Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter
<p>The framework of pedestrian dead-reckoning (PDR) technology in this research.</p> "> Figure 2
<p>(<b>a</b>) Acceleration curve of the walking process; (<b>b</b>) acceleration curve of one step.</p> "> Figure 3
<p>The execution process of the FSM algorithm.</p> "> Figure 4
<p>(<b>a</b>) The carrier coordinate system (CCS); (<b>b</b>) roll; (<b>c</b>) pitch; (<b>d</b>) yaw.</p> "> Figure 5
<p>Comparison of the untransformed and transformed three-axis geomagnetic data. (<b>a</b>) Untransformed three-axis geomagnetic data; (<b>b</b>) Transformed three-axis geomagnetic data</p> "> Figure 6
<p>Gene mutation.</p> "> Figure 7
<p>Particle mutation.</p> "> Figure 8
<p>Process of genetic-particle filter.</p> "> Figure 9
<p>Fusion-positioning algorithm based on genetic-particle filter.</p> "> Figure 10
<p>(<b>a</b>) Experimental area; (<b>b</b>) experimental path.</p> "> Figure 11
<p>Geomagnetic characteristics interpolation map. (<b>a</b>) <span class="html-italic">X</span>-axis component interpolation map; (<b>b</b>) <span class="html-italic">Y</span>-axis component interpolation map; (<b>c</b>) <span class="html-italic">Z</span>-axis component interpolation map; (<b>d</b>) horizontal component interpolation map; (<b>e</b>) magnetic field strength interpolation map.</p> "> Figure 12
<p>Geomagnetic positioning comparison by using different features data.</p> "> Figure 13
<p>Heading angles comparison by using different methods (small angles added 360°). (<b>a</b>) Uncorrected gyroscope VS MCF; (<b>b</b>) Electronic compass VS MCF</p> "> Figure 14
<p>Positioning cumulative error curve and point error curves of different methods. (<b>a</b>) Positioning cumulative error curves; (<b>b</b>) points error curves of PDR, geomagnetic positioning and the proposed method; (<b>c</b>) points error curves of fusion positioning based on PF and the proposed method.</p> "> Figure 15
<p>Positioning trajectories of different methods.</p> ">
Abstract
:1. Introduction
- We transform the geomagnetic data into the geographic coordinate system (GCS) and extract five geomagnetic features data. These features data can improve the specificity of geomagnetic fingerprint and the accuracy of the devised geomagnetic multi-features positioning algorithm.
- We design the optimization mechanism for the particle degradation problem, which utilizes the genetic mutation method to increase the diversity of the resampled particles and uses the particle set reconstruction method by combining the geomagnetic positioning results to improve the particles’ reliability. The proposed mechanism better ameliorates the particle degradation problem;
- We propose the fusion-positioning method that utilizes the PDR positions as the system state and uses the geomagnetic positions as the system observation based on the genetic-particle filter. The mean positioning error is 1.72 m and the root mean square error is 1.89 m.
2. Materials and Methods
2.1. Pedestrian Dead-Reckoning (PDR) Module
2.1.1. Heading Angle Estimation
2.1.2. Step Detection
2.1.3. Step Length Estimation
2.2. Geomagnetic Positioning Module
2.2.1. Geomagnetic Multi-Features Data Extraction
2.2.2. Geomagnetic Multi-Features Positioning Algorithm
Algorithm 1 Geomagnetic multi-features positioning algorithm | |
1: | Input: magnetic database MD, Coordinate data CD, measured magnetic data , positive integer |
2: | ← |
3: | for ← 1 to length do |
4: | for ← 1 to length(MD) do |
5: | calculate the distance dj |
6: | add to , ← dj |
7: | end |
8: | find minimum values of the , ← |
9: | index← |
10: | ← |
11: | add to , ← |
12: | end |
13: | Output: |
2.3. Fusion Positioning Module
2.3.1. Classical Particle Filter
2.3.2. Gene Mutation
2.3.3. Optimization Mechanism for Classical Particle Filter
Algorithm 2 decimal-to-binary of value | |
1: | Input: coordinate value , empty set , Boolean variable |
2: | get the integer part of , ← ; ← true |
3: | while () do |
4: | calculate the remainder , ← |
5: | calculate the quotient , ← |
6: | if do |
7: | calculate the remainder , ← |
8: | add to , ← ; ←false |
9: | else do |
10: | add to , ← |
11: | end |
12: | ← |
13: | end |
14: | ← reverse () |
15: | Output: |
2.3.4. Fusion-Positioning Algorithm based on Genetic-Particle Filter
3. Experiments and Results
3.1. Geomagnetic Fingerprint Database Construction
3.2. Geomagnetic Positioning Experiment
3.3. Heading Angle Experiment
3.4. Fusion-Positioning Experiment
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davidson, P.; Piché, R. A survey of selected indoor positioning methods for smartphones. IEEE Commun. Surv. Tutor. 2017, 19, 1347–1370. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef]
- Lin, K.; Chen, M.; Deng, J.; Hassan, M.M.; Fortino, G. Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1294–1307. [Google Scholar] [CrossRef]
- He, S.; Chan, S.-H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Yoon, P.K.; Zihajehzadeh, S.; Kang, B.-S.; Park, E.J. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 825–828. [Google Scholar]
- De Blasio, G.; Quesada-Arencibia, A.; García, C.R.; Rodríguez-Rodríguez, J.C.; Moreno-Díaz, R. A protocol-channel-based indoor positioning performance study for Bluetooth low energy. IEEE Access 2018, 6, 33440–33450. [Google Scholar] [CrossRef]
- Schroeer, G. A Real-Time UWB Multi-Channel Indoor Positioning System for Industrial Scenarios. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Danvers, MA, USA, 24–29 September 2018; pp. 1–5. [Google Scholar]
- Chen, P.; Ye, K.; Chen, X. A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians. Sensors 2017, 17, 2065. [Google Scholar] [CrossRef] [Green Version]
- Bekkali, A.; Sanson, H.; Matsumoto, M. RFID indoor positioning based on probabilistic RFID map and Kalman filtering. In Proceedings of the Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2007), New York, NY, USA, 8–10 October 2007; p. 21. [Google Scholar]
- Yucel, H.; Edizkan, R.; Ozkir, T.; Yazici, A. Development of indoor positioning system with ultrasonic and infrared signals. In Proceedings of the 2012 International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 2–4 July 2012; pp. 1–4. [Google Scholar]
- Huang, C.-N.; Chan, C.-T. ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI. Procedia Comput. Sci. 2011, 5, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.; Takala, J. Algorithm for pedestrian navigation combining IMU measurements and gait models. Gyroscopy Navig. 2013, 4, 79–84. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, W.; Tang, W.; Zheng, X.; Peng, A.; Zheng, H. A 3D indoor positioning system based on low-cost MEMS sensors. Simul. Model. Pract. Theory 2016, 65, 45–56. [Google Scholar] [CrossRef]
- Siiksakulchai, S.; Thongchai, S.; Wilkes, D.M.; Kawamura, K. Mobile robot localization using an electronic compass for corridor environment. In Proceedings of the 2000 IEEE International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000; pp. 3354–3359. [Google Scholar]
- Li, B.; Gallagher, T.; Dempster, A.G.; Rizos, C. How feasible is the use of magnetic field alone for indoor positioning? In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nashville, TN, USA, 8–10 October 2000; pp. 1–9. [Google Scholar]
- He, S.; Shin, K.G. Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons. ACM Comput. Surv. (CSUR) 2018, 50, 97. [Google Scholar] [CrossRef]
- Senin, P. Dynamic time warping algorithm review. Inf. Comput. Sci. Dep. Univ. Hawaii Manoa Honol. USA 2008, 855, 40. [Google Scholar]
- Subbu, K.P.; Gozick, B.; Dantu, R. LocateMe: Magnetic-fields-based indoor localization using smartphones. ACM Trans. Intell. Syst. Technol. (TIST) 2013, 4, 73. [Google Scholar] [CrossRef]
- Subbu, K.P.; Gozick, B.; Dantu, R. Indoor localization through dynamic time warping. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 1639–1644. [Google Scholar]
- Ashraf, I.; Hur, S.; Park, Y. mPILOT-Magnetic Field Strength Based Pedestrian Indoor Localization. Sensors 2018, 18, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, I.; Hur, S.; Shafiq, M.; Park, Y. Floor Identification Using Magnetic Field Data with Smartphone Sensors. Sensors 2019, 19, 2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, L.; Luo, H.; Fang, Z.; Li, X. TACO: A Traceback Algorithm Based on Ant Colony Optimization for Geomagnetic Positioning; Springer: Berlin/Heidelberg, Germany, 2014; pp. 208–224. [Google Scholar]
- Shu, Y.; Shin, K.G.; He, T.; Chen, J. Last-mile navigation using smartphones. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–15 September 2015; pp. 512–524. [Google Scholar]
- Le Grand, E.; Thrun, S. 3-axis magnetic field mapping and fusion for indoor localization. In Proceedings of the 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Hamburg, Germany, 13–15 September 2012; pp. 358–364. [Google Scholar]
- Kim, B.; Kong, S.H. A Novel Indoor Positioning Technique Using Magnetic Fingerprint Difference. IEEE Trans. Instrum. Meas. 2016, 65, 2035–2045. [Google Scholar] [CrossRef]
- Huang, H.; Li, W.; Luo, D.A.; Qiu, D.W.; Gao, Y. An Improved Particle Filter Algorithm for Geomagnetic Indoor Positioning. J. Sens. 2018, 2018, 5989678. [Google Scholar] [CrossRef] [Green Version]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin, Germany, 2009; pp. 1–4. [Google Scholar]
- Zheng, M.; Zhao, Y.; He, Y.; Xu, C.-Z. Sensitivity-based adaptive particle filter for geomagnetic indoor localization. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–27 October 2017; pp. 1–6. [Google Scholar]
- Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [Google Scholar] [CrossRef]
- Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 2002, 27, 17–26. [Google Scholar] [CrossRef]
- Mahony, R.; Hamel, T.; Pflimlin, J.-M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J.C.; Butcher, J. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods; Wiley-Interscience: New York, NY, USA, 1987; Volume 512. [Google Scholar]
- Ahn, D.; Park, J.-S.; Kim, C.-S.; Kim, J.; Qian, Y.; Itoh, T. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans. Microw. Theory Tech. 2001, 49, 86–93. [Google Scholar] [CrossRef]
- Keselbrener, L.; Keselbrener, M.; Akselrod, S. Nonlinear high pass filter for R-wave detection in ECG signal. Med. Eng. Phys. 1997, 19, 481–484. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F. A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Process. Lett. 2014, 21, 1280–1283. [Google Scholar] [CrossRef]
- Brajdic, A.; Harle, R. Walk detection and step counting on unconstrained smartphones. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 225–234. [Google Scholar]
- Zhuang, Y.; Lan, H.; Li, Y.; El-Sheimy, N. PDR/INS/WiFi integration based on handheld devices for indoor pedestrian navigation. Micromachines 2015, 6, 793–812. [Google Scholar] [CrossRef] [Green Version]
- Ladetto, Q. On foot navigation: Continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In Proceedings of the ION GPS, Salt Lake City, UT, USA, 19–22 September 2000; pp. 1735–1740. [Google Scholar]
- Vildjiounaite, E.; Malm, E.-J.; Kaartinen, J.; Alahuhta, P. Location estimation indoors by means of small computing power devices, accelerometers, magnetic sensors, and map knowledge. In Pervasive Computing; Springer: Berlin, Germany, 2002; pp. 211–224. [Google Scholar]
- Tian, Q.; Salcic, Z.; Kevin, I.; Wang, K.; Pan, Y. A multi-mode dead reckoning system for pedestrian tracking using smartphones. IEEE Sens. J. 2015, 16, 2079–2093. [Google Scholar] [CrossRef]
- Weinberg, H. Using the ADXL202 in pedometer and personal navigation applications. Analog Devices AN-602 Appl. Note 2002, 2, 1–6. [Google Scholar]
- Blu, T.; Thévenaz, P.; Unser, M. Linear Interpolation Revitalized. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2004, 13, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient kNN classification algorithm for big data. Neurocomputing 2016, 195, 143–148. [Google Scholar] [CrossRef]
- Ma, Y.; Dou, Z.; Jiang, Q.; Hou, Z. Basmag: An optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information. IEEE Sens. J. 2016, 16, 7472–7482. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Gay, D.M. Correctly rounded binary-decimal and decimal-binary conversions. Numer. Anal. Manuscr. 90–10. 1990. Available online: https://ampl.com/REFS/rounding.pdf (accessed on 29 November 2019).
Notation | Description of Notation |
Acceleration difference threshold | |
Entering the FSM algorithm threshold | |
Maximum value judged as a rising state | |
Minimum value judged as a falling state | |
Peak threshold | |
Max interference value | |
Times of acceleration greater than | |
Times of acceleration smaller than | |
Acceleration value |
Features | Min | Max | Mean | RMSE | 50% Error | 80% Error |
---|---|---|---|---|---|---|
One feature | 1.16 | 15.91 | 8.01 | 8.74 | 7.98 | 10.69 |
Two features | 0.27 | 16.29 | 6.62 | 7.41 | 7.06 | 9.54 |
Three features | 0.19 | 16.27 | 3.80 | 4.77 | 3.15 | 6.08 |
Four features | 0.02 | 18.16 | 3.38 | 4.66 | 2.68 | 4.65 |
Five features | 0.04 | 12.07 | 2.98 | 4.01 | 2.56 | 4.51 |
Algorithm | Min | Max | Mean | RMSE |
---|---|---|---|---|
MCF | 0.04 | 50.78 | 7.21 | 6.58 |
EC | 0.05 | 59.03 | 11.46 | 9.81 |
Gyroscope | 0.18 | 88.05 | 16.61 | 13.39 |
Method | Min/m | Max/m | Mean/m | RMSE/m | 50% Error/m | 80% Error/m | CC/s |
---|---|---|---|---|---|---|---|
PDR | 0.12 | 6.29 | 3.14 | 3.43 | 2.54 | 4.80 | 0.004 |
Geomagnetic | 0.04 | 12.07 | 2.98 | 4.01 | 2.56 | 4.51 | 0.252 |
PF | 0.10 | 4.83 | 1.96 | 2.28 | 1.84 | 3.22 | 0.285 |
Proposed | 0.13 | 3.42 | 1.72 | 1.89 | 1.75 | 2.45 | 0.296 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Wang, Y.; Xu, S.; Cao, H.; Si, M. Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter. Appl. Sci. 2020, 10, 668. https://doi.org/10.3390/app10020668
Sun M, Wang Y, Xu S, Cao H, Si M. Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter. Applied Sciences. 2020; 10(2):668. https://doi.org/10.3390/app10020668
Chicago/Turabian StyleSun, Meng, Yunjia Wang, Shenglei Xu, Hongji Cao, and Minghao Si. 2020. "Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter" Applied Sciences 10, no. 2: 668. https://doi.org/10.3390/app10020668
APA StyleSun, M., Wang, Y., Xu, S., Cao, H., & Si, M. (2020). Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter. Applied Sciences, 10(2), 668. https://doi.org/10.3390/app10020668