Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network
<p>Examples of laser metal deposition (LMD) build parts quality optical images: (<b>a</b>) good quality, (<b>b</b>) crack, (<b>c</b>) gas porosity, and (<b>d</b>) lack of fusion with a resolution of 224 × 224 pixels.</p> "> Figure 2
<p>Data augmentation: (<b>a</b>) origin image, (<b>b</b>) rotation, (<b>c</b>) flipping, (<b>d</b>) crop, (<b>e</b>) adding Gaussian noise, and (<b>f</b>) adding blur.</p> "> Figure 3
<p>Final schematic of the convolutional neural network (CNN) model for autonomous recognition of LMD build parts quality.</p> "> Figure 4
<p>(<b>a</b>) The accuracy and (<b>b</b>) the loss values of the training and validation dataset for Model 6.</p> "> Figure 5
<p>(<b>a</b>) The accuracy and (<b>b</b>) the loss values of the training and validation dataset for Model 11 using data augmentation, L2 regularization, and dropout.</p> "> Figure 6
<p>Plots of accuracy and loss for (<b>a</b>,<b>b</b>) Model 15, (<b>c</b>,<b>d</b>) Model 16, (<b>e</b>,<b>f</b>) Model 17 and (<b>g</b>,<b>h</b>) Model 18. (<b>a</b>,<b>c</b>,<b>e</b>) and (<b>g</b>) are accuracy plots and (<b>b</b>,<b>d</b>,<b>f</b>) and (<b>h</b>) are loss plots.</p> "> Figure 7
<p>Visualization of the (<b>a</b>) 32 learned filters of the first convolutional layers, (<b>b</b>) 32 feature maps for a crack sample, (<b>c</b>) 32 feature maps for a lack of fusion sample, (<b>d</b>) 32 feature maps for a good sample and (<b>e</b>) 32 feature maps for a gas porosity sample.</p> "> Figure 8
<p>(<b>a</b>–<b>d</b>) Additive manufacturing build metal parts images, (<b>e</b>–<b>h</b>) attention maps corresponding to (<b>a</b>–<b>d</b>).</p> "> Figure 9
<p>Examples of wrongly classified images in the test dataset of metal additive manufacturing defects. Results highlighted in black and red indicate correct and incorrect classification results, respectively. (<b>a</b>) Gas—Good, (<b>b</b>) Gas—LoF, (<b>c</b>) Gas—LoF, (<b>d</b>) LoF—Gas.</p> ">
Abstract
:1. Introduction
2. Additive Manufacturing Parts Inspection
2.1. Sample Preparation
2.2. Preprocessing
2.3. Data Augmentation
2.4. Convolutional Neural Network (CNN) Architecture
2.4.1. Hyper-Parameter Tuning
2.4.2. Training Details
2.4.3. Evaluation Metrics
3. Results and Discussion
3.1. Evaluation of the CNN Architecture
3.2. Impact of Data Augmentation
3.3. Regularization
3.4. Performance Evaluation
3.5. Feature Visualization
3.6. Failure Case Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caggiano, A.; Zhang, J.; Alfieri, V.; Caiazzo, F.; Gao, R.; Teti, R. Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann. 2019, 68, 451–454. [Google Scholar] [CrossRef]
- Carroll, B.E.; Otis, R.A.; Borgonia, J.P.; Suh, J.O.; Dillon, R.P.; Shapiro, A.A.; Hofmann, D.C.; Liu, Z.K.; Beese, A.M. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Mater. 2016, 108, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, A.; Dillon, R.P.; Borgonia, J.P.; Shapiro, A.A.; McEnerney, B.W.; Momose, T.; Hosemann, P. Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing. Mater. Des. 2016, 104, 404–413. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Vilar, R.; Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater. Des. 2012, 41, 338–343. [Google Scholar] [CrossRef]
- Cui, W.; Karnati, S.; Zhang, X.; Burns, E.; Liou, F. Fabrication of AlCoCrFeNi high-entropy alloy coating on an AISI 304 substrate via a CoFe2Ni intermediate layer. Entropy 2019, 21, 2. [Google Scholar] [CrossRef] [Green Version]
- Åkerfeldt, P.; Antti, M.L.; Pederson, R. Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater. Sci. Eng. A 2016, 674, 428–437. [Google Scholar] [CrossRef]
- Åkerfeldt, P.; Pederson, R.; Antti, M.L. A fractographic study exploring the relationship between the low cycle fatigue and metallurgical properties of laser metal wire deposited Ti-6Al-4V. Int. J. Fatigue 2016, 87, 245–256. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, R.; Lu, J.; Mazumder, J. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater. 2015, 84, 172–189. [Google Scholar] [CrossRef]
- Taheri, H.; Rashid Bin, M.; Shoaib, M.; Koester, L.; Bigelow, T.; Collins, P.C. Powder-based additive manufacturing—A review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int. J. Addit. Subtract. Mater. Manuf. 2017, 1, 172–209. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Martin, A.J.; Kroehler, B.; Henderson, A.; Huang, T.; Watts, J.; Hilmas, G.E.; Leu, M.C. Fabricating Functionally Graded Materials by Ceramic on-Demand Extrusion with Dynamic Mixing. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018; pp. 1087–1099. [Google Scholar]
- Ahsan, M.N.; Pinkerton, A.J.; Moat, R.J.; Shackleton, J. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders. Mater. Sci. Eng. A 2011, 528, 7648–7657. [Google Scholar] [CrossRef]
- Li, W.; Ghazanfari, A.; McMillen, D.; Leu, M.C.; Hilmas, G.E.; Watts, J. Characterization of zirconia specimens fabricated by ceramic on-demand extrusion. Ceram. Int. 2018, 44, 12245–12252. [Google Scholar] [CrossRef]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructural classification by deep learning methods. Sci. Rep. 2018, 8, 2128. [Google Scholar] [CrossRef] [PubMed]
- Guan, S. Strip Steel Defect Detection Based on Saliency Map Construction Using Gaussian Pyramid Decomposition. ISIJ Int. 2015, 55, 1950–1955. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.; Liou, F.; Newkirk, J.; Sparks, T. Vision-based defect detection in laser metal deposition process. Rapid Prototyp. J. 2014, 20, 77–85. [Google Scholar] [CrossRef]
- Yi, L.; Li, G.; Jiang, M. An End-to-End Steel Strip Surface Defects Recognition System Based on Convolutional Neural Networks. Steel Res. Int. 2017, 88, 176–187. [Google Scholar] [CrossRef]
- Tao, W.; Leu, M.C.; Yin, Z. American Sign Language alphabet recognition using Convolutional Neural Networks with multiview augmentation and inference fusion. Eng. Appl. Artif. Intell. 2018, 76, 202–213. [Google Scholar] [CrossRef]
- Li, K.; Wu, Z.; Peng, K.C.; Ernst, J.; Fu, Y. Tell Me Where to Look: Guided Attention Inference Network. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9215–9223. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097–1105. [Google Scholar] [CrossRef]
- Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives. Engineering 2019, 5, 721–729. [Google Scholar] [CrossRef]
- Gaja, H.; Liou, F. Defect classification of laser metal deposition using logistic regression and artificial neural networks for pattern recognition. Int. J. Adv. Manuf. Technol. 2018, 94, 315–326. [Google Scholar] [CrossRef]
- Khanzadeh, M.; Chowdhury, S.; Marufuzzaman, M.; Tschopp, M.A.; Bian, L. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 2018, 47, 69–82. [Google Scholar] [CrossRef]
- Gobert, C.; Reutzel, E.W.; Petrich, J.; Nassar, A.R.; Phoha, S. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit. Manuf. 2018, 21, 517–528. [Google Scholar] [CrossRef]
- DeCost, B.L.; Jain, H.; Rollett, A.D.; Holm, E.A. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks. JOM 2017, 69, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Barrera, C.S.; Manjarrez, J. Visual Categorization with Bags of Keypoints. In Proceedings of the Workshop on Statistical Learning in Computer Vision, ECCV, Prague, Czech Republic, 11–14 May 2004; pp. 1–22. [Google Scholar]
- Zhang, J.; Lek, M.M.; Lazebnik, S.; Schmid, C. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. Int. J. Comput. Vis. 2007, 73, 213–238. [Google Scholar] [CrossRef] [Green Version]
- DeCost, B.L.; Francis, T.; Holm, E.A. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 2017, 133, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 2016, 123, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kondo, R.; Yamakawa, S.; Masuoka, Y.; Tajima, S.; Asahi, R. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater. 2017, 141, 29–38. [Google Scholar] [CrossRef]
- Wen, S.; Chen, Z.; Li, C. Vision-based surface inspection system for bearing rollers using convolutional neural networks. Appl. Sci. 2018, 8, 2565. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Bi, Y. Research on Recognition Technology of Aluminum Profile Surface Defects Based on Deep Learning. Materials 2019, 12, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Ge, W.; Liu, Z. Deep Learning-Based Classification of Weld Surface Defects. Appl. Sci. 2019, 9, 3312. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, K.; Xu, J. Periodic Surface Defect Detection in Steel Plates Based on Deep Learning. Appl. Sci. 2019, 9, 3127. [Google Scholar] [CrossRef] [Green Version]
- Azarniya, A.; Colera, X.G.; Mirzaali, M.J.; Sovizi, S.; Bartolomeu, F.; St Weglowski, M.K.; Wits, W.W.; Yap, C.Y.; Ahn, J.; Miranda, G.; et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J. Alloys Compd. 2019, 804, 163–191. [Google Scholar] [CrossRef]
- Yan, L.; Cui, W.; Newkirk, J.W.; Liou, F.; Thomas, E.E.; Baker, A.H.; Castle, J.B. Build Strategy Investigation of Ti-6Al-4V Produced Via a Hybrid Manufacturing Process. JOM 2018, 70, 1706–1713. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2005; International Machine Learning Society (IMLS), 2015; Volume 1, pp. 448–456. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Ding, S.; Liu, Z.; Li, C. AdaBoost learning for fabric defect detection based on HOG and SVM. In Proceedings of the 2011 International Conference on Multimedia Technology (ICMT), Hangzhou, China, 26–28 July 2011; pp. 2903–2906. [Google Scholar]
Powder Size (µm) | Power (W) | Scan Speed (mm/s) | Layer Thickness (mm) |
---|---|---|---|
44–145 | 300–750 | 150–220 | 0.6–1 |
Crack | Gas Porosity | Lack of Fusion | Good | Total |
---|---|---|---|---|
1013 | 1015 | 1005 | 1107 | 4140 |
Model # | Architecture | Time (h:m:s) | Val. Acc. (%) |
---|---|---|---|
1 | C 3 × 3/8, C 3 × 3/16, FC 64 | 0:4:30 | 74.6 |
2 | C 5 × 5/8, C 5 × 5/16, FC 64 | 0:4:46 | 76.7 |
3 | C 3 × 3/16, C 3 × 3/32, C 3 × 3/64, FC 256, FC 64 | 0:4:37 | 79.5 |
4 | C 5 × 5/16, C 5 × 5/32, C 5 × 5/64, FC 256, FC 64 | 0:4:45 | 80.1 |
5 | C 3 × 3/32, C 3 × 3/64, C 3 × 3/128, FC 512, FC 64 | 0:5:43 | 82.5 |
6 | C 5 × 5/32, C 5 × 5/64, C 5 × 5/128, FC 512, FC 64 | 0:6:31 | 83.8 |
Model # | Architecture | Time (h:m:s) | Val. Acc. (%) |
---|---|---|---|
3 | C 3 × 3/16, C 3 × 3/32, C 3 × 3/64, FC 256, FC 64 | 0:10:39 | 81.2 |
4 | C 5 × 5/16, C 5 × 5/32, C 5 × 5/64, FC 256, FC 64 | 0:10:11 | 85.7 |
5 | C 3 × 3/32, C 3 × 3/64, C 3 × 3/128, FC 512, FC 64 | 0:10:37 | 86.7 |
6 | C 5 × 5/32, C 5 × 5/64, C 5 × 5/128, FC 512, FC 64 | 0:11:05 | 87.3 |
Model # | Architecture | L2 | Dropout | Time (h:m:s) | Val. Acc. (%) |
---|---|---|---|---|---|
7 | C 3 × 3/32, C 3 × 3/64, C 3 × 3/128, FC 512, FC 64 | Y(1 × 10−5)|N 1 | Y(0.25)|Y(0.25) | 0:10:43 | 84.4 |
8 | Y(1 × 10−5)|Y(1 × 10−5) | Y(0.25)|Y(0.25) | 0:11:05 | 82.5 | |
9 | Y(1 × 10−5)|Y(1 × 10−5) | N|N | 0:10:47 | 77.6 | |
10 | N|N | Y(0.25)|Y(0.25) | 0:10:56 | 81.2 | |
11 | C 5 × 5/32, C 5 × 5/64, C 5 × 5/128, FC 512, FC 64 | Y(1 × 10−5)|N | Y(0.25)|Y(0.25) | 0:10:24 | 88.7 |
12 | Y(1 × 10−5)|Y(1 × 10−5) | Y(0.25)|Y(0.25) | 0:10:29 | 87.5 | |
13 | Y(1 × 10−5)|Y(1 × 10−5) | N|N | 0:10:17 | 73.2 | |
14 | N|N | Y(0.25)|Y(0.25) | 0:10:10 | 87.8 |
Model # | Architecture | Dropout | Time (h:m:s) | Val. Acc. (%) |
---|---|---|---|---|
15 | C 5 × 5/32, C 5 × 5/64, C 5 × 5/128, FC 512, FC 64 | Y(0.5)|Y(0.5) | 1:43:43 | 87.5 |
16 | Y(0.25)|Y(0.25) | 1:46:32 | 94.3 | |
17 | Y(0.1)|Y(0.1) | 1:41:56 | 92.7 | |
18 | Y(0.1)|Y(0.25) | 1:43:04 | 90.7 |
Class | Precision | Recall | F Score |
---|---|---|---|
Crack | 0.94 | 0.95 | 0.945 |
Gas porosity | 0.91 | 0.87 | 0.891 |
Good quality | 0.96 | 0.94 | 0.949 |
Lack of fusion | 0.88 | 0.92 | 0.901 |
Alloys | Good | Lack of Fusion | Crack | Gas Porosity |
---|---|---|---|---|
AlCoCrFeNi alloy | 93.1% | 91.2% | 94.9% | 88.5% |
Ti-6Al-4V | 95.1% | 88.7% | 93.7% | 88.3% |
AISI 304 stainless steel | 96.4% | 89.3% | 94.8% | 90.4% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Zhang, Y.; Zhang, X.; Li, L.; Liou, F. Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network. Appl. Sci. 2020, 10, 545. https://doi.org/10.3390/app10020545
Cui W, Zhang Y, Zhang X, Li L, Liou F. Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network. Applied Sciences. 2020; 10(2):545. https://doi.org/10.3390/app10020545
Chicago/Turabian StyleCui, Wenyuan, Yunlu Zhang, Xinchang Zhang, Lan Li, and Frank Liou. 2020. "Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network" Applied Sciences 10, no. 2: 545. https://doi.org/10.3390/app10020545
APA StyleCui, W., Zhang, Y., Zhang, X., Li, L., & Liou, F. (2020). Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network. Applied Sciences, 10(2), 545. https://doi.org/10.3390/app10020545