Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classification
<p>Outline of the network architecture used. See text in <a href="#sec3-applsci-10-01454" class="html-sec">Section 3</a> for details.</p> "> Figure 2
<p>Example of load disaggregation for the <span class="html-italic">seen</span> case. The upper graph shows the aggregate load and the estimated consumption obtained by the method, while the lower graph shows true values of the power absorbed by the three appliances. The estimated value of the consumption of household appliances in the upper part of the figure is assumed to be constant for the activation periods and equal to the average consumption during use.</p> "> Figure 3
<p>Example of load disaggregation for the <span class="html-italic">unseen</span> case. The upper graph shows the aggregate load and the estimated consumption obtained by the method, while the lower graph shows true values of the power absorbed by the three appliances. The estimated value of the consumption of household appliances in the upper part of the figure is assumed to be constant for the activation periods and equal to the average consumption during use.</p> ">
Abstract
:1. Introduction
- Introduce a Temporal Pooling module to add context information in the recognition of activation states;
- Show that this approach allows to achieve high performances recognising the on/off state of the appliances;
- Show that this approach has good generalization properties;
- Improve the state of the art performance in a reference dataset.
2. Problem Formulation
3. Methodology
4. Experimental Setup
4.1. Dataset
4.2. Preprocessing
4.3. Postprocessing
4.4. Training and Testing
4.5. Performance evaluation
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wittmann, F.M.; López, J.C.; Rider, M.J. Nonintrusive load monitoring algorithm using mixed-integer linear programming. IEEE Trans. Consum. Electron. 2018, 64, 180–187. [Google Scholar] [CrossRef]
- Armel, K.C.; Gupta, A.; Shrimali, G.; Albert, A. Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy 2013, 52, 213–234. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [Google Scholar] [CrossRef]
- Han, D.M.; Lim, J.H. Smart home energy management system using IEEE 802.15. 4 and zigbee. IEEE Trans. Consum. Electron. 2010, 56, 1403–1410. [Google Scholar] [CrossRef]
- Esa, N.F.; Abdullah, M.P.; Hassan, M.Y. A review disaggregation method in Non-intrusive Appliance Load Monitoring. Renew. Sustain. Energy Rev. 2016, 66, 163–173. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Agbossou, K.; Kelouwani, S.; Cardenas, A. Non-intrusive load monitoring through home energy management systems: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1266–1274. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Ruano, A.; Hernandez, A.; Ureña, J.; Ruano, M.; Garcia, J. NILM techniques for intelligent home energy management and ambient assisted living: A review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.; Ribeiro, B.; de Almeida, A. Analysis of trends in seasonal electrical energy consumption via non-negative tensor factorization. Neurocomputing 2015, 170, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Makonin, S.W. Real-Time Embedded Low-Frequency Load Disaggregation. Ph.D. Thesis, Applied Sciences: School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, 2014. [Google Scholar]
- Lu-Lulu, L.L.; Park, S.W.; Wang, B.H. Electric load signature analysis for home energy monitoring system. Int. J. Fuzzy Logic Intell. Syst. 2012, 12, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Elhamifar, E.; Sastry, S. Energy Disaggregation via Learning Powerlets and Sparse Coding; AAAI: Menlo Park, CA, USA, 2015; pp. 629–635. [Google Scholar]
- Hasan, M.; Chowdhury, D.; Khan, M.; Rahman, Z. Non-Intrusive Load Monitoring Using Current Shapelets. Appl. Sci. 2019, 9, 5363. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Yang, Y.; He, D.; Harley, R.G.; Habetler, T.G. Feature extraction for load identification using long-term operating waveforms. IEEE Trans. Smart Grid 2014, 6, 819–826. [Google Scholar] [CrossRef]
- Meehan, P.; McArdle, C.; Daniels, S. An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm. Energies 2014, 7, 7041–7066. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H.; Lian, K.L.; Su, Y.C.; Lee, W.J. Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 2013, 50, 2081–2089. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tsai, M.S. Development of an improved time–frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Trans. Instrum. Meas. 2013, 63, 1470–1483. [Google Scholar] [CrossRef]
- Hassan, T.; Javed, F.; Arshad, N. An empirical investigation of VI trajectory based load signatures for non-intrusive load monitoring. IEEE Trans. Smart Grid 2013, 5, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.L.; Chen, B.X.; Wang, C.G.; Hua, D. Non-intrusive load monitoring algorithm based on features of V–I trajectory. Electr. Power Syst. Res. 2018, 157, 134–144. [Google Scholar] [CrossRef]
- Bouhouras, A.S.; Gkaidatzis, P.A.; Chatzisavvas, K.C.; Panagiotou, E.; Poulakis, N.; Christoforidis, G.C. Load signature formulation for non-intrusive load monitoring based on current measurements. Energies 2017, 10, 538. [Google Scholar] [CrossRef]
- Bouhouras, A.S.; Gkaidatzis, P.A.; Panagiotou, E.; Poulakis, N.; Christoforidis, G.C. A NILM algorithm with enhanced disaggregation scheme under harmonic current vectors. Energy Build. 2019, 183, 392–407. [Google Scholar] [CrossRef]
- Piga, D.; Cominola, A.; Giuliani, M.; Castelletti, A.; Rizzoli, A.E. Sparse optimization for automated energy end use disaggregation. IEEE Trans. Control Syst. Technol. 2015, 24, 1044–1051. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W. An iterative load disaggregation approach based on appliance consumption pattern. Appl. Sci. 2018, 8, 542. [Google Scholar] [CrossRef] [Green Version]
- Wytock, M.; Kolter, J.Z. Contextually supervised source separation with application to energy disaggregation. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014. [Google Scholar]
- Kong, W.; Dong, Z.Y.; Hill, D.J.; Luo, F.; Xu, Y. Improving nonintrusive load monitoring efficiency via a hybrid programing method. IEEE Trans. Ind. Inform. 2016, 12, 2148–2157. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Ma, J.; Hill, D.J.; Zhao, J.; Luo, F. An extensible approach for non-intrusive load disaggregation with smart meter data. IEEE Trans. Smart Grid 2016, 9, 3362–3372. [Google Scholar] [CrossRef]
- Egarter, D.; Sobe, A.; Elmenreich, W. Evolving non-intrusive load monitoring. In Proceedings of the European Conference on the Applications of Evolutionary Computation, Vienna, Austria, 3–5 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 182–191. [Google Scholar]
- Lucas, A.; Jansen, L.; Andreadou, N.; Kotsakis, E.; Masera, M. Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector. Energies 2019, 12, 2725. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H. Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses. Energies 2012, 5, 4569–4589. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Knottenbelt, W. Neural NILM: Deep neural networks applied to energy disaggregation. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Bengaluru, India, 4–8 January 2015; ACM: New York, NY, USA, 2015; pp. 55–64. [Google Scholar]
- Zhang, C.; Zhong, M.; Wang, Z.; Goddard, N.; Sutton, C. Sequence-to-point learning with neural networks for non-intrusive load monitoring. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2604–2611. [Google Scholar]
- Bonfigli, R.; Felicetti, A.; Principi, E.; Fagiani, M.; Squartini, S.; Piazza, F. Denoising autoencoders for non-intrusive load monitoring: Improvements and comparative evaluation. Energy Build. 2018, 158, 1461–1474. [Google Scholar] [CrossRef]
- Barsim, K.S.; Yang, B. On the feasibility of generic deep disaggregation for single-load extraction. arXiv 2018, arXiv:1802.02139. [Google Scholar]
- Fagiani, M.; Bonfigli, R.; Principi, E.; Squartini, S.; Mandolini, L. A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks. Energies 2019, 12, 1371. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Wang, K.; Zhang, X.; Xu, Y. Non-intrusive load disaggregation based on deep dilated residual network. Electr. Power Syst. Res. 2019, 170, 277–285. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, F. Concatenate convolutional neural networks for non-intrusive load monitoring across complex background. Energies 2019, 12, 1572. [Google Scholar] [CrossRef] [Green Version]
- Mauch, L.; Yang, B. A new approach for supervised power disaggregation by using a deep recurrent LSTM network. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 63–67. [Google Scholar]
- Rafiq, H.; Zhang, H.; Li, H.; Ochani, M.K. Regularized LSTM Based Deep Learning Model: First Step towards Real-Time Non-Intrusive Load Monitoring. In Proceedings of the 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–15 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 234–239. [Google Scholar]
- Kim, J.G.; Lee, B. Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM. Energies 2019, 12, 2804. [Google Scholar] [CrossRef] [Green Version]
- Salerno, V.M.; Rabbeni, G. An extreme learning machine approach to effective energy disaggregation. Electronics 2018, 7, 235. [Google Scholar] [CrossRef] [Green Version]
- Kramer, O.; Wilken, O.; Beenken, P.; Hein, A.; Hüwel, A.; Klingenberg, T.; Meinecke, C.; Raabe, T.; Sonnenschein, M. On ensemble classifiers for nonintrusive appliance load monitoring. In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, Hong Kong, China, 4–7 December 2012; pp. 322–331. [Google Scholar]
- Figueiredo, M.B.; De Almeida, A.; Ribeiro, B. An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems. In Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Ljubljana, Slovenia, 14–16 April 2011; pp. 31–40. [Google Scholar]
- Wu, X.; Gao, Y.; Jiao, D. Multi-label classification based on random forest algorithm for non-intrusive load monitoring system. Processes 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Liu, Z.; Jiao, R.; Yan, G. A novel nonintrusive load monitoring approach based on linear-chain conditional random fields. Energies 2019, 12, 1797. [Google Scholar] [CrossRef] [Green Version]
- Agyeman, K.A.; Han, S.; Han, S. Real-time recognition non-intrusive electrical appliance monitoring algorithm for a residential building energy management system. Energies 2015, 8, 9029–9048. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. A hybrid signature-based iterative disaggregation algorithm for non-intrusive load monitoring. Appl. Energy 2017, 185, 331–344. [Google Scholar] [CrossRef]
- Makonin, S.; Popowich, F.; Bajić, I.V.; Gill, B.; Bartram, L. Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring. IEEE Trans. Smart Grid 2016, 7, 2575–2585. [Google Scholar] [CrossRef]
- Mengistu, M.A.; Girmay, A.A.; Camarda, C.; Acquaviva, A.; Patti, E. A cloud-based on-line disaggregation algorithm for home appliance loads. IEEE Trans. Smart Grid 2018, 10, 3430–3439. [Google Scholar] [CrossRef]
- Desai, S.; Alhadad, R.; Mahmood, A.; Chilamkurti, N.; Rho, S. Multi-State Energy Classifier to Evaluate the Performance of the NILM Algorithm. Sensors 2019, 19, 5236. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Gao, Y.; Wu, Y.; Jiao, D.; Su, C.; Wu, X. Non-Intrusive Load Disaggregation by Linear Classifier Group Considering Multi-Feature Integration. Appl. Sci. 2019, 9, 3558. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-Balanced Loss Based on Effective Number of Samples. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in PyTorch. In Proceedings of the NIPS Autodiff Workshop, Long Beach, CA, USA, 8 December 2017. [Google Scholar]
- Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2015, 2, 150007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
House 1 | House 2 | House 3 | House 4 | House 5 | |
---|---|---|---|---|---|
Duration (days) | 612 | 134 | 33 | 199 | 64 |
Fridge activations (-) | 16,240 | 3525 | 20 | 4682 | 1489 |
Dishwasher activations (-) | 197 | 98 | 0 | 0 | 23 |
Washing machine activations (-) | 513 | 54 | 0 | 0 | 55 |
Fridge | Dishwasher | Washing Machine | |
---|---|---|---|
Max. power (W) | 300 | 2500 | 2500 |
Power threshold (W) | 50 | 10 | 20 |
OFF duration (min) | 0 | 3 | 30 |
ON duration (min) | 1 | 30 | 30 |
Use Case: seen | Use Case: unseen | |||||
---|---|---|---|---|---|---|
Training (%) | Validation (%) | Testing (%) | Training (%) | Validation (%) | Testing (%) | |
House 1 | 80 | 10 | 10 | 80 | 10 | - |
House 2 | 80 | - | - | - | - | 100 |
House 5 | 80 | - | - | 80 | 10 | - |
Fridge | Dishwasher | Washing Machine | ||||
---|---|---|---|---|---|---|
Ensemble Mean | 90% Interval | Ensemble Mean | 90% Interval | Ensemble Mean | 90% Interval | |
Precision | 0.875 | (0.867, 0.885) | 0.942 | (0.904, 0.966) | 0.975 | (0.968, 0.979) |
Recall | 0.859 | (0.846, 0.871) | 0.919 | (0.890, 0.942) | 0.982 | (0.977, 0.987) |
Accuracy | 0.880 | (0.878, 0.882) | 0.997 | (0.995, 0.997) | 0.997 | (0.996, 0.997) |
F1 score | 0.867 | (0.864, 0.870) | 0.930 | (0.905, 0.946) | 0.978 | (0.976, 0.980) |
MCC | 0.759 | (0.755, 0.762) | 0.928 | (0.903, 0.945) | 0.977 | (0.974, 0.979) |
MAE [W] | 15.25 | (15.08, 15.47) | 20.41 | (19.99, 21.00) | 41.97 | (41.80, 42.21) |
SAE | −0.020 | (−0.046, 0.002) | −0.042 | (−0.082, −0.005) | −0.077 | (−0.085, −0.066) |
Fridge | Dishwasher | Washing Machine | ||||
---|---|---|---|---|---|---|
Ensemble Mean | 90% Interval | Ensemble Mean | 90% Interval | Ensemble Mean | 90% Interval | |
Precision | 0.892 | (0.883, 0.898) | 0.788 | (0.738, 0.826) | 0.858 | (0.811, 0.893) |
Recall | 0.851 | (0.841, 0.861) | 0.835 | (0.768, 0.897) | 0.869 | (0.827, 0.918) |
Accuracy | 0.905 | (0.900, 0.908) | 0.989 | (0.987, 0.990) | 0.997 | (0.996, 0.998) |
F1 score | 0.871 | (0.863, 0.876) | 0.809 | (0.790, 0.822) | 0.863 | (0.835, 0.900) |
MCC | 0.796 | (0.786, 0.803) | 0.805 | (0.784, 0.817) | 0.862 | (0.834, 0.899) |
MAE [W] | 17.03 | (16.82, 17.24) | 33.07 | (31.19, 35.68) | 8.31 | (7.88, 8.70) |
SAE | −0.046 | (−0.066, −0.025) | 0.063 | (−0.054, 0.219) | 0.014 | (−0.059, 0.115) |
Fridge | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.50 | 0.54 | 0.61 | 0.52 | - | 50 | 0.26 |
Neural-NILM FHMM [30] | 0.39 | 0.63 | 0.46 | 0.47 | - | 69 | 0.50 |
Neural-NILM AE [30] | 0.83 | 0.79 | 0.85 | 0.81 | - | 25 | −0.35 |
Neural-NILM Rect. [30] | 0.71 | 0.77 | 0.79 | 0.74 | - | 22 | −0.07 |
Neural-NILM LSTM [30] | 0.71 | 0.67 | 0.76 | 0.69 | - | 34 | −0.22 |
dAE [32] | - | - | - | 0.78 | 0.68 | - | - |
Deep AE [33] | - | - | - | 0.88 | - | - | - |
On-line-NILM [48] | 0.73 | 0.87 | 0.82 | 0.79 | - | 4.34 | - |
H-ELM [40] | 0.88 | 0.80 | 0.88 | 0.89 | - | 20 | - |
D-ResNet [35] | 1.00 | 0.99 | 1.00 | 0.99 | - | 2.63 | 0.02 |
TP-NILM | 0.88 | 0.86 | 0.88 | 0.87 | 0.76 | 15.25 | −0.02 |
Dishwasher | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.07 | 0.50 | 0.69 | 0.11 | - | 75 | 0.28 |
Neural-NILM FHMM [30] | 0.04 | 0.78 | 0.37 | 0.08 | - | 111 | 0.66 |
Neural-NILM AE [30] | 0.45 | 0.99 | 0.95 | 0.60 | - | 21 | −0.34 |
Neural-NILM Rect. [30] | 0.88 | 0.61 | 0.98 | 0.72 | - | 30 | −0.53 |
Neural-NILM LSTM [30] | 0.03 | 0.63 | 0.35 | 0.06 | - | 130 | 0.76 |
dAE [32] | - | - | - | 0.56 | 0.58 | - | - |
Deep AE [33] | - | - | - | 0.80 | - | - | - |
On-line-NILM [48] | 0.78 | 0.44 | 0.71 | 0.56 | - | 27.72 | - |
H-ELM [40] | 0.89 | 0.99 | 0.98 | 0.75 | - | 19 | - |
D-ResNet [35] | 0.78 | 0.81 | 0.99 | 0.80 | - | 7.80 | 0.01 |
TP-NILM | 0.94 | 0.92 | 1.00 | 0.93 | 0.93 | 20.41 | −0.04 |
Washing machine | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.08 | 0.56 | 0.69 | 0.13 | - | 88 | 0.65 |
Neural-NILM FHMM [30] | 0.06 | 0.87 | 0.39 | 0.11 | - | 138 | 0.76 |
Neural-NILM AE [30] | 0.15 | 0.99 | 0.76 | 0.25 | - | 44 | 0.18 |
Neural-NILM Rect. [30] | 0.72 | 0.38 | 0.97 | 0.49 | - | 28 | −0.65 |
Neural-NILM LSTM [30] | 0.05 | 0.62 | 0.31 | 0.09 | - | 133 | 0.73 |
dAE [32] | - | - | - | 0.41 | 0.43 | - | - |
Deep AE [33] | - | - | - | 0.96 | - | - | - |
On-line-NILM [48] | 0.60 | 1.00 | 0.60 | 0.70 | - | 118.11 | - |
H-ELM [40] | 0.73 | 0.99 | 0.76 | 0.50 | - | 27 | - |
D-ResNet [35] | 0.93 | 0.75 | 1.00 | 0.83 | - | 2.97 | 0.07 |
TP-NILM | 0.98 | 0.98 | 1.00 | 0.98 | 0.98 | 41.97 | −0.08 |
Fridge | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.30 | 0.41 | 0.45 | 0.35 | - | 73 | 0.37 |
Neural-NILM FHMM [30] | 0.40 | 0.86 | 0.50 | 0.55 | - | 67 | 0.57 |
Neural-NILM AE [30] | 0.85 | 0.88 | 0.90 | 0.87 | - | 26 | −0.38 |
Neural-NILM Rect. [30] | 0.79 | 0.86 | 0.87 | 0.82 | - | 18 | −0.13 |
Neural-NILM LSTM [30] | 0.72 | 0.77 | 0.81 | 0.74 | - | 36 | −0.25 |
dAE [32] | - | - | - | 0.83 | 0.76 | - | - |
seq2seq [31] | - | - | - | - | - | 24.5 | 0.37 |
seq2point [31] | - | - | - | - | - | 20.9 | 0.12 |
H-ELM [40] | 0.90 | 0.92 | 0.94 | 0.89 | - | 23 | - |
Deep AE [33] | - | - | - | 0.93 | - | - | - |
TP-NILM | 0.89 | 0.85 | 0.91 | 0.87 | 0.80 | 17.03 | −0.05 |
Dishwasher | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.06 | 0.67 | 0.64 | 0.11 | - | 74 | 0.62 |
Neural-NILM FHMM [30] | 0.03 | 0.49 | 0.33 | 0.05 | - | 110 | 0.75 |
Neural-NILM AE [30] | 0.29 | 0.99 | 0.92 | 0.44 | - | 24 | −0.33 |
Neural-NILM Rect. [30] | 0.89 | 0.64 | 0.99 | 0.74 | - | 30 | −0.31 |
Neural-NILM LSTM [30] | 0.04 | 0.87 | 0.30 | 0.08 | - | 168 | 0.87 |
dAE [32] | - | - | - | 0.51 | 0.50 | - | - |
seq2seq [31] | - | - | - | - | - | 32.5 | 0.78 |
seq2point [31] | - | - | - | - | - | 27.7 | 0.65 |
H-ELM [40] | 0.35 | 1.00 | 1.00 | 0.55 | - | 22 | - |
Deep AE [33] | - | - | - | 0.80 | - | - | - |
TP-NILM | 0.79 | 0.84 | 0.99 | 0.81 | 0.81 | 33.07 | 0.06 |
Washing machine | |||||||
Prec. | Rec. | Acc. | F1 | MCC | MAE | SAE | |
Neural-NILM CO [30] | 0.06 | 0.48 | 0.88 | 0.10 | - | 39 | 0.73 |
Neural-NILM FHMM [30] | 0.04 | 0.64 | 0.79 | 0.08 | - | 67 | 0.86 |
Neural-NILM AE [30] | 0.07 | 1.00 | 0.82 | 0.13 | - | 24 | 0.48 |
Neural-NILM Rect. [30] | 0.29 | 0.24 | 0.98 | 0.27 | - | 11 | −0.74 |
Neural-NILM LSTM [30] | 0.01 | 0.73 | 0.23 | 0.03 | - | 109 | 0.91 |
dAE [32] | - | - | - | 0.68 | 0.69 | - | - |
seq2seq [31] | - | - | - | - | - | 10.1 | 0.45 |
seq2point [31] | - | - | - | - | - | 12.7 | 0.28 |
H-ELM [40] | 0.10 | 1.00 | 0.84 | 0.43 | - | 21 | - |
Deep AE [33] | - | - | - | 0.41 | - | - | - |
TP-NILM | 0.86 | 0.87 | 1.00 | 0.86 | 0.86 | 8.31 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massidda, L.; Marrocu, M.; Manca, S. Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classification. Appl. Sci. 2020, 10, 1454. https://doi.org/10.3390/app10041454
Massidda L, Marrocu M, Manca S. Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classification. Applied Sciences. 2020; 10(4):1454. https://doi.org/10.3390/app10041454
Chicago/Turabian StyleMassidda, Luca, Marino Marrocu, and Simone Manca. 2020. "Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classification" Applied Sciences 10, no. 4: 1454. https://doi.org/10.3390/app10041454
APA StyleMassidda, L., Marrocu, M., & Manca, S. (2020). Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multilabel Classification. Applied Sciences, 10(4), 1454. https://doi.org/10.3390/app10041454