The Synergistic Impact of a Novel Plant Growth-Promoting Rhizobacterial Consortium and Ascophyllum nodosum Seaweed Extract on Rhizosphere Microbiome Dynamics and Growth Enhancement in Oryza sativa L. RD79
<p>Alpha-diversity analyses of three biostimulant treatments, ANE, PGPR, and PGPR-ANE, along with control, during both tillering (S1) and harvesting (S2) stages using Chao1 (<b>A</b>,<b>B</b>) and Shannon (<b>C</b>,<b>D</b>) indices. (<b>A</b>,<b>C</b>) Analysis of each stage and treatment separately. (<b>B</b>,<b>D</b>) Combined analysis of both stages within each treatment.</p> "> Figure 2
<p>The relative abundances of PGPR-associated and methanogenic bacterial families in rhizosphere soils compared across the three biostimulant treatments, ANE, PGPR, and PGPR-ANE, as well as the control (UI), during both the tillering (S1) and harvesting (S2) stages.</p> "> Figure 3
<p>Comparative microbial community in rice rhizosphere soil across growth stages and treatments. (<b>A</b>) PCoA of microbial communities at tillering and harvesting stages. (<b>B</b>) PCoA of microbial communities by treatment at tillering stage (S1) and harvesting stage (S2). (<b>C</b>,<b>D</b>) LEfSe analysis highlighting differential abundances of taxa across treatments at tillering (S1) and harvesting (S2) stages. (<b>E</b>,<b>F</b>) Venn diagram of shared and unique families at tillering (S1) and harvesting (S2) stages across treatments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial and Non-Microbial Biostimulants
2.2. Isolation and Characterization of PGPR
2.3. PGPR Identification
2.4. Seed Germination Assay and Vigour Index
2.5. Pot Experiment Under Greenhouse Conditions
2.6. Statistical Analysis
2.7. Microbiome Analysis
3. Results
3.1. PGPR Isolation and Characterization
3.2. LC-MS/MS Analysis of A. nodosum Extract
3.3. Seed Germination Assay and Vigour Index
3.4. Pot Experiment Under Greenhouse Conditions
3.5. Effects of Biostimulants on Microbiome in Rice Rhizosphere
3.5.1. α-Diversity
3.5.2. β-Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, J.; Hussain, S.; Tahir, N.; Rasool, I.; Ullah, A.; Ahmad, S. Climate change and rice production: Impacts and adaptations. In Modern Techniques of Rice Crop Production; Springer: Singapore, 2022; pp. 585–603. [Google Scholar]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar]
- Deerasamee, C.; Boonchuay, D.; Channoo, C.; Vitoonjit, D.; Chamroonwong, N.; Boontham, S.; Rodkasem, A.; Yoosingh, W.; Chusamai, N.; Khunbanthao, N. RD79, a non-glutinous rice variety. Thai Rice Res. J. 2019, 10, 5–29. [Google Scholar]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Wazeer, H.; Shridhar Gaonkar, S.; Doria, E.; Pagano, A.; Balestrazzi, A.; Macovei, A. Plant-based biostimulants for seeds in the context of circular economy and sustainability. Plants 2024, 13, 1004. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; El-Saadony, M.T.; Abdelaziz, S.; Abdou, N.M. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice 2022, 15, 16. [Google Scholar] [CrossRef]
- de Souza, R.; Meyer, J.; Schoenfeld, R.; da Costa, P.B.; Passaglia, L.M. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 2015, 65, 951–964. [Google Scholar] [CrossRef]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 2023, 13, 550. [Google Scholar] [CrossRef]
- Ghaffari, H.; Gholizadeh, A.; Biabani, A.; Fallah, A.; Mohammadian, M. Plant growth promoting rhizobacteria (PGPR) application with different nitrogen fertilizer levels in rice (Oryza sativa L.). Pertanika J. Trop. Agric. Sci. 2018, 41, 715–728. [Google Scholar]
- Li, Z.; Henawy, A.R.; Halema, A.A.; Fan, Q.; Duanmu, D.; Huang, R. A wild rice rhizobacterium Burkholderia cepacia BRDJ enhances nitrogen use efficiency in rice. Int. J. Mol. Sci. 2022, 23, 10769. [Google Scholar] [CrossRef]
- Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol. 2021, 31, 101884. [Google Scholar] [CrossRef]
- Mir, M.I.; Hameeda, B.; Quadriya, H.; Kumar, B.K.; Ilyas, N.; Kee Zuan, A.T.; El Enshasy, H.A.; Dailin, D.J.; Kassem, H.S.; Gafur, A. Multifarious indigenous diazotrophic rhizobacteria of rice (Oryza sativa L.) rhizosphere and their effect on plant growth promotion. Front. Nutr. 2022, 8, 781764. [Google Scholar] [CrossRef]
- Tan, K.Z.; Radziah, O.; Halimi, M.S.; Khairuddin, A.R.; Habib, S.H.; Shamsuddin, Z.H. Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am. J. Agric. Biol. Sci. 2014, 9, 342–360. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 2008, 31, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Hall, M.; Beiko, R.G. 16S rRNA Gene Analysis with QIIME2. In Microbiome Analysis: Methods and Protocols; Humana Press: New York, NY, USA, 2018; Volume 1849, pp. 113–129. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Jung, S. Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing. J. Microbiol. 2020, 58, 193–205. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Kaur, J.; Mudgal, G.; Chand, K.; Singh, G.B.; Perveen, K.; Bukhari, N.A.; Debnath, S.; Mohan, T.C.; Charukesi, R.; Singh, G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci. Rep. 2022, 12, 21330. [Google Scholar] [CrossRef]
- Song, X.; Xiong, Y.; Kong, X.; Huang, G. Roles of auxin response factors in rice development and stress responses. Plant Cell Environ. 2023, 46, 1075–1086. [Google Scholar] [CrossRef]
- Fernández, I.S.; Cuevas, P.; Angulo, J.; López-Navajas, P.; Canales-Mayordomo, A.; González-Corrochano, R.; Lozano, R.M.; Valverde, S.; Jiménez-Barbero, J.; Romero, A. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J. Biol. Chem. 2010, 285, 11714–11729. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, E.; Müller, B. Cytokinin synthesis, signaling, and function—Advances and new insights. Int. Rev. Cell Mol. Biol. 2016, 324, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, U.; Islam, M.; Siddiqui, M.; Cao, X.; Khan, M. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Stirk, W.A.; Plačková, L.; Kulkarni, M.G.; Doležal, K.; Van Staden, J. Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). J. Plant Physiol. 2021, 262, 153437. [Google Scholar] [CrossRef]
- Xie, H.; Wu, K.; Iqbal, A.; Ali, I.; He, L.; Ullah, S.; Wei, S.; Zhao, Q.; Wu, X.; Huang, Q. Synthetic nitrogen coupled with seaweed extract and microbial inoculants improves rice (Oryza sativa L.) production under a dual cropping system. Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Shahzad, R.; Harlina, P.W.; Gallego, P.P.; Flexas, J.; Ewas, M.; Leiwen, X.; Karuniawan, A. The seaweed Ascophyllum nodosum-based biostimulant enhances salt stress tolerance in rice (Oryza sativa L.) by remodeling physiological, biochemical, and metabolic responses. J. Plant Interact. 2023, 18, 2266514. [Google Scholar] [CrossRef]
- Mosquito, S.; Bertani, I.; Licastro, D.; Compant, S.; Myers, M.P.; Hinarejos, E.; Levy, A.; Venturi, V. In planta colonization and role of T6SS in two rice Kosakonia endophytes. Mol. Plant Microbe Interact. 2020, 33, 349–363. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Saravanan, V.S.; Blom, J.; Smits, T.H.; Rezzonico, F.; Kim, S.-J.; Weon, H.-Y.; Kwon, S.-W.; Whitman, W.B.; Ji, L. Phytobacter palmae sp. nov., a novel endophytic, N2 fixing, plant growth promoting Gammaproteobacterium isolated from oil palm (Elaeis guineensis Jacq.). Int. J. Syst. Evol. Microbiol. 2020, 70, 841–848. [Google Scholar] [CrossRef]
- Tian, Q.; Gong, Y.; Liu, S.; Ji, M.; Tang, R.; Kong, D.; Xue, Z.; Wang, L.; Hu, F.; Huang, L. Endophytic bacterial communities in wild rice (Oryza officinalis) and their plant growth-promoting effects on perennial rice. Front. Plant Sci. 2023, 14, 1184489. [Google Scholar] [CrossRef]
- Vandana, U.K.; Rajkumari, J.; Singha, L.P.; Satish, L.; Alavilli, H.; Sudheer, P.D.; Chauhan, S.; Ratnala, R.; Satturu, V.; Mazumder, P.B. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.-J.; Kong, H.G.; Choi, K.; Kwon, S.-K.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Gonçalves, O.S.; Fernandes, A.S.; Tupy, S.M.; Ferreira, T.G.; Almeida, L.N.; Creevey, C.J.; Santana, M.F. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil Biol. Biochem. 2024, 192, 109369. [Google Scholar] [CrossRef]
- Alpana, S.; Vishwakarma, P.; Adhya, T.; Inubushi, K.; Dubey, S. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem. Sci. Total Environ. 2017, 596, 136–146. [Google Scholar] [CrossRef]
Species | Isolate | GenBank Accession No. | PGPR Characteristics | ||||
---|---|---|---|---|---|---|---|
N Fixation | ACC Deaminase | Siderophore Production | P Solubilization | IAA Production | |||
Agrobacterium pusense | NC2 | PQ198521 | + | + | + | + | +++ |
Burkholderia sp. | NC7 | PQ198522 | + | + | + | + | + |
Pseudomonas sp. | NC9 | PQ198523 | + | + | + | + | ++ |
Rhizobium straminoryzae | NC4 | PQ198524 | + | + | + | + | ++ |
Stutzerimonas azotifigens | NC6 | PQ198525 | + | + | + | - | - |
Stutzerimonas balearica | NC1 | PQ198526 | + | + | + | + | ++ |
Kosakonia oryzae | WN104 | PP326899 | + | + | + | + | ++ |
Phytobacter sp. | WL65 | PP326909 | + | + | + | + | ++ |
Treatment | Description | % Germination | Shoot Length (cm) | Root Length (cm) | Seed Vigour Index |
---|---|---|---|---|---|
ANE | Ascophyllum nodosum extract | 91.33 ± 5.03 a | 4.85 ± 0.27 bc | 2.03 ± 0.17 b | 629.12 ± 60.71 b |
PGPR | PGPR consortium * | 96.67 ± 2.31 a | 5.45 ± 0.14 a | 3.63 ± 0.04 a | 877.11 ± 9.32 a |
PGPR_ANE | PGPR consortium and A. nodosum extract | 94.00 ± 2.00 a | 5.28 ± 0.03 ab | 3.61 ± 0.11 a | 835.81 ± 15.69 a |
UI | Distilled water (control) | 96.67 ± 4.16 a | 4.57 ± 0.32 c | 2.22 ± 0.32 b | 657.02 ± 68.99 b |
Treatment | Rice Height (cm) | Chlorophyll Content Index | No. of Panicles Per Tiller | Panicle Length (cm) | No. of Seeds Per Panicle |
---|---|---|---|---|---|
ANE | 102.00 ± 1.00 a | 38.94 ± 1.09 a | 10.00 ± 2.00 a | 21.79 ± 0.91 a | 77.50 ± 10.85 a |
PGPR | 95.00 ± 1.73 b | 39.10 ± 2.34 a | 7.00 ± 1.73 a | 22.48 ± 0.81 a | 75.00 ± 8.26 a |
PGPR-ANE | 96.00 ± 4.00 ab | 40.02 ± 0.17 a | 8.67 ± 2.08 a | 21.84 ± 1.24 a | 75.50 ± 7.47 a |
UI | 86.67 ± 2.08 c | 38.65 ± 1.68 a | 8.33 ± 0.58 a | 19.07 ± 0.92 b | 50.67 ± 9.29 b |
Soil Properties | ANE | PGPR | PGPR-ANE | UI |
---|---|---|---|---|
Soil texture | Sandy loam | Sandy loam | Sandy loam | Sandy loam |
pH (1:1) | 6.20 | 6.20 | 6.30 | 5.99 |
Organic matter (%) | 3.26 | 3.15 | 3.02 | 2.81 |
EC 1:5 (dS m−1) | 0.04 | 0.03 | 0.04 | 0.02 |
Carbon (%) | 3.07 | 2.72 | 2.96 | 2.67 |
Nitrogen (%) | 0.31 | 0.28 | 0.29 | 0.26 |
Available phosphorus (mg kg−1) | 21.09 | 14.50 | 26.43 | 10.11 |
Potassium (mg kg−1) | 15.92 | 14.50 | 10.92 | 9.34 |
Calcium (mg kg−1) | 501.00 | 364.00 | 558.20 | 288.00 |
Magnesium (mg kg−1) | 37.40 | 27.16 | 36.26 | 20.04 |
Rice Growth and Yield Parameters | Biostimulants | Control | R | p-Value |
---|---|---|---|---|
Rice height | ANE (H) 1 | UI (L) 2 | 0.972 | 0.002 |
PGPR (H) | UI (L) | 0.948 | 0.040 | |
PGPR-ANE (H) | UI (L) | 0.956 | 0.005 | |
Panicle length | ANE (H) 1 | UI (L) | 0.972 | 0.005 |
PGPR (H) | UI (L) | 0.357 | 0.034 | |
PGPR-ANE (H) | UI (L) | 0.960 | 0.007 | |
No. of seeds per panicle | ANE (H) 1 | UI (L) | 0.952 | 0.003 |
PGPR (H) | UI (L) | 0.587 | 0.007 | |
PGPR-ANE (H) | UI (L) | 0.960 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamvithayakorn, P.; Phosri, C.; Robinson-Boyer, L.; Limnonthakul, P.; Doonan, J.H.; Suwannasai, N. The Synergistic Impact of a Novel Plant Growth-Promoting Rhizobacterial Consortium and Ascophyllum nodosum Seaweed Extract on Rhizosphere Microbiome Dynamics and Growth Enhancement in Oryza sativa L. RD79. Agronomy 2024, 14, 2698. https://doi.org/10.3390/agronomy14112698
Thamvithayakorn P, Phosri C, Robinson-Boyer L, Limnonthakul P, Doonan JH, Suwannasai N. The Synergistic Impact of a Novel Plant Growth-Promoting Rhizobacterial Consortium and Ascophyllum nodosum Seaweed Extract on Rhizosphere Microbiome Dynamics and Growth Enhancement in Oryza sativa L. RD79. Agronomy. 2024; 14(11):2698. https://doi.org/10.3390/agronomy14112698
Chicago/Turabian StyleThamvithayakorn, Pisit, Cherdchai Phosri, Louisa Robinson-Boyer, Puenisara Limnonthakul, John H. Doonan, and Nuttika Suwannasai. 2024. "The Synergistic Impact of a Novel Plant Growth-Promoting Rhizobacterial Consortium and Ascophyllum nodosum Seaweed Extract on Rhizosphere Microbiome Dynamics and Growth Enhancement in Oryza sativa L. RD79" Agronomy 14, no. 11: 2698. https://doi.org/10.3390/agronomy14112698
APA StyleThamvithayakorn, P., Phosri, C., Robinson-Boyer, L., Limnonthakul, P., Doonan, J. H., & Suwannasai, N. (2024). The Synergistic Impact of a Novel Plant Growth-Promoting Rhizobacterial Consortium and Ascophyllum nodosum Seaweed Extract on Rhizosphere Microbiome Dynamics and Growth Enhancement in Oryza sativa L. RD79. Agronomy, 14(11), 2698. https://doi.org/10.3390/agronomy14112698