Zn Oxide Nanoparticles and Fine Particles: Synthesis, Characterization and Evaluation of the Toxic Effect on Germination and Vigour of Solanum licopersicum L.
<p>SEM micrographs of the synthesized ZnO NPs.</p> "> Figure 2
<p>TGA curves: (<b>a</b>) NIT-UW sample; (<b>b</b>) NIT-W sample; (<b>c</b>) SUL-UW sample; (<b>d</b>) SUL-W sample.</p> "> Figure 3
<p>Bi-plot graph of the two principal parameters in the Principal Component Analysis (PCA) of the germination parameters studied (percentage of germinated seeds, radicle and hypocotyl lengths) and characteristics of the particles used: (<b>A</b>) Zeta potential; %N; %C; %H; %S; V<sub>Mic</sub> (micropores volume); V<sub>Total</sub> (total pores volume); mass loss at 30–150 °C, and at 160–450 °C; (<b>B</b>) S<sub>BET</sub> (specific surface area); V<sub>Meso</sub> (mesopores volume); pore size. The variance values measured for the 2 components were 89.92% (<b>A</b>) and 83.12% (<b>B</b>).</p> ">
Abstract
:1. Introduction
- -
- Investigate the effect on the number of germinated seeds.
- -
- Investigate the effect on radicle and hypocotyl length at different periods (7 and 14 days after germination).
- -
- Investigate possible toxic effects in relation to the dose.
2. Materials and Methods
2.1. Synthesis and Characterisation of ZnO Particles
2.2. Germination Tests
2.3. Data Analysis
- (i)
- Three-parameter logistic model [34], which considers Ymax (maximum response, i.e., the highest value of radicle or plumule height), EC10 and b (maximum slope of the model) as main variables;
- (ii)
3. Results and Discussion
3.1. Characterization Results of ZnO Particles
3.2. Influence of ZnO Particles on Germination Parameters
3.2.1. Seed Germination Percentage
3.2.2. Radicle Length
3.2.3. Hypocotyl Length
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Khan, S.T.; Malik, A.; Alwarthan, A.; Shaik, M.R. The enormity of the zinc deficiency problem and available solutions—An overview. Arab. J. Chem. 2022, 15, 103668. [Google Scholar] [CrossRef]
- Chapman, H.D. Zinc. In Diagnostic Criteria for Plants and Soils; Chapman, H.D., Ed.; University of California Davis, Division of Agricultural Sciences: Davis, CA, USA, 1966. [Google Scholar]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Akinci, I.E.; Akinci, S.; Yilmaz, K. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water conten. Afr. J. Agric. Res. 2010, 5, 416–423. [Google Scholar]
- Ramesh, K.V.; Paul, V.; Pandey, R. Dynamics of mineral nutrients in tomato (Solanum lycopersicum L.) ruits during ripening: Part I—On the plant. Plant Physiol. Rep. 2021, 26, 23–37. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Al Jabri, H.; Saleem, M.H.; Rizwan, M.; Hussain, I.; Usman, K.; Alsafran, M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life 2022, 12, 594. [Google Scholar] [CrossRef]
- Kumari, M.; Khan, S.S.; Pakrashi, S.; Mukherjee, A.; Chandrasekaran, N. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J. Hazard. Mater. 2011, 190, 613–621. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef]
- Alloway, B. Zinc in Soils and Crop Nutrition, 2nd ed.; IZA y IFA: Brussels, Belgium; Paris, France, 2008. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Kathi, S.; Laza, H.; Singh, S.; Thompson, L.; Li, W.; Simpson, C. A decade of improving nutritional quality of horticultural crops agronomically (2012−2022): A systematic literature review. Sci. Total Environ. 2024, 911, 168665. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, T. Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol. 2009, 6, 567. [Google Scholar] [CrossRef]
- Yadav, P.S.; Kumar, J.; Silas, V.J.; Kumar, M.L.S.; Kishor, B. Effect of organic manures and biofertilizers on plant growth, yield and quality traits of Tomato (Solanum lycopersicum Mill.) var. Pusa Ruby. Pharma Innov. J. 2023, 12, 299–302. [Google Scholar]
- Dimkpa, C.O.; McLean, J.E.; Latta, D.E.; Manangón, E.; Britt, D.W.; Johnson, W.P.; Boyanov, M.I.; Anderson, A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart Res. 2012, 14, 1125. [Google Scholar] [CrossRef]
- Verma, S.K.; Das, A.K.; Patel, M.K.; Shah, A.; Kumar, V.; Gantait, S. Engineered nanomaterials for plant growth and development: A perspective analysis. Sci. Total Environ. 2018, 630, 1413–1435. [Google Scholar] [CrossRef]
- Zaim, N.S.H.B.H.; Tan, H.L.; Rahman, S.M.A.; Abu Bakar, N.F.; Osman, M.S.; Thakur, V.K.; Radacsi, N. Recent Advances in Seed Coating Treatment Using Nanoparticles and Nanofibers for Enhanced Seed Germination and Protection. J. Plant Growth Regul. 2023, 42, 7374–7402. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Chen, J.; Zhu, Y.; Zhang, Z. The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth, A Meta-Analysis. Coatings 2022, 12, 183. [Google Scholar] [CrossRef]
- Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants, A review of current research. Plant Physiol. Biochem. 2016, 107, 147–163. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles, Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Mahdieh, M.; Sangi, M.R.; Bamdad, F.; Ghanem, A. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. J. Plant Nutr. 2018, 41, 2401–2412. [Google Scholar] [CrossRef]
- Rawashdeh, R.Y.; Harb, A.M.; AlHasan, A.M. Biological interaction levels of zinc oxide nanoparticles; lettuce seeds as case study. Heliyon 2020, 6, e03983. [Google Scholar] [CrossRef]
- Salam, A.; Khan, A.R.; Liu, L.; Yang, S.; Azhar, W.; Ulhassan, Z.; Zeeshan, M.; Wu, J.; Fan, X.; Gan, Y. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J. Hazard. Mater. 2022, 423, 127021. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.B.; Hussain, I.; Singh, H.; Yadav, V.; Singh, S.C. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum licopersicum. J. Biotechnol. 2016, 233, 84–94. [Google Scholar] [CrossRef]
- Sarkhosh, S.; Kahrizi, D.; Darvishi, E.; Tourang, M.; Haghighi-Mood, S.; Vahedi, P.; Ercisli, S. Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Seed Germination Characteristics in Two Brassicaceae Family Species, Camelina sativa and Brassica napus L. J. Nanomater. 2022, 1, 15. [Google Scholar] [CrossRef]
- Bayat, M.; Zargar, M.; Murtazova, K.M.-S.; Nakhaev, M.R.; Shkurkin, S.I. Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles. Agronomy 2022, 12, 811. [Google Scholar] [CrossRef]
- Amooaghaie, R.; Norouzi, M.; Saeri, M. Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 2017, 95, 441–455. [Google Scholar] [CrossRef]
- Rehman, F.U.; Paker, N.P.; Khan, M.; Zainab, N.; Ali, N.; Munis, M.F.H.; Iftikhar, M.; Chaudhary, H.J. Assessment of application of ZnO nanoparticles on physiological profile, root architecture and antioxidant potential of Solanum licopersicum. Biocatal. Agric. Biotechnol. 2023, 53, 102874. [Google Scholar] [CrossRef]
- Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 160, 32–42. [Google Scholar] [CrossRef]
- Mariya Joseph, H.; Poornima, N. Synthesis and characterization of ZnO nanoparticles. Mater. Today Proc. 2019, 9, 7–12. [Google Scholar] [CrossRef]
- Huy, N.N.; Thanh Thuy, V.T.; Thang, N.H.; Thuy, N.T.; Quynh, L.T.; Khoi, T.T.; Van Thanh, D. Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation method and its application for H2S adsorption in air. J. Phys. Chem. Solids 2019, 132, 99–103. [Google Scholar] [CrossRef]
- Haanstra, L.; Doelman, P.; Voshaar, J.H.O. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 1985, 84, 293–297. [Google Scholar] [CrossRef]
- Bellio, R.; Jensen, J.E.; Seiden, P. Applications of Likelihood Asymptotics for Nonlinear Regression in Herbicide Bioassays. Biometrics 2000, 56, 1204–1212. [Google Scholar] [CrossRef]
- Chèvre, N.; Slooten, K.B.; Tarradellas, J.; Brazzale, A.R.; Behra, R.; Guettinger, H. Effects of dinoseb on the life cycle of Daphnia magna, Modeling survival time and a proposal for an alternative to the no-observed-effect concentration. Environ. Toxicol. Chem. 2002, 21, 828–833. [Google Scholar]
- Ganesan, V.; Hariram, M.; Vivekanandhan, S.; Muthuramkumar, S. Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Mater. Sci. Semicond. Process. 2020, 105, 104739. [Google Scholar] [CrossRef]
- Faisal, S.; Jan, H.; Shah, S.A. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans, Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6, 9709–9722. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2020, 2, 991. [Google Scholar] [CrossRef]
- Khan, M.; Ware, P.; Shimpi, N. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl. Sci. 2021, 3, 528. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ghose, R. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int. 2015, 41, 967–975. [Google Scholar] [CrossRef]
- Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Gómez Rojas, O.; Hall, S.R.; Nakayama, T. Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions. Crystals 2020, 10, 414. [Google Scholar] [CrossRef]
- Darezereshki, E.; Alizadeh, M.; Bakhtiari, F.; Schaffie, M.; Ranjbar, M. A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Appl. Clay Sci. 2011, 54, 107–111. [Google Scholar] [CrossRef]
- Włodarczyk, K.; Smolińska, B. The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (Solanum lycopersicum L.) Cultivars. Molecules 2022, 27, 4963. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, D.M.; Márquez-Guerrero, S.Y.; Ramírez-Moreno, A.; Rodríguez-Sifuentes, L.; Galindo-Guzmán, M.; Flores-Loyola, E.; Marszalek, J.E. Impact of Biologically and Chemically Synthesized Zinc Oxide Nanoparticles on Seed Germination and Seedlings’ Growth. Horticulturae 2023, 9, 1201. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnol. 2021, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, H.; Lal, R. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination, Nanotoxicants or Nanonutrients? Water Air Soil Pollut. 2016, 227, 42. [Google Scholar] [CrossRef]
- El-Ghamery, A.A.; El-Kholy, M.A.; Abou El-Yousser, M.A. Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2003, 537, 29–41. [Google Scholar] [CrossRef]
NIT-UW | NIT-W | SUL-UW | SUL-W | |
---|---|---|---|---|
Zeta potential (mV) | 6.3 ± 0.5 | 30.6 ± 4.0 | −11.0 ± 3.7 | −7.4 ± 5.7 |
%N | 15.78 ± 1.97 | 0.26 ± 0.03 | 8.02 ± 0.32 | 0.54 ± 0.02 |
%C | 0.15 ± 0.05 | 1.54 ± 0.20 | 0.07 ± 0.01 | 0.12 ± 0.02 |
%H | 2.87 ± 0.18 | 0.71 ± 0.03 | 3.57 ± 0.09 | 2.38 ± 0.12 |
%S | 0.03 ± 0.02 | 0.08 ± 0.10 | 14.90 ± 0.46 | 5.51 ± 0.13 |
SBET (m2 g−1) | - | 20.0 | 0.4 | 9.2 |
VMic (cm3 g−1) | 9.5 × 10−5 | 8.1 × 10−3 | 1.2 × 10−4 | 3.3 × 10−3 |
VMeso (cm3 g−1) | - | 3.1 × 10−2 | 1.7 × 10−4 | 1.1 × 10−3 |
VTotal (cm3 g−1) | 5.0 × 10−6 | 3.9 × 10−2 | 2.9 × 10−4 | 1.4 × 10−2 |
VMic/VTotal | - | 0.21 | 0.41 | 0.24 |
Average pores size (nm) | - | 7.8 | 3.3 | 6.0 |
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-bulk | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dose (g Zn L−1) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | p-Value 1 | |||||
0 | 95.0 ± 5.0 | b | 95.0 ± 5.0 | - | 95.0 ± 5.0 | - | 95.0 ± 5.0 | - | 95.0 ± 5.0 | - | |
1.4 | 86.5 ± 3.0 | b | 86.5 ± 6.0 | - | 88.5 ± 10.5 | - | 83.5 ± 6.0 | - | 81.5 ± 14.5 | - | NS |
2.8 | 93.5 ± 3.0 | b | 93.5 ± 3.0 | - | 85.0 ± 5.0 | - | 91.5 ± 7.5 | - | 85.0 ± 8.5 | - | NS |
5.7 | 90.0 ± 5.0 | b | 80.0 ± 8.5 | - | 86.5 ± 3.0 | - | 88.5 ± 7.5 | - | 86.5 ± 12.5 | - | NS |
11.4 | 56.5 ± 27.5 | a | 81.5 ± 20.0 | - | 86.5 ± 10.5 | - | 88.5 ± 3.0 | - | 86.5 ± 7.5 | - | NS |
p-value 2 | 0.024 | NS | NS | NS | NS | ||||||
Orthogonal contrasts 3 | NS | NS | NS | NS | NS |
7 Days | |||||||||||
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | |||||||
Dose (g Zn L−1) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | p-Value 1 | |||||
0 | 80.23 ± 17.70 | b | 80.23 ± 17.70 | b | 80.23 ± 17.70 | b | 80.23 ± 17.70 | b | 80.23 ± 17.70 | b | |
1.4 | 6.81 ± 1.48 | aAB | 8.84 ± 2.11 | aCD | 4.46 ± 0.62 | aA | 6.89 ± 1.49 | aAB | 10.28 ± 0.47 | aD | 0.0042 |
2.8 | 3.17 ± 0.44 | aA | 8.35 ± 2.09 | aB | 2.95 ± 0.131 | aA | 2.82 ± 0.32 | aA | 9.92 ± 3.89 | aB | 0.0025 |
5.6 | 2.25 ± 0.46 | aA | 9.46 ± 1.79 | aB | 2.68 ± 0.482 | aA | 3.52 ± 1.49 | aA | 12.65 ± 3.28 | aC | 0.0001 |
11.2 | 1.37 ± 0.33 | aA | 8.19 ± 1.10 | aC | 1.40 ± 0.373 | aA | 3.00 ± 0.35 | aB | 7.63 ± 0.94 | aC | 0.0000 |
p-value 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||
14 Days | |||||||||||
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | |||||||
Dose (g Zn L−1) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | Mean± SD(mm) | p-Value 1 | |||||
0 | 80.75 ± 3.99 | c | 80.75 ± 3.99 | b | 80.75 ± 3.99 | b | 80.75 ± 3.99 | c | 80.75 ± 3.99 | c | |
1.4 | 7.42 ± 2.59 | bB | 9.13 ± 1.93 | aBC | 4.51 ± 0.37 | aA | 6.93 ± 1.36 | bAB | 11.41 ± 1.47 | abC | 0.0024 |
2.8 | 3.24 ± 0.73 | aA | 9.01 ± 0.77 | aB | 3.95 ± 0.81 | aA | 3.91 ± 1.00 | abA | 10.33 ± 3.85 | abB | 0.0037 |
5.6 | 2.31 ± 0.31 | aA | 9.88 ± 2.20 | aB | 2.70 ± 0.44 | aA | 3.74 ± 0.53 | abA | 13.39 ± 3.48 | bC | 0.0001 |
11.2 | 1.42 ± 0.44 | aA | 8.93 ± 1.51 | aB | 2.37 ± 1.44 | aA | 3.12 ± 0.53 | aA | 7.68 ± 0.86 | aB | 0.0000 |
p-value 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||
Elongation between 7 and 14 Days (mm) | |||||||||||
Dose (g Zn L−1) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | ||||||
1.4 | 0.06 | 0.41 | 0.02 | 0.22 | 0.75 | ||||||
2.8 | 0.06 | 0.66 | 1.00 * | 1.09 | 0.41 | ||||||
5.6 | 0.61 | 0.29 | 0.05 | 0.03 | 1.14 | ||||||
11.2 | 0.73 | 0.97 | 0.12 | 0.05 | 0.06 |
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | ||
---|---|---|---|---|---|---|
Model | 3-Parameter | 4-Parameter | 3-Parameter | 4-Parameter | 4-Parameter | |
Ymin | - | 8.67 | - | 3.11 | 10.07 | |
Ymax | 80.23 | 80.23 | 80.23 | 80.23 | 80.23 | |
7 days | EC10 | 1.04 | 10.66 | 0.05 | 12.77 | 11.99 |
b | 0.9 | 17.69 | 0.50 | 18.42 | 25.96 | |
TSS | 633.6 | 656.3 | 629.2 | 633.9 | 718.6 | |
Ymin | - | 66.90 | - | 21.30 | 61.35 | |
Ymax | 89.00 | 89.27 | 89.31 | 89.28 | 89.10 | |
14 days | EC10 | 3.88 | 13.66 | 2.01 | 7.61 | 7.58 |
b | 1.15 | 23.71 | 1.00 | 3.65 | 2.99 | |
TSS | 314.6 | 762.1 | 152.4 | 166.1 | 2631.3 |
7 Days | |||||||||||
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | |||||||
Dose (g Zn L−1) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | p-Value 1 | |||||
0 | 76.71 ± 7.49 | e | 76.71 ± 7.49 | b | 76.71 ± 7.49 | c | 76.71 ± 7.49 | c | 76.71 ± 7.49 | b | |
1.4 | 40.28 ± 2.43 | dB | 47.33 ± 1.25 | aC | 26.84 ± 3.45 | bA | 31.44 ± 4.06 | bA | 46.54 ± 5.24 | aBC | 0.0001 |
2.8 | 31.69 ± 4.85 | cBC | 41.45 ± 4.98 | aCD | 20.59 ± 3.09 | bAB | 13.98 ± 5.13 | aA | 47.31 ± 13.46 | aD | 0.0011 |
5.6 | 16.61 ± 2.56 | bA | 47.12 ± 5.31 | aB | 12.68 ± 3.34 | aA | 16.90 ± 1.24 | aA | 34.76 ± 16.35 | aB | 0.0014 |
11.2 | 6.58 ± 0.56 | aA | 49.01 ± 2.46 | aD | 6.72 ± 1.91 | aA | 13.84 ± 1.78 | aB | 42.17 ± 2.25 | aC | 0.0000 |
p-value 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0055 | ||||||
14 Days | |||||||||||
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | |||||||
Dose (g Zn L−1) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | p-Value 1 | |||||
0 | 89.27 ± 5.08 | e | 89.27 ± 5.08 | c | 89.27 ± 5.08 | e | 89.27 ± 5.08 | c | 89.27 ± 5.08 | b | |
1.4 | 56.67 ± 6.74 | dA | 77.94 ± 4.73 | bcB | 49.43 ± 3.37 | dA | 50.57 ± 4.89 | bA | 75.49 ± 4.56 | bB | 0.0001 |
2.8 | 42.51 ± 5.89 | cB | 61.81 ± 8.76 | aC | 32.01 ± 3.39 | cAB | 24.82 ± 4.47 | aA | 68.76 ± 11.94 | abC | 0.0001 |
5.6 | 25.77 ± 1.63 | bAB | 67.70 ± 13.14 | abC | 22.40 ± 3.71 | bA | 23.71 ± 1.32 | aA | 47.67 ± 24.47 | aBC | 0.0047 |
11.2 | 10.72 ± 5.55 | aA | 71.19 ± 4.02 | abC | 11.04 ± 2.09 | aA | 19.53 ± 0.29 | aB | 72.39 ± 4.72 | bC | 0.0000 |
p-value 2 | 0.0000 | 0.0148 | 0.0000 | 0.0000 | 0.0301 | ||||||
Elongation between 7 and 14 Days (mm) | |||||||||||
Dose (g Zn L−1) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | ||||||
0 | 4.14 | 22.18 * | 4.32 | 5.70 | 30.23 * | ||||||
1.4 | 9.17 * | 20.58 | 9.72 * | 6.81 * | 12.91 | ||||||
2.8 | 10.82 | 20.35 * | 11.41 * | 10.83 * | 21.45 | ||||||
5.6 | 16.39 * | 30.62 * | 22.59 * | 19.14 * | 28.95 * |
NIT-UW | NIT-W | SUL-UW | SUL-W | ZnO-Bulk | ||
---|---|---|---|---|---|---|
Model | 3-Parameter | 4-Parameter | 3-Parameter | 4-Parameter | 4-Parameter | |
Ymin | - | 46.23 | - | 14.91 | 38.06 | |
Ymax | 76.49 | 76.71 | 76.68 | 76.71 | 76.69 | |
7 days | EC10 | 2.37 | 4.39 | 0.41 | 12.93 | 0.71 |
b | 1.08 | 55.75 | 0.77 | 21.55 | 1.09 | |
TSS | 248.3 | 331.2 | 197.8 | 225.1 | 1256.8 | |
Ymin | - | 66.90 | - | 21.30 | 61.35 | |
Ymax | 89.00 | 89.27 | 89.31 | 89.28 | 89.10 | |
14 days | EC10 | 3.88 | 13.66 | 2.01 | 7.61 | 7.58 |
b | 1.15 | 23.71 | 1.00 | 3.65 | 2.99 | |
TSS | 314.6 | 762.1 | 152.4 | 166.1 | 2631.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Francisco, M.; Mira, S.; Durães, L.; Romeiro, A.; Álvarez-Torrellas, S.; Almendros, P. Zn Oxide Nanoparticles and Fine Particles: Synthesis, Characterization and Evaluation of the Toxic Effect on Germination and Vigour of Solanum licopersicum L. Agronomy 2024, 14, 980. https://doi.org/10.3390/agronomy14050980
de Francisco M, Mira S, Durães L, Romeiro A, Álvarez-Torrellas S, Almendros P. Zn Oxide Nanoparticles and Fine Particles: Synthesis, Characterization and Evaluation of the Toxic Effect on Germination and Vigour of Solanum licopersicum L. Agronomy. 2024; 14(5):980. https://doi.org/10.3390/agronomy14050980
Chicago/Turabian Stylede Francisco, Marina, Sara Mira, Luisa Durães, Andreia Romeiro, Silvia Álvarez-Torrellas, and Patricia Almendros. 2024. "Zn Oxide Nanoparticles and Fine Particles: Synthesis, Characterization and Evaluation of the Toxic Effect on Germination and Vigour of Solanum licopersicum L." Agronomy 14, no. 5: 980. https://doi.org/10.3390/agronomy14050980
APA Stylede Francisco, M., Mira, S., Durães, L., Romeiro, A., Álvarez-Torrellas, S., & Almendros, P. (2024). Zn Oxide Nanoparticles and Fine Particles: Synthesis, Characterization and Evaluation of the Toxic Effect on Germination and Vigour of Solanum licopersicum L. Agronomy, 14(5), 980. https://doi.org/10.3390/agronomy14050980