Seed Dressing Containing Gibberellic Acid, Indole-3-Acetic Acid, and Brassinolide Improves Maize Seed Germination and Seedling Growth Under Cold Stress
<p>Maize was grown in plastic containers in a climate chamber. (<b>a</b>) Aerial view of the container; (<b>b</b>,<b>c</b>) side view of the container in a climate chamber.</p> "> Figure 2
<p>Effects of GA-IAA-BL WP on the germination rate at different temperatures. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. The A, B, and C lettering indicates differences between temperatures under the same treatment (<span class="html-italic">p</span> < 0.05). Lowercase letters (a and b) indicate significant differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Effect of GA-IAA-BL WP on maize seedling growth at different temperatures.</p> "> Figure 4
<p>Effect of GA-IAA-BL WP on maize seedling shoot (<b>a</b>) and root (<b>b</b>) growth at different temperatures. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. The A, B, and C lettering indicates differences between temperatures under the same treatment (<span class="html-italic">p</span> < 0.05). Lowercase letters (a, b, c, and d) indicate significant differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Effect of temperature and GA-IAA-BL WP seed dressing on the root–shoot ratio of maize seedlings. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. The A, B, and C lettering indicates differences between temperatures under the same treatment (<span class="html-italic">p</span> < 0.05). Lowercase letters (a, b, and c) indicate differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Effect of temperature and GA-IAA-BL WP seed dressing on dry and fresh weights of maize seedling shoots (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>) and roots (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>). The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. Lowercase letters (a, b, c, and d) indicate differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Effect of temperature and GA-IAA-BL WP on enzymes. Superoxide dismutase (SOD) (<b>a</b>–<b>c</b>), catalase (CAT) (<b>d</b>–<b>f</b>), and peroxidase (POD) (<b>g</b>–<b>i</b>) activity in maize seedling shoots and roots. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. Lowercase letters (a, b, c, and d) indicate differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05). A0–A4 indicate the GA-IAA-BL WP concentration: 0, 50, 100, 150, and 200 mg mL<sup>−1</sup>, respectively.</p> "> Figure 8
<p>Effect of temperature and GA-IAA-BL WP on proline (Pro) (<b>a</b>–<b>c</b>) and malondialdehyde (MDA) (<b>d</b>–<b>f</b>) in maize seedling shoots and roots. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. Lowercase letters (a, b, c, and d) indicate differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05). A0–A4 indicate the GA-IAA-BL WP concentration: 0, 50, 100, 150, and 200 mg mL<sup>−1</sup>, respectively.</p> "> Figure 9
<p>Effect of temperature and GA-IAA-BL WP on root soluble sugar concentration (<b>a</b>), root soluble protein concentration (<b>b</b>), and root vigor (TTC) (<b>c</b>) of maize seedlings. The bars represent the mean ± SE, <span class="html-italic">n</span> = 50 replicates. The A, B, and C lettering indicates differences between temperatures under the same treatment (<span class="html-italic">p</span> < 0.05). Lowercase letters (a, b, c, and d) indicate differences between GA-IAA-BL WP treatments at the same temperature (<span class="html-italic">p</span> < 0.05).</p> "> Figure 10
<p>Structural equation modeling (SEM) of the effect of GA-IAA-BL WP and temperature on maize seed germination and seedling growth. Blue arrows indicate negative correlations, and red arrows indicate positive correlations between variables (* <span class="html-italic">p</span> < 0.05). The black dotted line indicates no significant correlation (<span class="html-italic">p</span> > 0.05). A1–A4 indicate the GA-IAA-BL WP concentration: 50, 100, 150, and 200 mg mL<sup>−1</sup>, respectively. Organic matter accumulation includes the dry and fresh weights of maize seedling shoots and roots. Antioxidant enzyme activity includes catalase, superoxide dismutase, and peroxidase.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Maize Seeds
2.2. Seed Dressing Treatments
2.3. Maize Culture
2.4. Determination of Physiological Parameters
2.5. Statistical Analysis
3. Results
3.1. Germination Rate, Seedling Shoot, and Root Length
3.2. Root–Shoot Ratio
3.3. Maize Seedling Shoot and Root Dry and Fresh Weights
3.4. Antioxidant Enzyme Activity in Maize Seedlings
3.5. Pro and MDA Content of Maize Seedlings
3.6. Root Soluble Sugar, Soluble Protein Concentrations, and Root Vigor
3.7. Pathways by Which GA-IAA-BL WP and Temperature Affect Maize Seed Germination and Seedling Shoot Growth
4. Discussion
4.1. Low Temperatures Inhibit Maize Seed Germination and Seedling Growth
4.2. Appropriate GA-IAA-BL WP Treatment Reduces the Negative Effect of Low-Temperature Stress on Maize Seed Germination and Seedling Growth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Y.F.; Ma, L.; Li, J.C.; Hou, D.P.; Zeng, B.; Zhang, L.K.; Liu, C.Q.; Bi, Q.Y.; Tan, J.S.; Yu, X.Q.; et al. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. Plants 2024, 13, 1319. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Zheng, X.M.; Zhou, G.M.; Zhang, J.H. SGR-YOLO: A method for detecting seed germination rate in wild rice. Front. Plant Sci. 2024, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Zhu, H.Y.; He, Y.D.; Ochola, A.C.; Qiong, L.; Yang, C.F. Mother-reliant or self-reliant: The germination strategy of seeds in a species-rich alpine meadow is associated with the existence of pericarps. Ann. Bot. 2024, 134, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.F.; He, X.Y.; Wang, N.; Liu, J.; Zhou, Z.C. The Impact of Water Potential and Temperature on Native Species’ Capability for Seed Germination in the Loess Plateau Region, China. Plants 2024, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Suo, R.Z.; Kulbir, S.; You, F.; Conner, R.; Cober, E.; Wang, M.J.; Hou, A.F. Low temperature and excess moisture affect seed germination of soybean (Glycine max L.) under controlled environments. Can. J. Plant Sci. 2024, 104, 375–387. [Google Scholar] [CrossRef]
- Jeammuangpuk, P.; Promchote, P.; Duangpatra, J.; Chaisan, T.; Onwimol, D.; Kvien, C.K. Enhancement of Tainan 9 Peanut Seed Storability and Germination under Low Temperature. Int. J. Agron. 2020, 2020, 8. [Google Scholar] [CrossRef]
- Baker, A.; Lin, C.C.; Lett, C.; Karpinska, B.; Wright, M.H.; Foyer, C.H. Catalase: A critical node in the regulation of cell fate. Free Radic. Biol. Med. 2023, 199, 56–66. [Google Scholar] [CrossRef]
- Qu, K.J.; Wang, J.Q.; Cheng, Y.K.; Bai, B.; Xia, X.C.; Geng, H.W. Identification of quantitative trait loci and candidate genes for grain superoxide dismutase activity in wheat. BMC Plant Biol. 2024, 24, 8. [Google Scholar] [CrossRef]
- Liu, N.; Lin, Z.F.; Guan, L.L.; Gaughan, G.; Lin, G.Z. Antioxidant Enzymes Regulate Reactive Oxygen Species during Pod Elongation in Pisum sativum and Brassica chinensis. PLoS ONE 2014, 9, 9. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Rauf, F.; Tania, S.S.; Bayazid, N.; Tahjib-ul-Arif, M.; Robin, A.H.K.; Hoque, M.A.; Yang, X.H.; Murata, Y.; Brestic, M. Proline and glycine betaine: A dynamic duo for enhancing salt stress resilience in maize by regulating growth, Stomatal size, and Oxidative stress responses. Plant Stress 2024, 14, 11. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, J.Y.; Li, W.Q.; Gao, X.H.; Xu, X.R.; Zhang, C.Y.; Yu, S.; Dou, Y.; Luo, W.Q.; Yu, L.H. Transcriptome Analysis Reveals POD as an Important Indicator for Assessing Low-Temperature Tolerance in Maize Radicles during Germination. Plants 2024, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Y.; Hu, Y.F.; Gao, Y.; Wang, G.; Tai, B.W.; Yang, B.L.; Xing, F.G. Effects of Aspergillus flavus infection on multi-scale structures and physicochemical properties of maize starch during storage. Carbohydr. Polym. 2024, 342, 12. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Fan, Y.Y.; Tian, X.; Wang, Q.Y.; Wang, Z.L.; Fan, S.X.; Huang, W.Q. Green analytical assay for the viability assessment of single maize seeds using double-threshold strategy for catalase activity and malondialdehyde content. Food Chem. 2024, 455, 12. [Google Scholar] [CrossRef]
- Monajjem, S.; Soltani, E.; Zainali, E.; Esfahani, M.; Ghaderi-Far, F.; Chaleshtori, M.H.; Rezaei, A. Seed Priming Improves Enzymatic and Biochemical Performances of Rice During Seed Germination under Low and High Temperatures. Rice Sci. 2023, 30, 335–347. [Google Scholar] [CrossRef]
- Bian, J.Y.; Guo, X.Y.; Lee, D.H.; Sun, X.R.; Liu, L.S.; Shao, K.; Liu, K.; Sun, H.N.; Kwon, T. Non-thermal plasma enhances rice seed germination, seedling development, and root growth under low-temperature stress. Appl. Biol. Chem. 2024, 67, 11. [Google Scholar] [CrossRef]
- Abadía, M.B.; Castillo, L.A.; Alonso, Y.N.; Monterubbianesi, M.G.; Maciel, G.; Bartosik, R.E. Germination and Vigor of Maize Seeds: Pilot-Scale Comparison of Low-Oxygen and Traditional Storage Methods. Agriculture 2024, 14, 1268. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Tian, X.; Lin, X.; Han, Y.; Han, Z.; Sha, H.; Liu, J.; Liu, J.; Zhang, J.; et al. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nat. Commun. 2024, 15, 2211. [Google Scholar] [CrossRef]
- Brown, C.H.; Gulden, R.H.; Shirtliffe, S.J.; Vail, S.L. The evaluation of secondary seed dormancy potentials of spring Brassica napus L. genotypes and the relationship with seed germination, vigor, and seed quality traits. Crop Sci. 2024, 64, 1542–1558. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Wang, Z.S.; Feng, G.Z.; Gao, Q.; Li, X.N. Induction of Low Temperature Tolerance in Wheat by Pre-Soaking and Parental Treatment with Melatonin. Molecules 2021, 26, 1192. [Google Scholar] [CrossRef]
- Tudela-Isanta, M.; Fernández-Pascual, E.; Wijayasinghe, M.; Orsenigo, S.; Rossi, G.; Pritchard, H.W.; Mondoni, A. Habitat-related seed germination traits in alpine habitats. Ecol. Evol. 2018, 8, 150–161. [Google Scholar] [CrossRef]
- Liu, S.K.; Wu, B.Y.; Niu, B.; Xu, F.Y.; Yin, L.A.; Wang, S.W. Regional suitability assessment for different tillage practices in Northeast China: A machine learning aided meta-analysis. Soil. Tillage Res. 2024, 240, 10. [Google Scholar] [CrossRef]
- Cui, C.; Wu, J.Z.; Zhang, Q.; Yu, L.; Sun, X.R.; Liu, C.L.; Yang, Y. Maturity detection of single maize seeds based on hyperspectral imaging and transfer learning. Infrared Phys. Technol. 2024, 138, 9. [Google Scholar] [CrossRef]
- Zou, T.H.; Chang, Y.X.; Chen, P.; Liu, J.F. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 10. [Google Scholar] [CrossRef]
- Huang, S.J.; Wang, H.; Li, Z.; Wang, Z.H.; Ma, T.; Song, R.F.; Lu, M.H.; Han, X.; Zhang, Y.T.; Wang, Y.T.; et al. Risk effects of meteorological factors on human brucellosis in Jilin province, China, 2005-2019. Heliyon 2024, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Matchaya, G.C.; Tadesse, G.; Kuteya, A.N. Rainfall shocks and crop productivity in Zambia: Implication for agricultural water risk management. Agric. Water Manag. 2022, 269, 9. [Google Scholar] [CrossRef]
- Guo, S.S.; Yang, Y.T.; Guo, P. An integrated distributed robust optimization framework for agricultural water-food-energy management integrating ecological impact and dynamic water cycle processes. J. Hydrol. 2023, 624, 19. [Google Scholar] [CrossRef]
- Odjo, S.; Béra, F.; Beckers, Y.; Foucart, G.; Malumba, P. Influence of variety, harvesting date and drying temperature on the composition and the In Vitro digestibility of corn grain. J. Cereal Sci. 2018, 79, 218–225. [Google Scholar] [CrossRef]
- Kaur, S.; Kumari, A.; Sharma, N.; Pandey, A.K.; Garg, M. Physiological and molecular response of colored wheat seedlings against phosphate deficiency is linked to accumulation of distinct anthocyanins. Plant Physiol. Biochem. 2022, 170, 338–349. [Google Scholar] [CrossRef]
- Du, Z.H.; Yang, L.; Zhang, D.X.; Cui, T.; He, X.T.; Xiao, T.P.; Li, H.S.; Xing, S.L.; Xie, C.J. Optimizing maize planting density based on soil organic matter to achieve synergistic improvements of yield, economic benefits, and resource use efficiency. Sci. Total Environ. 2024, 906, 13. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhang, G.Q.; Li, R.F.; Wang, K.R.; Ming, B.; Hou, P.; Xie, R.Z.; Xue, J.; Li, S.K. Pathways to increase maize yield in Northwest China: A multi-year, multi-variety analysis. Eur. J. Agron. 2023, 149, 11. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.J.; Yoo, N.; Kim, J.D.; Choi, J. A peptide encoded by a highly conserved gene belonging to the genus Streptomyces shows antimicrobial activity against plant pathogens. Front. Plant Sci. 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; Nawaz, M.A.; Wei, N.N.; Cheng, F.; Bie, Z.L. Suboptimal Temperature Acclimation Enhances Chilling Tolerance by Improving Photosynthetic Adaptability and Osmoregulation Ability in Watermelon. Hortic. Plant J. 2020, 6, 49–60. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, L.; Cui, Y.N.; Wang, S.M.; Bao, A.K. Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis. BMC Plant Biol. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Feng, H.; Zhang, T.B.; Wu, L.H.; Dong, Q.G.; Siddique, K.H.M. Response of soil water, temperature, and maize productivity to different irrigation practices in an arid region. Soil Tillage Res. 2024, 237, 12. [Google Scholar] [CrossRef]
- Placido, D.F.; McMahan, C.; Lee, C.C. Wounding and cold stress increase resin and rubber production of Parthenium argentatum cultivar G711. Ind. Crops Prod. 2023, 193, 6. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kang, M.; Kim, K.R. Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses. Sci. Total Environ. 2022, 805, 19. [Google Scholar] [CrossRef]
- Ding, F.; Wang, C.; Xu, N.; Wang, M.L.; Zhang, S.X. Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Sci. Hortic. 2021, 288, 8. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, D.M.; Wang, Q.; Song, X.Y.; Wang, Y.B.; Yang, X.L.; Qin, D.L.; Xie, T.L.; Yang, D.G. Exogenous Salicylic Acid Improves Chilling Tolerance in Maize Seedlings by Improving Plant Growth and Physiological Characteristics. Agronomy 2021, 11, 1341. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Liu, P.; Zou, C.Y.; Chen, Z.; Yuan, G.S.; Gao, S.B.; Pan, G.T.; Shen, Y.U.; Ma, L.L. Comprehensive analysis of transcriptional data on seed germination of two maize inbred lines under low-temperature conditions. Plant Physiol. Biochem. 2023, 201, 7. [Google Scholar] [CrossRef]
- Hussain, S.; Kim, S.H.; Bahk, S.; Ali, A.; Nguyen, X.C.; Yun, D.J.; Chung, W.S. The Auxin Signaling Repressor IAA8 Promotes Seed Germination Through Down-Regulation of ABI3 Transcription in Arabidopsis. Front. Plant Sci. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Chagan, Z.; Nakata, G.; Suzuki, S.; Yamagami, A.; Tachibana, R.; Surina, S.; Fujioka, S.; Matsui, M.; Kushiro, T.; Miyakawa, T.; et al. BRZ-INSENSITIVE-LONG HYPOCOTYL8 inhibits kinase-mediated phosphorylation to regulate brassinosteroid signaling. Plant Physiol. 2024, 195, 2389–2405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.P.; Ouyang, J.; Wei, J.F.; Sun, J.; Xia, A.P.; Zuo, J. The role of 0.136% Gibberellic Acid·ndol-3-ylacetic Acid. Brassinolide WPEcological Comprehensive Technology in Wheat Planting. World Pestic. 2019, 41, 53–57. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.P.; Xia, A.P.; Chen, X.J.; Zuo, J.; Bai, Y.J.; Hu, R.J. Application of GA·AA·BR 0.136% WP in corn and soybean strip compound planting field. World Pestic. 2024, 46, 43–48. [Google Scholar] [CrossRef]
- Fan, J.; Shi, M.; Huang, J.Z.; Xu, J.; Wang, Z.D.; Guo, D.P. Regulation of photosynthetic performance and antioxidant capacity by 60Co γ-irradiation in Zizania latifolia plants. J. Environ. Radioact. 2014, 129, 33–42. [Google Scholar] [CrossRef]
- He, J.N.; Duan, Y.; Hua, D.P.; Fan, G.J.; Wang, L.; Liu, Y.; Chen, Z.Z.; Han, L.H.; Qu, L.J.; Gong, Z.Z. DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling. Plant Cell 2012, 24, 1815–1833. [Google Scholar] [CrossRef]
- Simsek, S.D.G.; Terzi, R.; Guler, N.S. Lipoic Acid Can Maintain Stimulation of the Antioxidant System at Lower Reactive Oxygen Species, Ascorbate and Glutathione Levels in Osmotic Stressed Maize. Russ. J. Plant Physiol. 2024, 71, 12. [Google Scholar] [CrossRef]
- Almasian, N.; Ebrahimi, A.; Diyanat, M.; Nezhad, R.A.; Khosrowshahli, M. Synthesis and investigation of nano-biologic structures’ effect on soil pathogenic fungi in maize. Physiol. Mol. Plant Pathol. 2024, 133, 10. [Google Scholar] [CrossRef]
- Jiao, Q.J.; Shen, F.M.; Fan, L.A.; Song, Z.H.; Zhang, J.J.; Song, J.; Fahad, S.; Liu, F.; Zhao, Y.; Tian, Z.Q.; et al. Chitosan Regulates the Root Architecture System, Photosynthetic Characteristics and Antioxidant System Contributing to Salt Tolerance in Maize Seedling. Agriculture 2024, 14, 304. [Google Scholar] [CrossRef]
- Hussain, H.; Naeem, R.; Khattak, B.; Rehman, Z.U.; Khan, N.; Qureshi, M.K.; Deeba, F.; Ali, I.; Khan, M.D. Physiological and Metabolic Changes in Maize Seedlings in Response to Bisphenol A Stress. J. Soil Sci. Plant Nutr. 2023, 23, 6551–6572. [Google Scholar] [CrossRef]
- Dai, S.; Chen, Q.; Jiang, M.; Wang, B.Q.; Xie, Z.M.; Yu, N.; Zhou, Y.L.; Li, S.; Wang, L.Y.; Hua, Y.J.; et al. Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice. Environ. Pollut. 2021, 284, 13. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef]
- Bari, M.A.; Akther, M.S.; Abu Reza, M.; Kabir, A.H. Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiol. Biochem. 2019, 136, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.J.; Wen, D.X.; Zhang, C.Q. Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Front. Plant Sci. 2022, 13, 13. [Google Scholar] [CrossRef]
- Imran, M.; Mahmood, A.; Römheld, V.; Neumann, G. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur. J. Agron. 2013, 49, 141–148. [Google Scholar] [CrossRef]
- Tiwari, M.; Kumar, R.; Subramanian, S.; Doherty, C.J.; Jagadish, S.V.K. Auxin-cytokinin interplay shapes root functionality under low-temperature stress. Trends Plant Sci. 2023, 28, 447–459. [Google Scholar] [CrossRef]
- Lu, H.D.; Xia, Z.Q.; Fu, Y.F.; Wang, Q.; Xue, J.Q.; Chu, J. Response of Soil Temperature, Moisture, and Spring Maize (Zea mays L.) Root/Shoot Growth to Different Mulching Materials in Semi-Arid Areas of Northwest China. Agronomy 2020, 10, 453. [Google Scholar] [CrossRef]
- Xia, Z.Q.; Zhang, S.B.; Wang, Q.; Zhang, G.X.; Fu, Y.F.; Lu, H.D. Effects of Root Zone Warming on Maize Seedling Growth and Photosynthetic Characteristics Under Different Phosphorus Levels. Front. Plant Sci. 2021, 12, 11. [Google Scholar] [CrossRef]
- Zhao, X.C.; Wei, Y.L.; Zhang, J.J.; Yang, L.; Liu, X.Y.; Zhang, H.Y.; Shao, W.J.; He, L.; Li, Z.T.; Zhang, Y.F.; et al. Membrane Lipids’ Metabolism and Transcriptional Regulation in Maize Roots Under Cold Stress. Front. Plant Sci. 2021, 12, 13. [Google Scholar] [CrossRef]
- Walne, C.H.; Reddy, K.R. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.Q.; Shen, Y.F.; Yue, S.C. Film mulching affects root growth and function in dryland maize-soybean intercropping. Field Crops Res. 2021, 271, 15. [Google Scholar] [CrossRef]
- Qian, B.X.; Huang, W.J.; Xie, D.H.; Ye, H.C.; Guo, A.T.; Pan, Y.H.; Jin, Y.; Xie, Q.Y.; Jiao, Q.J.; Zhang, B.Y.; et al. Coupled maize model: A 4D maize growth model based on growing degree days. Comput. Electron. Agric. 2023, 212, 17. [Google Scholar] [CrossRef]
- Kumari, A.; Lakshmi, G.A.; Krishna, G.K.; Patni, B.; Prakash, S.; Bhattacharyya, M.; Singh, S.K.; Verma, K.K. Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy 2022, 12, 3008. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.P.; Fahad, S. Improved Nitrogen Use Efficiency and Greenhouse Gas Emissions in Agricultural Soils as Producers of Biological Nitrification Inhibitors. Front. Plant Sci. 2022, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, L.Y.; Zhu, P.; Xu, H. Transcriptome profiling provides insight into root development at low temperature by chimeric metacaspase for directing Pep1 formation. Environ. Exp. Bot. 2023, 210, 8. [Google Scholar] [CrossRef]
- Chen, S.T.; Qiu, G.L. Overexpression of the intertidal seagrass J protein ZjDjB1 enhances tolerance to chilling injury. Plant Biotechnol. Rep. 2022, 16, 419–435. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liang, Y.H.; Zhang, S.M.; Xu, Q.Y.; Di, H.; Zhang, L.; Dong, L.; Hu, X.E.; Zeng, X.; Liu, X.J.; et al. Global Landscape of Alternative Splicing in Maize Response to Low Temperature. J. Agric. Food Chem. 2022, 70, 15715–15725. [Google Scholar] [CrossRef]
- Cui, L.; Guo, F.; Zhang, J.L.; Yang, S.; Meng, J.J.; Geng, Y.; Li, X.G.; Wan, S.B. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci. Rep. 2019, 9, 11. [Google Scholar] [CrossRef]
- Milovic, M.; Kevresan, Z.; Mastilovic, J.; Kovac, R.; Kalajdzic, J.; Magazin, N.; Bajic, A.; Milic, B.; Barac, G.; Keserovic, Z. Could an Early Treatment with GA and BA Impact Prolonged Cold Storage and Shelf Life of Apricot? Horticulturae 2022, 8, 1220. [Google Scholar] [CrossRef]
- Correia, S.; Queirós, F.; Ribeiro, C.; Vilela, A.; Aires, A.; Barros, A.I.; Schouten, R.; Silva, A.P.; Gonçalves, B. Effects of calcium and growth regulators on sweet cherry (Prunus avium L.) quality and sensory attributes at harvest. Sci. Hortic. 2019, 248, 231–240. [Google Scholar] [CrossRef]
- Elhindi, K.M.; Dewir, Y.H.; Asrar, A.W.; Abdel-Salam, E.; El-Din, A.S.; Ali, M. Improvement of Seed Germination in Three Medicinal Plant Species by Plant Growth Regulators. Hortscience 2016, 51, 887–891. [Google Scholar] [CrossRef]
- Song, J.Y.; Chen, Y.T.; Jiang, G.S.; Zhao, J.Y.; Wang, W.J.; Hong, X.F. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). J. Plant Physiol. 2023, 291, 12. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, T.F.; Rodrigues, A.A.; do Santos, L.S.; da Silva, A.A.; Costa, A.C.D.; Sales, J.D. Physiological performance of brassinolide-conditioned green soybean seeds. S. Afr. J. Bot. 2024, 165, 237–245. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, H.Y.; Liao, S.X.; Cui, K. Appropriate ultra-low seed moisture content stabilizes the seed longevity of Calocedrus macrolepis, associated with changes in endogenous hormones, antioxidant enzymes, soluble sugars and unsaturated fatty acids. New For. 2019, 50, 455–468. [Google Scholar] [CrossRef]
- Li, C.X.; Dong, S.Y.; Beckles, D.M.; Miao, H.; Sun, J.Q.; Liu, X.P.; Wang, W.P.; Zhang, S.P.; Gu, X.F. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. Theor. Appl. Genet. 2022, 135, 2593–2607. [Google Scholar] [CrossRef]
- Abdulhafiz, F.; Mohammed, A.; Kayat, F.; Zakaria, S.; Hamzah, Z.; Pamuru, R.R.; Gundala, P.B.; Reduan, M.F.H. Micropropagation of Alocasia longiloba Miq and Comparative Antioxidant Properties of Ethanolic Extracts of the Field-Grown Plant, In Vitro Propagated and In Vitro-Derived Callus. Plants 2020, 9, 816. [Google Scholar] [CrossRef]
- Saffari, P.; Majd, A.; Jonoubi, P.; Najafi, F. Effect of treatments on seed dormancy breaking, seedling growth, and seedling antioxidant potential of Agrimonia eupatoria L. J. Appl. Res. Med. Aromat. Plants 2021, 20, 7. [Google Scholar] [CrossRef]
- Al-Farsi, S.M.; Nawaz, A.; Anees Ur, R.; Nadaf, S.K.; Al-Sadi, A.M.; Siddique, K.H.M.; Farooq, M. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop Pasture Sci. 2020, 71, 411–428. [Google Scholar] [CrossRef]
- Duhan, L.; Manoharlal, R.; Kumar, D.; Kumari, D.; Saini, M.; Saiprasad, G.V.S.; Chhillar, A.K.; Pasrija, R. Phytohormones mediated antifungal resistance against Fusarium oxysporum. Acta Physiol. Plant 2024, 46, 17. [Google Scholar] [CrossRef]
- Xia, J.; Hao, X.Z.; Wang, T.A.; Li, H.Q.; Shi, X.J.; Liu, Y.C.; Luo, H.H. Seed Priming with Gibberellin Regulates the Germination of Cotton Seeds Under Low-Temperature Conditions. J. Plant Growth Regul. 2023, 42, 319–334. [Google Scholar] [CrossRef]
- Ge, J.; Cheng, J.J.; Li, Y.; Li, Q.X.; Yu, X.Y. Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica rapa var. chinensis. Environ. Res. 2020, 189, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Gu, W.R.; Zhang, Q.; Tian, L.X.; Guo, S.; Wei, S. Exogenous application of 5-aminolevulinic acid improves low- temperature stress tolerance of maize seedlings. Crop Pasture Sci. 2018, 69, 587–593. [Google Scholar] [CrossRef]
Concentration (mg mL−1) | Target Variable | Loading Coefficient | Temperature (℃) | Target Variable | Loading Coefficient | ||
---|---|---|---|---|---|---|---|
50 | × | Organic matter accumulation | 0.39 | 10 | × | Organic matter accumulation | −0.16 |
100 | 0.57 | 15 | 0.45 | ||||
150 | 0.45 | 20 | 0.78 | ||||
200 | 0.35 | ||||||
50 | × | Antioxidant enzyme activity | 0.27 | 10 | × | Antioxidant enzyme activity | −0.82 |
100 | 0.42 | 15 | −0.59 | ||||
150 | 0.39 | 20 | 0.21 | ||||
200 | 0.36 | ||||||
50 | × | Root vigor | 0.28 | 10 | × | Root vigor | −0.43 |
100 | 0.39 | 15 | −0.25 | ||||
150 | 0.33 | 20 | 0.46 | ||||
200 | 0.31 | ||||||
50 | × | Maize seed germination rate, shoot and root length | 0.34 | 10 | × | Maize seed germination rate, shoot and root length | −0.22 |
100 | 0.47 | 15 | 0.65 | ||||
150 | 0.38 | 20 | 0.95 | ||||
200 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhang, L.; Li, Q.; Qi, Y.; Ma, J.; Guo, D.; Zhang, P.; Xu, Y.; Gu, Y.; Wang, H. Seed Dressing Containing Gibberellic Acid, Indole-3-Acetic Acid, and Brassinolide Improves Maize Seed Germination and Seedling Growth Under Cold Stress. Agronomy 2024, 14, 2933. https://doi.org/10.3390/agronomy14122933
Cui J, Zhang L, Li Q, Qi Y, Ma J, Guo D, Zhang P, Xu Y, Gu Y, Wang H. Seed Dressing Containing Gibberellic Acid, Indole-3-Acetic Acid, and Brassinolide Improves Maize Seed Germination and Seedling Growth Under Cold Stress. Agronomy. 2024; 14(12):2933. https://doi.org/10.3390/agronomy14122933
Chicago/Turabian StyleCui, Jingjing, Liqiang Zhang, Qianqian Li, Yuan Qi, Jiajun Ma, Danyang Guo, Pengyu Zhang, Yujie Xu, Yan Gu, and Hongyu Wang. 2024. "Seed Dressing Containing Gibberellic Acid, Indole-3-Acetic Acid, and Brassinolide Improves Maize Seed Germination and Seedling Growth Under Cold Stress" Agronomy 14, no. 12: 2933. https://doi.org/10.3390/agronomy14122933
APA StyleCui, J., Zhang, L., Li, Q., Qi, Y., Ma, J., Guo, D., Zhang, P., Xu, Y., Gu, Y., & Wang, H. (2024). Seed Dressing Containing Gibberellic Acid, Indole-3-Acetic Acid, and Brassinolide Improves Maize Seed Germination and Seedling Growth Under Cold Stress. Agronomy, 14(12), 2933. https://doi.org/10.3390/agronomy14122933