elaziz, M.A.; Alameer, Z.; Ye, H.; Jianhua, Z. Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resour. Policy 2020, 65, 101555. [Google Scholar] [CrossRef]
- Su, C.-W.; Wang, K.-H.; Chang, H.-L.; Dumitrescu–Peculea, A. Do iron ore price bubbles occur? Resour. Policy 2017, 53, 340–346. [Google Scholar] [CrossRef]
- Nakajima, K.; Daigo, I.; Nansai, K.; Matsubae, K.; Takayanagi, W.; Tomita, M.; Matsuno, Y. Global distribution of material consumption: Nickel, copper, and iron. Resour. Conserv. Recycl. 2018, 133, 369–374. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Ma, L.; Li, Z.; Shen, X. A system analysis of the development strategy of iron ore in China. Resour. Policy 2016, 48, 32–40. [Google Scholar] [CrossRef]
- Sun, S.; Anwar, S. R&D activities and FDI in China’s iron ore mining industry. Econ. Anal. Policy 2019, 62, 47–56. [Google Scholar]
- Ma, W.; Zhu, X.; Wang, M. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resour. Policy 2013, 38, 613–620. [Google Scholar] [CrossRef]
- Wårell, L. An analysis of iron ore prices during the latest commodity boom. Miner. Econ. 2018, 31, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Lundmark, R.; Nilsson, M. What do economic simulations tell us? Recent mergers in the iron ore industry. Resour. Policy 2003, 29, 111–118. [Google Scholar] [CrossRef]
- Malanichev, A.G.; Vorobyev, P. V Forecast of global steel prices. Stud. Russ. Econ. Dev. 2011, 22, 304. [Google Scholar] [CrossRef]
- Parisi, A.; Parisi, F.; Díaz, D. Forecasting gold price changes: Rolling and recursive neural network models. J. Multinatl. Financ. Manag. 2008, 18, 477–487. [Google Scholar] [CrossRef]
- Lineesh, M.C.; Minu, K.K.; John, C.J. Analysis of nonstationary nonlinear economic time series of gold price: A comparative study. Int. Math. Forum 2010, 5, 1673–1683. [Google Scholar]
- Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M. Developing GEP tree-Based, neuro-Swarm, and whale optimization models for evaluation of bearing capacity of concrete-Filled steel tube columns. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Apostolopoulour, M.; Douvika, M.G.; Kanellopoulos, I.N.; Moropoulou, A.; Asteris, P.G. Prediction of Compressive Strength of Mortars using Artificial Neural Networks. In Proceedings of the Proceedings of the 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, 10–13 October 2018; pp. 10–13. [Google Scholar]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-Based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. 2019. [Google Scholar] [CrossRef]
- Hajihassani, M.; Abdullah, S.S.; Asteris, P.G.; Armaghani, D.J. A Gene Expression Programming Model for Predicting Tunnel Convergence. Appl. Sci. 2019, 9, 4650. [Google Scholar] [CrossRef] [Green Version]
- Psyllaki, P.; Stamatiou, K.; Iliadis, I.; Mourlas, A.; Asteris, P.; Vaxevanidis, N. Surface treatment of tool steels against galling failure. In Proceedings of the MATEC Web of Conferences, Cape Town, South Africa, 24–26 September 2018; EDP Sciences, 2018; Volume 188, p. 4024. [Google Scholar]
- Xu, H.; Zhou, J.G.; Asteris, P.; Jahed Armaghani, D.; Tahir, M.M. Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate. Appl. Sci. 2019, 9, 3715. [Google Scholar] [CrossRef] [Green Version]
- Harandizadeh, H.; Armaghani, D.J.; Khari, M. A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Yang, H.; Koopialipoor, M.; Armaghani, D.J.; Gordan, B.; Khorami, M.; Tahir, M.M. Intelligent design of retaining wall structures under dynamic conditions. STEEL Compos. Struct. 2019, 31, 629–640. [Google Scholar]
- Koopialipoor, M.; Nikouei, S.S.; Marto, A.; Fahimifar, A.; Armaghani, D.J.; Mohamad, E.T. Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bull. Eng. Geol. Environ. 2018, 78, 3799–3813. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Noorbakhsh, A.; Noroozi Ghaleini, E.; Jahed Armaghani, D.; Yagiz, S. A new approach for estimation of rock brittleness based on non-Destructive tests. Nondestruct. Test. Eval. 2019, 34, 1–22. [Google Scholar] [CrossRef]
- Achireko, P.K.; Ansong, G. Stochastic model of mineral prices incorporating neural network and regression analysis. Min. Technol. 2000, 109, 49–54. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Jahed Armaghani, D.; Bakhshandeh Amnieh, H.; Koopialipoor, M.; Arab, H. A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System. Geotech. Geol. Eng. 2018, 36, 2247–2260. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Murlidhar, B.R.; Hedayat, A.; Armaghani, D.J.; Gordan, B.; Mohamad, E.T. The use of new intelligent techniques in designing retaining walls. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, J.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Yong, W.; Zhou, J.; Armaghani, D.J.; Tahir, M.M.; Tarinejad, R.; Pham, B.T.; Van Huynh, V. A new hybrid simulated annealing-Based genetic programming technique to predict the ultimate bearing capacity of piles. Eng. Comput. 2020. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Jahed Armaghani, D.; Koopialipoor, M.; Hedayat, A.; Abdullah, A.; Yahya, K. Practical Risk Assessment of Ground Vibrations Resulting from Blasting, Using Gene Expression Programming and Monte Carlo Simulation Techniques. Appl. Sci. 2020, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Guo, H.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 2020. [Google Scholar] [CrossRef]
- Han, H.; Armaghani, D.J.; Tarinejad, R.; Zhou, J.; Tahir, M.M. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites. Nat. Resour. Res. 2020. [Google Scholar] [CrossRef]
- Zhou, J.; Bejarbaneh, B.Y.; Armaghani, D.J.; Tahir, M.M. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques. Bull. Eng. Geol. Environ. 2019. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Du, K.; Qiu, X.; Li, X.; Mitri, H.S. Feasibility of random-Forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int. J. Geomech. 2016, 17, 4016129. [Google Scholar] [CrossRef]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Li, X.; Mitri, H.S. Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards 2015, 79, 291–316. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Evaluation method of rockburst: State-Of-The-Art literature review. Tunn. Undergr. Space Technol. 2018, 81, 632–659. [Google Scholar] [CrossRef]
- Jian, Z.; Shi, X.; Huang, R.; Qiu, X.; Chong, C. Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-Prone mines. Trans. Nonferrous Met. Soc. China 2016, 26, 1938–1945. [Google Scholar]
- Zhou, J.; Li, X.; Shi, X. Long-Term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Shi, X.; Jian, Z.; Wu, B.; Huang, D.; Wei, W.E.I. Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Trans. Nonferrous Met. Soc. China 2012, 22, 432–441. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Karekal, S. Effect of Water Content on Argillization of Mudstone During the Tunnelling process. Rock Mech. Rock Eng. 2019. [Google Scholar] [CrossRef]
- Yang, H.Q.; Li, Z.; Jie, T.Q.; Zhang, Z.Q. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn. Undergr. Space Technol. 2018, 81, 112–120. [Google Scholar] [CrossRef]
- Yang, H.Q.; Zeng, Y.Y.; Lan, Y.F.; Zhou, X.P. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. Int. J. Rock Mech. Min. Sci. 2014, 69, 59–66. [Google Scholar] [CrossRef]
- Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models. Appl. Sci. 2019, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Plevris, V. Anisotropic masonry failure criterion using artificial neural networks. Neural Comput. Appl. 2017, 28, 2207–2229. [Google Scholar] [CrossRef]
- Asteris, P.; Roussis, P.; Douvika, M. Feed-Forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 2017, 17, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asteris, P.G.; Ashrafian, A.; Rezaie-Balf, M. Prediction of the compressive strength of self-Compacting concrete using surrogate models. Comput. Concr. 2019, 24, 137–150. [Google Scholar]
- Armaghani, D.J.; Hatzigeorgiou, G.D.; Karamani, C.; Skentou, A.; Zoumpoulaki, I.; Asteris, P.G. Soft computing-Based techniques for concrete beams shear strength. Procedia Struct. Integr. 2019, 17, 924–933. [Google Scholar] [CrossRef]
- Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M. Prediction of Surface Treatment Effects on the Tribological Performance of Tool Steels Using Artificial Neural Networks. Appl. Sci. 2019, 9, 2788. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-T.; Lin, J.-Y.; Sun, Y.-G.; Chau, K. Long-Term prediction of discharges in Manwan Hydropower using adaptive-Network-Based fuzzy inference systems models. In The International Conference on Natural Computation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1152–1161. [Google Scholar]
- Najafi, B.; Faizollahzadeh Ardabili, S.; Shamshirband, S.; Chau, K.; Rabczuk, T. Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Eng. Appl. Comput. Fluid Mech. 2018, 12, 611–624. [Google Scholar] [CrossRef]
- Alavi Nezhad Khalil Abad, S.V.; Yilmaz, M.; Jahed Armaghani, D.; Tugrul, A. Prediction of the durability of limestone aggregates using computational techniques. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef] [Green Version]
- Armaghani, D.J.; Safari, V.; Fahimifar, A.; Monjezi, M.; Mohammadi, M.A. Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Comput. Appl. 2018, 30, 3523–3532. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Sohaie, H. Bearing capacity of precast thin-Walled foundation in sand. Proc. Inst. Civil Eng. Eng. 2015, 168, 539–550. [Google Scholar] [CrossRef]
- Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A. Application of artificial neural networks for the prediction of the compressive strength of cement-Based mortars. Comput. Concr. 2019, 24, 329–345. [Google Scholar]
- Chahnasir, E.S.; Zandi, Y.; Shariati, M.; Dehghani, E.; Toghroli, A.; Mohamed, E.T.; Shariati, A.; Safa, M.; Wakil, K.; Khorami, M. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. SMART Struct. Syst. 2018, 22, 413–424. [Google Scholar]
- Toghroli, A.; Suhatril, M.; Ibrahim, Z.; Safa, M.; Shariati, M.; Shamshirband, S. Potential of soft computing approach for evaluating the factors affecting the capacity of steel–Concrete composite beam. J. Intell. Manuf. 2018, 29, 1793–1801. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Armaghani, D.J.; Bakolas, A.; Douvika, M.G.; Moropoulou, A.; Asteris, P.G. Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Struct. Integr. 2019, 17, 914–923. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Noorani, S.A.; Saad, R.; Alvi, S.V.; Abad, N.K. Prediction of flyrock in boulder blasting using artificial neural network. Electron. J. Geotech. Eng. 2012, 17, 2585–2595. [Google Scholar]
- Tonnizam Mohamad, E.; Hajihassani, M.; Jahed Armaghani, D.; Marto, A. Simulation of blasting-Induced air overpressure by means of Artificial Neural Networks. Int. Rev. Model. Simul. 2012, 5, 2501–2506. [Google Scholar]
- Mohamad, E.T.; Armaghani, D.J.; Hajihassani, M.; Faizi, K.; Marto, A. A simulation approach to predict blasting-induced flyrock and size of thrown rocks. Electron. J. Geotech. Eng. 2013, 18, 365–374. [Google Scholar]
- Mohamad, E.T.; Noorani, S.A.; Armaghani, D.J.; Saad, R. Simulation of blasting induced ground vibration by using artificial neural network. Electron. J. Geotech. Eng. 2012, 17, 2571–2584. [Google Scholar]
- Khandelwal, M.; Armaghani, D.J.; Faradonbeh, R.S.; Yellishetty, M.; Majid, M.Z.A.; Monjezi, M. Classification and regression tree technique in estimating peak particle velocity caused by blasting. Eng. Comput. 2017, 33, 45–53. [Google Scholar] [CrossRef]
- Khandelwal, M.; Mahdiyar, A.; Armaghani, D.J.; Singh, T.N.; Fahimifar, A.; Faradonbeh, R.S. An expert system based on hybrid ICA-ANN technique to estimate macerals contents of Indian coals. Environ. Earth Sci. 2017, 76, 399. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Nguyen, Q.-L. A novel method for asphalt pavement crack classification based on image processing and machine learning. Eng. Comput. 2019, 35, 487–498. [Google Scholar] [CrossRef]
- Ellis, K.; Godbole, S.; Marshall, S.; Lanckriet, G.; Staudenmayer, J.; Kerr, J. Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms. Front. Public Health 2014, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, S.; Topal, E. An overview of global gold market and gold price forecasting. Resour. Policy 2010, 35, 178–189. [Google Scholar] [CrossRef]
- Escribano, A.; Granger, C.W.J. Investigating the relationship between gold and silver prices. J. Forecast. 1998, 17, 81–107. [Google Scholar] [CrossRef] [Green Version]
- Kearney, A.A.; Lombra, R.E. Gold and platinum: Toward solving the price puzzle. Q. Rev. Econ. Financ. 2009, 49, 884–892. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, C.; Guo, J.; Ding, Z. ARIMA forecasting of China’s coal consumption, price and investment by 2030. Energy Sources Part B Econ. Plan. Policy 2018, 13, 190–195. [Google Scholar] [CrossRef]
- Dooley, G.; Lenihan, H. An assessment of time series methods in metal price forecasting. Resour. Policy 2005, 30, 208–217. [Google Scholar] [CrossRef]
- Farhath, Z.A.; Arputhamary, B.; Arockiam, L. A Survey on ARIMA Forecasting Using Time Series Model. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 104–109. [Google Scholar]
- Pai, P.-F.; Lin, C.-S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33, 497–505. [Google Scholar] [CrossRef]
- Alameer, Z.; Elaziz, M.A.; Ewees, A.A.; Ye, H.; Jianhua, Z. Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Nat. Resour. Res. 2019, 28, 1385–1401. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-Time applications in different energy systems. Sustain. Cities Soc. 2019, 102010. [Google Scholar] [CrossRef]
- Matyjaszek, M.; Fernández, P.R.; Krzemień, A.; Wodarski, K.; Valverde, G.F. Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory. Resour. Policy 2019, 61, 283–292. [Google Scholar] [CrossRef]
- Fischer, J.A.; Pohl, P.; Ratz, D. A machine learning approach to univariate time series forecasting of quarterly earnings. Rev. Quant. Financ. Account. 2020, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zou, Y.; He, K.; Zhu, B. Carbon futures price forecasting based with ARIMA-CNN-LSTM model. Procedia Comput. Sci. 2019, 162, 33–38. [Google Scholar] [CrossRef]
- García, D.; Kristjanpoller, W. An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models. Appl. Soft Comput. 2019, 74, 466–478. [Google Scholar] [CrossRef]
- Alameer, Z.; Elaziz, M.A.; Ewees, A.A.; Ye, H.; Jianhua, Z. Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resour. Policy 2019, 61, 250–260. [Google Scholar] [CrossRef]
- Alameer, Z.; Fathalla, A.; Li, K.; Ye, H.; Jianhua, Z. Multistep-Ahead forecasting of coal prices using a hybrid deep learning model. Resour. Policy 2020, 65, 101588. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, D. Analysis on the influence factors and fluctuation of iron ore price based on oligopoly market. DEStech Trans. Econ. Bus. Mana. 2016. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, N.J., USA, 2015; ISBN 1118674928. [Google Scholar]
- Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020. [Google Scholar] [CrossRef]
- Said, S.E.; Dickey, D.A. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Kiers, H.A.L.; Rasson, J.P.; Groenen, P.J.F.; Schader, M. Data analysis classification and related methods. In The International Federation of Classification Societies (IFCS); Springer: Namur, Belgium, 2000; p. 428. [Google Scholar]
- Liang, M.; Mohamad, E.T.; Faradonbeh, R.S.; Jahed Armaghani, D.; Ghoraba, S. Rock strength assessment based on regression tree technique. Eng. Comput. 2016, 32, 343–354. [Google Scholar] [CrossRef]
- Stasis, A.C.; Loukis, E.N.; Pavlopoulos, S.A.; Koutsouris, D. Using decision tree algorithms as a basis for a heart sound diagnosis decision support system. In Proceedings of the 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, Birmingham, UK, 24–26 April 2003; pp. 354–357. [Google Scholar]
- Aher, S.B.; Lobo, L. Comparative study of classification algorithms. Int. J. Inf. Technol. 2012, 5, 239–243. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and regression trees. Wadsworth Int. Group 1984, 37, 237–251. [Google Scholar]
- Gunn, S.R. Support vector machines for classification and regression. ISIS Tech. Rep. 1998, 14, 5–16. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems 9; Mozer, M.C., Jordan, M.I., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 281–287. [Google Scholar]
- Basak, D.; Pal, S.; Patranabis, D.C. Support vector regression. Neural Inf. Process. Rev. 2007, 11, 203–224. [Google Scholar]
- Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Armaghani, D.J.; Farazmand, A. Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement 2015, 75, 289–297. [Google Scholar] [CrossRef]
- Mahdevari, S.; Shahriar, K.; Yagiz, S.; Shirazi, M.A. A support vector regression model for predicting tunnel boring machine penetration rates. Int. J. Rock Mech. Min. Sci. 2014, 72, 214–229. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Faradonbeh, R.S.; Armaghani, D.J.; Monjezi, M.; Majid, M.Z.A. An optimized ANN model based on genetic algorithm for predicting ripping production. Neural Comput. Appl. 2017, 28, 393–406. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M. Rock strength estimation: A PSO-Based BP approach. Neural Comput. Appl. 2018, 30, 1635–1646. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ANN-Based techniques in predicting cohesion of sandy-Soil combined with fiber. Geomech. Eng. 2020, 20, 191–205. [Google Scholar]
- Khandelwal, M.; Singh, T.N. Prediction of blast-Induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 2009, 46, 1214–1222. [Google Scholar] [CrossRef]
- Monjezi, M.; Ghafurikalajahi, M.; Bahrami, A. Prediction of blast-Induced ground vibration using artificial neural networks. Tunn. Undergr. Space Technol. 2011, 26, 46–50. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 2015, 19, 85–93. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Evaluation of blast-Induced ground vibration predictors. Soil Dyn. Earthq. Eng. 2007, 27, 116–125. [Google Scholar] [CrossRef]
- Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold Co.: New York, NY, USA, 1989; ISBN 0442207433. [Google Scholar]
- Monjezi, M.; Bahrami, A.; Varjani, A.Y.; Sayadi, A.R. Prediction and controlling of flyrock in blasting operation using artificial neural network. Arab. J. Geosci. 2011, 4, 421–425. [Google Scholar] [CrossRef]
- Monjezi, M.; Mehrdanesh, A.; Malek, A.; Khandelwal, M. Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Comput. Appl. 2013, 23, 349–356. [Google Scholar] [CrossRef]
- Chen, W.; Sarir, P.; Bui, X.-N.; Nguyen, H.; Tahir, M.M.; Armaghani, D.J. Neuro-Genetic, neuro-Imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Gordan, B.; Jahed Armaghani, D.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 2015, 32, 85–97. [Google Scholar] [CrossRef]
- Khandelwal, M.; Armaghani, D.J. Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique. Geotech. Geol. Eng. 2016, 34, 605–620. [Google Scholar] [CrossRef]
- Ghoraba, S.; Monjezi, M.; Talebi, N.; Armaghani, D.J.; Moghaddam, M.R. Estimation of ground vibration produced by blasting operations through intelligent and empirical models. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Asl, P.F.; Monjezi, M.; Hamidi, J.K.; Armaghani, D.J. Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm. Eng. Comput. 2018, 34. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. The group method of data of handling; A rival of the method of stochastic approximation. Sov. Autom. Control 1968, 13, 43–55. [Google Scholar]
- Najafzadeh, M.; Barani, G.-A.; Azamathulla, H.M. GMDH to predict scour depth around a pier in cohesive soils. Appl. Ocean Res. 2013, 40, 35–41. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. Man. Cybern. 1971, 1, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Onwubolu, G.C. Design of hybrid differential evolution and group method of data handling networks for modeling and prediction. Inf. Sci. (Ny) 2008, 178, 3616–3634. [Google Scholar] [CrossRef]
- Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A. Modelling of multiple short-Length-Scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers. Manag. 2008, 49, 2588–2594. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Barani, G.-A. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci. Iran. 2011, 18, 1207–1213. [Google Scholar] [CrossRef]
- Mehrdanesh, A.; Monjezi, M.; Sayadi, A.R. Evaluation of effect of rock mass properties on fragmentation using robust techniques. Eng. Comput. 2018, 34, 253–260. [Google Scholar] [CrossRef]
Description | Max | Min | Unit | Variable |
---|---|---|---|---|
Gold (UK), 99.5% fine, London afternoon fixing, average of daily rates | 1770.95 | 256.08 | US Dollars per Troy Ounce | Gold Price |
research.stlouisfed.org | 1.5997 | 0.9553 | - | Exchange Rate |
Crude Oil (petroleum), simple average of three spot prices; Dated Brent, West Texas Intermediate, and the Dubai Fateh | 132.55 | 10.41 | US Dollars per Barrel | Oil Price |
www.inflationdata.comwww.rateinflation.com | 6.3 | −2.1 | - | Inflation Rate |
www.econstats.com | 9.11 | 2.35 | - | Interest rate |
finance.yahoo.com | 18132.7 | 2442.33 | USD | Dowjones Stock Price |
www.YCharts.com | 1.81 × 1013 | 5.98 × 1012 | USD | US GDP |
www.lme.com CFR Price of Billets Blooms—Steel | 1180 | 260 | USD | Steel Price |
Aluminum, 99.5% minimum purity, LME spot price, CIF UK ports | 3067.46 | 1040.02 | US Dollars per Metric Ton | Aluminum Price |
www.worldsteel.org | 143,011 | 52,692 | thousand tones | Steel Production |
www.worldsteel.org | 107904.7 | 37,365 | thousand tones | Iron Ore Production |
research.stlouisfed.org | 1.14 × 1013 | 3.57 × 1011 | USD | China GDP |
China import Iron Ore Fines 62% FE spot (CFR Tianjin port) | 187.18 | 11.45 | US Dollars per Dry Metric Ton | Iron Ore Price |
ARIMA (p-q-d) | R-Squared | RMSE | MAPE | MAE | BIC |
---|---|---|---|---|---|
0.9880 | 5.4392 | 4.1931 | 2.3836 | 3.4464 | |
ARIMA (2-1-2) | 0.9881 | 5.4361 | 4.4038 | 2.4034 | 3.4847 |
ARIMA (0-1-2) | 0.988 | 5.431 | 4.195 | 2.391 | 3.443 |
ARIMA (0-1-0) | 0.987 | 5.542 | 4.339 | 2.448 | 3.444 |
ARIMA (1-1-0) | 0.988 | 5.469 | 3.997 | 2.362 | 3.438 |
ARIMA (0-0-2) | 0.879 | 17.251 | 51.553 | 12.825 | 5.755 |
ARIMA (0-0-1) | 0.713 | 26.589 | 83.031 | 20.340 | 6.600 |
ARIMA (2-0-0) | 0.985 | 6.081 | 4.635 | 2.439 | 3.669 |
ARIMA (1-0-1) | 0.985 | 6.052 | 4.642 | 2.441 | 3.660 |
ARIMA (1-0-0) | 0.984 | 6.222 | 4.516 | 2.464 | 3.696 |
ARIMA (0-1-1) | 0.988 | 5.447 | 3.986 | 2.350 | 3.429 |
10-Fold Model | ε | c | γ | R2 | Ea | RMSE |
---|---|---|---|---|---|---|
1 | 0.01 | 1 | 0.01 | 0.83 | 11.97 | 22.47 |
2 | 0.01 | 10 | 0.01 | 0.90 | 8.54 | 16.15 |
3 | 0.01 | 100 | 0.01 | 0.94 | 6.46 | 12.35 |
4 | 0.01 | 500 | 0.01 | 0.97 | 4.95 | 8.88 |
5 | 0.01 | 1000 | 0.01 | 0.97 | 4.69 | 8.18 |
6 | 0.01 | 2000 | 0.01 | 0.98 | 4.38 | 7.68 |
7 | 0.01 | 3000 | 0.01 | 0.98 | 4.26 | 7.48 |
8 | 0.01 | 3000 | 0.06 | 0.98 | 3.88 | 6.65 |
9 | 0.01 | 3000 | 0.08 | 0.98 | 3.84 | 6.63 |
10 | 0.01 | 3000 | 0.10 | 0.98 | 3.94 | 6.75 |
GMDH Model No. | No. of Neuron | R2 |
---|---|---|
1 | 2 | 0.969 |
2 | 4 | 0.974 |
3 | 6 | 0.972 |
4 | 8 | 0.970 |
5 | 10 | 0.976 |
6 | 12 | 0.971 |
7 | 14 | 0.974 |
8 | 16 | 0.978 |
9 | 18 | 0.961 |
10 | 20 | 0.968 |
GMDH Model No. | No. of Layer | R2 |
---|---|---|
1 | 2 | 0.962 |
2 | 3 | 0.968 |
3 | 4 | 0.970 |
4 | 5 | 0.978 |
5 | 6 | 0.976 |
6 | 7 | 0.974 |
7 | 8 | 0.980 |
8 | 9 | 0.977 |
9 | 10 | 0.978 |
Model | Performance Prediction | |||
---|---|---|---|---|
VAF (%) | Ea | RMSE | MAPE | |
ARIMA (0-1-1) | 23.87 | 63.26 | 68.84 | 1.001 |
SVR | 90.81 | 7.47 | 8.57 | 0.099 |
ANN | 80.95 | 9.99 | 12.38 | 0.132 |
CART | 55.02 | 13.27 | 17.36 | 0.169 |
GMDH | 97.89 | 2.66 | 3.55 | 0.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Moghaddam, M.R.; Monjezi, M.; Jahed Armaghani, D.; Mehrdanesh, A. Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Appl. Sci. 2020, 10, 2364. https://doi.org/10.3390/app10072364
Li D, Moghaddam MR, Monjezi M, Jahed Armaghani D, Mehrdanesh A. Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Applied Sciences. 2020; 10(7):2364. https://doi.org/10.3390/app10072364
Chicago/Turabian StyleLi, Diyuan, Mohammad Reza Moghaddam, Masoud Monjezi, Danial Jahed Armaghani, and Amirhossein Mehrdanesh. 2020. "Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price" Applied Sciences 10, no. 7: 2364. https://doi.org/10.3390/app10072364
APA StyleLi, D., Moghaddam, M. R., Monjezi, M., Jahed Armaghani, D., & Mehrdanesh, A. (2020). Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Applied Sciences, 10(7), 2364. https://doi.org/10.3390/app10072364