Development of Functional Molecular Markers for Viviparous Germination Resistance in Rice
<p>The results of the <span class="html-italic">Sdr4-dm</span> marker experiment. (<b>a</b>) An electrophoresis image of the <span class="html-italic">Sdr4-dm</span> InDel marker with a positive control; bands appear only in individuals with the <span class="html-italic">Sdr4-k</span> homozygous allele and heterozygous genotype, as the marker is dominant. (<b>b</b>) Phenotypic differences observed between individuals with the <span class="html-italic">Sdr4-k</span> and <span class="html-italic">Sdr4-n</span> alleles were noted after incubating the seeds at 32 °C and 100% relative humidity for 7 days. (<b>c</b>) An assessment of the relationship between the <span class="html-italic">Sdr4</span> genotype and viviparous germination rates in the Saeilmi × NRT383 F<sub>2</sub> population (circles represent outliers). Double asterisks (**) indicate a significant difference at the 1% significance level in viviparous germination rates between individuals with the <span class="html-italic">Sdr4-k</span> and <span class="html-italic">Sdr4-n</span> alleles.</p> "> Figure 2
<p>A distribution plot of alleles for the <span class="html-italic">Sdr4</span>-IND KASP marker in the Saeilmi × NRT383 F<sub>2</sub> population. Blue dots represent individuals with the <span class="html-italic">Sdr4-n</span> homozygous allele, green dots indicate heterozygous individuals, and red dots represent individuals with the <span class="html-italic">Sdr4-k</span> homozygous allele. The two black squares on the bottom left represent the NTC (No-Template Control), which ensures there is no contamination or non-specific amplification during the KASP marker assay.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Phenotyping
2.2. Extraction of Genomic DNA
2.3. Developing the Molecular Markers
2.4. Genotype Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Results of Agarose Gel-Based InDel Marker Assay Specific to Sdr4 Alleles
3.2. The Results from the Sdr4 Gene KASP Marker Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Ham, T.-H.; Kwon, S.-W. Fine-Mapping Analysis of the Genes Associated with Pre-Harvest Sprouting Tolerance in Rice (Oryza sativa L.). Agronomy 2023, 13, 818. [Google Scholar] [CrossRef]
- Kim, S.J.; Won, J.G.; Ahn, D.J.; Park, S.D.; Choi, C.D. Influence of viviparous germination on quality and yield in rice. Korean J. Crop Sci. 2008, 53, 15–18. [Google Scholar]
- Cheon, K.-S.; Baek, J.; Cho, Y.I.; Jeong, Y.-M.; Lee, Y.-Y.; Oh, J.; Won, Y.J.; Kang, D.-Y.; Oh, H.; Kim, S.L.; et al. Single nucleotide polymorphism (SNP) discovery and kompetitive allele-specific PCR (KASP) marker development with Korean japonica rice varieties. Plant Breed. Biotech. 2018, 6, 391–403. [Google Scholar] [CrossRef]
- Tang, W.; Lin, J.; Wang, Y.; An, H.; Chen, H.; Pan, G.; Zhang, S.; Guo, B.; Yu, K.; Li, H.; et al. Selection and validation of 48 KASP markers for variety identification and breeding guidance in conventional and hybrid rice (Oryza sativa L.). Rice 2022, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Nakata, E.; Nagato, Y. Characterization of viviparous mutants in rice. Breed. Sci. 2000, 50, 207–213. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.M.; Hwang, Y.S.; Shin, Y.S.; Nam, M.H.; Kim, D.Y.; Yoon, I.S. Comparative transcriptome profiling of developing caryopses from two rice cultivars with differential dormancy. J. Plant Physiol. 2013, 170, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J. 2021, 9, 68–78. [Google Scholar] [CrossRef]
- Shilpha, J.; Satish, L.; Ramesh, M. Seed Dormancy and Pre-Harvest Sprouting in Rice—An Updated Overview. Int. J. Mol. Sci. 2021, 22, 11804. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Takeuchi, Y.; Ebana, K.; Miyao, A.; Hirochika, H.; Hara, N.; Ishiyama, K.; Kobayashi, M.; Ban, Y.; Hattori, T.; et al. Molecular cloning of Sdr4, a regulator of seed dormancy, and rice domestication. Proc. Natl. Acad. Sci. USA 2010, 107, 5792–5797. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T.; Konishi, S.; Shomura, A.; Yano, M. DNA changes tell us about rice domestication. Curr. Opin. Plant Biol. 2009, 12, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Hou, X.; Fang, J.; Wei, P.; Xu, B.; Chen, M.; Feng, Y.; Chu, C. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. Plant J. 2013, 75, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, Z.; Wang, Y.; Sun, W.; Tang, X.; Sun, Y.; Yu, S. Genetic dissection of seed dormancy in rice using two mapping populations derived from common parents. Rice 2020, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, S.; Satish, L.; Ramesh, M. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.). BMC Genom. Data 2021, 22, 32. [Google Scholar] [CrossRef]
- Kovach, M.J.; Sweeney, M.T.; McCouch, S.R. New insights into the history of rice domestication. Trends Genet. 2007, 23, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.Y.; Kianian, S.F.; Foley, M.E. Dormancy genes from weedy rice respond divergently to seed development environments. Genetics 2006, 172, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Jatayev, S.; Kurishbayev, A.; Zotova, L.; Khasanova, G.; Serikbay, D.; Zhubatkanov, A.; Botayeva, M.; Zhumalin, A.; Turbekova, A.; Soole, K. Advantages of Amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol. 2017, 17 (Suppl. S2), 254. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yao, W.; Ouyang, X.; Wang, P.; Zhu, L.; Zhang, Y.; Xue, D. Genetic and molecular characterization of seed dormancy and pre-harvest sprouting in rice (Oryza sativa L.). J. Integr. Plant Biol. 2022, 64, 1342–1358. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Zhou, C.L.; Zhang, T.Y.; Yu, J.F.; Miao, R.; Huang, Y.S.; Zhu, X.J.; Song, W.H.; Liu, X.; Mou, C.L.; et al. Identification of QTL for Seed Dormancy from Weedy Rice and Its Application to Elite Rice Cultivar ‘Ninggeng 4’. Mol. Breed. 2019, 39, 123. [Google Scholar] [CrossRef]
- Korean Meteorological Administration (KMA). 2023 Regional Climate Change Projection Report: Climate Change Projections Under SSP Scenarios. 2023. Available online: http://www.climate.go.kr/home/CCS/contents_2021/36_fcstReport.php (accessed on 12 November 2024).
Assay Name | Primer Sequence | GC Content (%) | ||
---|---|---|---|---|
Sdr4-dm | Forward | Reverse | Forward | Reverse |
TGGAGCCGAAGGTCATCTC | CTTGTACGCGTCGTTCACC | 57.9 | 57.9 |
Sequence Not Detected by Sdr4-dm (Sdr4-n) | Sdr4-dm Forward Sequence (Sdr4-k) | Sdr4-dm Reverse Sequence (Common) |
---|---|---|
TGGAGCCGCGGAAGCTGCTGGA | TGGAGCCG-–-AAGGTCATCTC | GGTGAACGACGCGTACAAG |
Assay Name | Allele Sequence | Primer Sequence | GC Content (%) | |||||
---|---|---|---|---|---|---|---|---|
Sdr4-IND | X | Y | X (FAM) | Y (HEX) | Common | X | Y | Common |
CGGAAGCTGCTGGA | AAGGTCATCTC | GGAAGCTGCTGGAGCCGC | CGGAAGCTGCTGAGCCGA | GATGTGGACTGACTCGACGTGGAT | 72.2 | 68.4 | 54.2 |
Metric | Genotype | |
---|---|---|
Sdr4-k | Sdr4-n | |
Mean Viviparous Germination Rate (%) | 5.6 | 49.2 |
Variance | 50.51 | 607.67 |
Pearson Correlation Coefficient | 0.74 | |
p-value | 3.31−8 |
Source | Ecotype | Genotype | |
---|---|---|---|
Sdr4-n | Sdr4-k | ||
native | japonica | 445 | 11 |
indica | 15 | 55 | |
non-native | japonica | 11 | 0 |
indica | 85 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-M.; Kwon, Y.; Kim, S.-R.; Kang, J.-W.; Park, H.; Cha, J.-K.; Park, D.-S.; Cho, J.-H.; Kim, W.; Eom, G.-H.; et al. Development of Functional Molecular Markers for Viviparous Germination Resistance in Rice. Agronomy 2024, 14, 2896. https://doi.org/10.3390/agronomy14122896
Lee S-M, Kwon Y, Kim S-R, Kang J-W, Park H, Cha J-K, Park D-S, Cho J-H, Kim W, Eom G-H, et al. Development of Functional Molecular Markers for Viviparous Germination Resistance in Rice. Agronomy. 2024; 14(12):2896. https://doi.org/10.3390/agronomy14122896
Chicago/Turabian StyleLee, So-Myeong, Youngho Kwon, Sung-Ryul Kim, Ju-Won Kang, Hyeonjin Park, Jin-Kyung Cha, Dong-Soo Park, Jun-Hyun Cho, Woojae Kim, Gyu-Hyeon Eom, and et al. 2024. "Development of Functional Molecular Markers for Viviparous Germination Resistance in Rice" Agronomy 14, no. 12: 2896. https://doi.org/10.3390/agronomy14122896
APA StyleLee, S. -M., Kwon, Y., Kim, S. -R., Kang, J. -W., Park, H., Cha, J. -K., Park, D. -S., Cho, J. -H., Kim, W., Eom, G. -H., & Lee, J. -H. (2024). Development of Functional Molecular Markers for Viviparous Germination Resistance in Rice. Agronomy, 14(12), 2896. https://doi.org/10.3390/agronomy14122896