Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality
<p>Temperature changes during the growing season of the jujube tree in 2021 (<b>A</b>) and 2022 (<b>B</b>).</p> "> Figure 2
<p>Jujube planting, irrigation mode and MOF application.</p> "> Figure 3
<p>Soil water distribution in the profile of jujube trees during the fruit expansion stage.</p> "> Figure 4
<p>Soil saturated water content, water holding capacity, saturated hydraulic conductivity, soil bulk density, and soil porosity volume in (<b>A</b>) 2021 and (<b>B</b>) 2022. Among the different treatments, the same lowercase letters did not differ from each other, <span class="html-italic">p</span> ≥ 0.05. The bars stand for mean ± SD.</p> "> Figure 5
<p>Relative chlorophyll content of jujube leaf in (<b>A</b>) 2021 and (<b>B</b>) 2022. Among the different treatments, the same lowercase letters did not differ from each other, <span class="html-italic">p</span> ≥ 0.05. The bars stand for mean ± SD.</p> "> Figure 6
<p>Correlations among the soil’s hydraulic and physical properties, enzyme activity, physiological growth, yield, quality, and economic benefits. Mean SWC, mean soil water content; mean SWS, mean soil water storage; SSWC, saturated soil water content; Ks, saturated hydraulic conductivity; WHC, water-holding capacity; BD, soil bulk density; SPV, soil porosity volume; UE, urease activity; CE, catalase activity; SE, sucrose activity; RCC, relative chlorophyll content; TA, titrable acid; SS, soluble sugar; FL, flavone; S/A, sugar–acid ratio; NI, net income.</p> "> Figure 7
<p>Cluster analysis of the soil’s hydraulic and physical properties, enzyme activity, physiological growth, yield, quality, and economic benefits. Mean SWC, mean soil water content; mean SWS, mean soil water storage; SSWC, saturated soil water content; Ks, saturated hydraulic conductivity; WHC, water-holding capacity; BD, soil bulk density; SPV, soil porosity volume; UE, urease activity; CE, catalase activity; SE, sucrose activity; RCC, relative chlorophyll content; TA, titrable acid; SS, soluble sugar; FL, flavone; S/A, sugar–acid ratio; NI, net income.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.2.1. Jujube Tree Agronomic Practices
2.2.2. Microbial Organic Fertilizer (MOF) Treatment
2.3. Parameter Determination and Quantitative Assessment
2.3.1. Soil Water Content and Water Storage
2.3.2. The Soil’s Physical and Hydraulic Indicators
2.3.3. Soil Enzyme Activity
2.3.4. Jujube Chlorophyll Content, Yield, and Quality
2.4. Productivity and Economic Assessment
2.4.1. Productivity of Irrigation Water and Fertilizer (N, P, K)
2.4.2. Net Income
2.5. Comprehensive Evaluation Methods
2.5.1. Cluster Analysis
2.5.2. TOPSIS Method
2.6. Statistical Analysis
3. Results
3.1. Soil Water Distribution and Water Storage
3.2. Soil Hydraulic and Physical Characteristics
3.3. Soil Enzyme Activity
3.4. Leaf Chlorophyll Content
3.5. Yield and Quality
3.5.1. Yield
3.5.2. Quality
3.6. Water and Fertilizer Productivity and Economic Benefits
3.6.1. Irrigation Water Productivity and Partial Productivity of N, P, and K
3.6.2. Economic Benefits Analysis
3.7. Comprehensive Evaluation
3.7.1. Correlation Analysis
3.7.2. Cluster Analysis
3.7.3. TOPSIS Ranking
4. Discussion
4.1. Mechanisms of the Soil’s Hydraulic Properties and Enzyme Activity Enhancement by MOF Amendment
- (a)
- The microbial components in MOF, such as microbial rhizomes and microbial cell bodies, contribute by secreting cohesive substances that bind soil particles and organic matter [22,27,38]. The adhesive substances generated by these microorganisms form microscopic aggregates, consolidating soil particles and resulting in more stable soil aggregates [21,28]. This cohesive action increases soil porosity and permeability, thereby enhancing water retention and permeability [39].
- (b)
- Microorganisms in MOF have a positive impact on soil structure. Metabolic by-products, secretions, and microbial community activities alter interactions between soil particles, promoting aggregate formation. Such structural enhancements contribute to the development of larger stable pores, thereby increasing soil hydraulic conductivity and air permeability [29,30,40].
- (c)
- The application of MOF promotes the accumulation of organic matter. Microbial decomposition of organic matter generates metabolic by-products that become part of the organic matter, ultimately raising soil organic matter content. Organic matter can adsorb and retain water, increasing soil water retention capacity [33,37].
- (d)
- MOF application enhances the diversity and abundance of soil microbial communities. These rhizospheric microorganisms establish complex root-associated ecosystems with jujube roots. Activities of these rhizosphere microorganisms modify soil eco-chemical properties, facilitating organic matter breakdown and transformation and ultimately improving soil structure and water retention [41,42].
- (e)
4.2. Mechanisms of MOF-Induced Yield and Quality Enhancement in Jujubes
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wu, Y.; Zhang, Z.; Guo, R.; Wang, L. Effects of magnetization on photosynthesis, mineral elements and yield of lettuce vary with water sources. J. Irrig. Drain. 2021, 40, 40–47. [Google Scholar]
- China Economic Net. Chinese Exchange Launches Jujube Futures. 2019. Available online: http://en.ce.cn/Business/topnews/201905/05/t20190505_31996915.shtml (accessed on 11 January 2021).
- Bai, T.; Zhang, N.; Wang, T.; Wang, D.; Yu, C.; Meng, W.; Fei, H.; Chen, R.; Li, Y.; Zhou, B. Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model. Agric. Water Manag. 2021, 243, 106517. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liang, Z. Analysis on planting patterns and industry status of Chinese jujube in Xinjiang. Acta Hortic. Sin. 2014, 41, 1116–1124. [Google Scholar]
- Yu, K.; Zhao, Y.; Li, X.; Shao, Y.; Zhu, F.; He, Y. Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing. Comput. Electron. Agric. 2014, 103, 1–10. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef]
- Shao, F.; Zeng, S.; Wang, Q.; Tao, W.; Wu, J.; Su, L.; Yan, H.; Zhang, Y.; Lin, S. Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. J. Environ. Manag. 2023, 331, 117305. [Google Scholar] [CrossRef]
- Bai, T.; Wang, T.; Zhang, N.; Chen, Y.; Mercatoris, B. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model. J. Integr. Agric. 2020, 19, 721–734. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gerard, V.D.S.; Beguería, S.; Azorin-Molina, C.; LopezMoreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Liang, J.; Wang, X.; Niu, B.; Jia, Y.; Jiang, F.; Yu, Q.; Liu, D.; Feng, H.; et al. Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation. Agric. Water Manag. 2023, 276, 108079. [Google Scholar] [CrossRef]
- Liang, J.; Shi, W.; He, Z.; Pang, L.; Zhang, Y. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agric. Water Manag. 2019, 218, 48–59. [Google Scholar] [CrossRef]
- Yao, A.V.; Bochow, H.; Karimov, S.; Boturov, U.; Sanginboy, S.; Sharipov, A.K. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopath. Plant Prot. 2006, 39, 323–328. [Google Scholar] [CrossRef]
- Jamily, A.S.; Koyama, Y.; Win, T.A.; Toyota, K.; Chikamatsu, S.; Shirai, T.; Uesugi, T.; Murakami, H.; Ishida, T.; Yasuhara, T. Effects of inoculation with a commercial microbial inoculant Bacillus subtilis C-3102 mixture on rice and barley growth and its possible mechanism in the plant growth stimulatory effect. J. Plant Prot. Res. 2019, 59, 193–205. [Google Scholar] [CrossRef]
- Lee, S.; Trịnh, C.S.; Lee, W.J.; Jeong, C.Y.; Truong, H.A.; Chung, N.; Kang, C.S.; Lee, H. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. J. Plant Res. 2020, 133, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Liu, W.; Chen, L.; Wang, Y.; Ma, Y.; Lyu, Q.; Yi, S.; Xie, R.; Zheng, Y. Bacillus subtilis biofertilizer application reduces chemical fertilization and improves fruit quality in fertigated Tarocco blood orange groves. Sci. Hortic. 2021, 281, 110004. [Google Scholar] [CrossRef]
- Cozzolino, V.; Di, M.V.; Monda, H.; Spaccini, R.; Piccolo, A. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol. Fertil. Soils 2016, 52, 15–29. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Huang, H.Y.; Jing, J.Q.; Zhao, H.J.; Wang, L.; Long, X.E. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl. Microbiol. Biotechnol. 2018, 102, 5717–5729. [Google Scholar] [CrossRef]
- Yang, K.; Xiao, J.L.; Zhang, Y.; Wei, L.; Liang, Z.H. Application of soil fumigation technology on controlling watermelon fusarium wilt. J. Chang. Veg. 2020, 18, 31–33. (In Chinese) [Google Scholar]
- Cocetta, G.; Passera, A.; Vacchini, V.; Shahzad, G.; Cortellino, G.; Picchi, V.; Ferrante, A.; Casati, P.; Piazza, L. Use of microbial inoculants during cultivation maintain the physiological, nutritional and technological quality of fresh-cut romaine lettuce. Postharvest Biol. Technol. 2021, 175, 111411. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, H.; Lian, J.; Zhang, W.; Li, G.; Zhang, J. Combined Application of Organic Fertilizer with Microbial Inoculum Improved Aggregate Formation and Salt Leaching in a Secondary Salinized Soil. Plants 2023, 12, 2945. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Zhang, S.; Wei, W.; Kuzyakov, Y.; Ding, X. Fertilization Effects on Microbial Community Composition and Aggregate Formation in Saline-alkaline Soil. Plant Soil 2021, 463, 523–535. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Li, F.; Zhang, J. Effects of Organic and Inorganic Fertilization on Soil Organic Carbon and Enzymatic Activities. Agronomy 2022, 12, 3125. [Google Scholar] [CrossRef]
- Parizad, S.; Bera, S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. Environ. Sci. Pollut. Res. 2023, 30, 71665–71676. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, A.; Dames, J. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front. Microbiol. 2021, 12, 791723. [Google Scholar] [CrossRef]
- Shao, F.; Wu, J.; Tao, W.; Wang, Q.; Li, Y. Efficacy of earthworm casts on sediment and nitrate loss with runoff in the Chinese Loess Plateau. Soil Tillage Res. 2022, 219, 105328. [Google Scholar] [CrossRef]
- Shao, F.; Tao, W.; Wu, J.; Lin, S.; Wang, Q. Combined effects of the earthworm casts application and fallow time on runoff and sediment loss by raindrop splashing in the Loess Plateau, China. J. Environ. Manag. 2023, 325, 116472. [Google Scholar] [CrossRef]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barcelo, D. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 2022, 707, 135634. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Amadou, A.; Song, A.; Tang, Z.; Li, Y.; Wang, E.; Lu, Y.; Liu, X.; Yi, K.; Zhang, B.; Fan, F. The effects of organic and mineral fertilization on soil enzyme activities and bacterial community in the below- and above-ground parts of wheat. Agronomy 2020, 10, 1452. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Janzen, H.H.; Bremer, E.; Smith, E.G.; Kanashiro, D.A.; Eastman, A.H.; Petri, R.M. The core soil bacterial genera and enzyme activities in incubated soils from century-old wheat rotations. Geoderma 2021, 404, 115275. [Google Scholar] [CrossRef]
- Raiesi, F.; Salek-Gilani, S. The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Appl. Soil Ecol. 2018, 126, 140–147. [Google Scholar] [CrossRef]
- Yu, P.; Tang, X.; Zhang, A.; Fan, G.; Liu, S. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China. Sci. Total Environ. 2019, 687, 939–945. [Google Scholar] [CrossRef]
- Tan, M.; Zong, R.; Lin, H.; Dhital, Y.; Ayantobo, O.; Chen, P.; Li, H.; Chen, R.; Wang, Z. Responses of soil nutrient and enzyme activities to long-term mulched drip irrigation (MDI) after the conversion of wasteland to cropland. Appl. Soil Ecol. 2023, 190, 104976. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Yang, X.; Hu, C.; Wang, K. Regulation of soil enzyme activity and bacterial communities by food waste compost application during field tobacco cultivation cycle. Appl. Soil Ecol. 2023, 192, 105016. [Google Scholar] [CrossRef]
- Guan, S.Y. Soil Enzyme and Research Method; China Agricultural Press: Beijing, China, 1986. [Google Scholar]
- Kim, K.Y.; Jordan, D.; McDonald, G.A. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 1998, 26, 79–87. [Google Scholar] [CrossRef]
- Tuo, Y.; Wang, Z.; Zheng, Y.; Shi, X.; Liu, X.; Ding, M.; Yang, Q. Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng. Agric. Water Manag. 2023, 278, 108145. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agr. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Cheng, H.; Ren, L.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation. J. Environ. Manag. 2022, 309, 114666. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, X.; Yang, W.; Yang, X.; Li, W.; Xia, Q.; Li, J.; Gao, Z.; Yang, Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. J. Environ. Manag. 2021, 299, 113650. [Google Scholar] [CrossRef]
- Quaggio, J.A.; Souza, T.R.; Zambrosi, F.C.B.; Mattos, D.; Boaretto, R.M.; Silva, G. Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system. Sci. Hortic. 2019, 249, 329–333. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, K.K.; Misra, A.K.; Ghosh, P.K. Effect of irrigation and nitrogen application methods on input use efficiency of wheat under limited water supply in a Vertisol of Central India. Irrig. Sci. 2010, 28, 285–299. [Google Scholar] [CrossRef]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Itelima, J.U.; Bang, W.J.; Sila, M.D.; Onyimba, I.A.; Egbere, O.J. A review: Biofertilizer—A key player in enhancing soil fertility and crop productivity. Microbiol. Biotechnol. Rep. 2018, 2, 22–28. [Google Scholar]
- Vessey, J.K. Plant growth promoting Rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
Soil Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Soil Texture | Soil Bulk Density (g cm−3) | pH | Available Potassium Content (mg kg−1) | Available Phosphorus Content (mg kg−1) |
---|---|---|---|---|---|---|---|---|
0–20 | 86.77 | 13.20 | 0.03 | Sandy soil | 1.62 | 8.3 | 25.31 | 12.31 |
20–40 | 86.68 | 13.14 | 0.18 | Sandy soil | 1.61 | 8.2 | 22.14 | 8.29 |
40–60 | 85.49 | 12.33 | 2.18 | Sandy soil | 1.59 | 8.3 | 20.11 | 6.52 |
60–80 | 85.29 | 12.47 | 2.24 | Sandy soil | 1.60 | 8.4 | 15.18 | 4.87 |
Year | Irrigation Date | Irrigation Amount (mm) | Urea (kg/ha) | P2O5 (kg/ha) | K2O (kg/ha) |
---|---|---|---|---|---|
2021 | 20 April | 32.0 | 37.95 | 18.90 | 6.48 |
5 May | 32.0 | 37.95 | 18.90 | 6.48 | |
20 May | 32.0 | 37.95 | 18.90 | 6.48 | |
3 June | 32.0 | 37.95 | 18.90 | 6.48 | |
17 June | 32.0 | 37.95 | 18.90 | 6.48 | |
2 July | 32.0 | 43.20 | 14.40 | 38.40 | |
15 July | 32.0 | 43.20 | 14.40 | 38.40 | |
1 August | 32.0 | 43.20 | 14.40 | 38.40 | |
16 August | 32.0 | 43.20 | 14.40 | 38.40 | |
2 September | 32.0 | 43.20 | 14.40 | 38.40 | |
2022 | 28 April | 32.0 | 37.95 | 18.90 | 6.48 |
13 May | 32.0 | 37.95 | 18.90 | 6.48 | |
28 May | 32.0 | 37.95 | 18.90 | 6.48 | |
10 June | 32.0 | 37.95 | 18.90 | 6.48 | |
25 June | 32.0 | 37.95 | 18.90 | 6.48 | |
8 July | 32.0 | 43.20 | 14.40 | 38.40 | |
21 July | 32.0 | 43.20 | 14.40 | 38.40 | |
2 August | 32.0 | 43.20 | 14.40 | 38.40 | |
18 August | 32.0 | 43.20 | 14.40 | 38.40 | |
3 September | 32.0 | 43.20 | 14.40 | 38.40 |
Year | Treatment | SWS (mm) | Mean SWS (mm) | |||
---|---|---|---|---|---|---|
Germination and Leaf Spreading Stage | Flowering and Young Fruit Stage | Fruit Expansion Stage | Maturity Stage | |||
2021 | CK | 63.20 ± 0.25 d | 60.10 ± 1.21 de | 51.40 ± 0.32 d | 61.20 ± 0.54 c | 58.98 |
M1 | 64.30 ± 0.31 cd | 62.30 ± 0.87 d | 52.30 ± 0.19 d | 63.80 ± 0.380 c | 60.68 | |
M2 | 67.20 ± 0.28 c | 65.80 ± 0.96 c | 56.30 ± 0.38 c | 67.30 ± 0.63 b | 64.1 | |
M3 | 71.20 ± 0.64 b | 67.20 ± 1.18 b | 60.50 ± 1.11 b | 72.30 ± 1.32 ab | 67.80 | |
M4 | 75.60 ± 0.38 a | 71.20 ± 0.49 a | 65.20 ± 0.78 a | 74.10 ± 0.97 a | 71.53 | |
2022 | CK | 65.30 ± 0.49 cd | 61.20 ± 0.84 d | 56.30 ± 0.59 cd | 59.30 ± 0.68 d | 60.53 |
M1 | 67.20 ± 0.27 c | 63.50 ± 1.31 cd | 58.20 ± 0.48 c | 63.40 ± 0.49 c | 63.08 | |
M2 | 69.80 ± 0.53 b | 65.20 ± 0.79 c | 62.30 ± 0.32 b | 65.70 ± 0.37 b | 65.75 | |
M4 | 77.27 ± 0.29 a | 71.60 ± 0.43 a | 68.40 ± 0.68 a | 71.20 ± 0.82 a | 72.12 | |
M5 | 70.31 ± 0.18 b | 67.60 ± 0.87 b | 63.20 ± 0.46 b | 64.90 ± 0.66 bc | 66.50 |
Year | Treatment | Urease (mg g−1 d−1) | Catalase (mg g−1 h−1) | Sucrase (mg g−1 d−1) |
---|---|---|---|---|
2021 | CK | 1.82 ± 0.06 e | 0.33 ± 0.02 e | 13.83 ± 0.11 d |
M1 | 2.23 ± 0.07 d | 0.41 ± 0.03 d | 14.51 ± 0.13 c | |
M2 | 2.68 ± 0.11 c | 0.54 ± 0.01 c | 15.21 ± 0.15 bc | |
M3 | 2.97 ± 0.12 b | 0.67 ± 0.01 b | 16.87 ± 0.09 b | |
M4 | 3.64 ± 0.10 a | 0.82 ± 0.03 a | 18.41 ± 0.12 a | |
2022 | CK | 2.03 ± 0.05 e | 0.39 ± 0.02 d | 14.21 ± 0.11 d |
M1 | 2.37 ± 0.08 d | 0.43 ± 0.05 c | 15.11 ± 0.10 c | |
M2 | 2.73 ± 0.11 c | 0.61 ± 0.02 b | 15.73 ± 0.09 c | |
M4 | 3.76 ± 0.12 b | 0.93 ± 0.03 a | 18.99 ± 0.08 b | |
M5 | 4.39 ± 0.13 a | 0.91 ± 0.03 a | 19.31 ± 0.13 a |
Year | Treatment | Yield (t/ha) | Yield Growth Rate (%) | Titrable Acid (g/kg) | Soluble Sugar (g/kg) | Flavone (g/kg) | Sugar-Acid Ratio (g/g) |
---|---|---|---|---|---|---|---|
2021 | CK | 7.65 ± 0.04 d | / | 19.12 ± 1.11 a | 652.30 ± 8.23 c | 1.13 ± 0.05 d | 34.12 |
M1 | 7.93 ± 0.05 c | 3.66 | 17.61 ± 1.21 b | 676.19 ± 6.17 bc | 1.33 ± 0.08 c | 38.40 | |
M2 | 8.36 ± 0.08 bc | 9.28 | 18.21 ± 0.89 b | 689.32 ± 8.34 b | 1.48 ± 0.04 b | 37.85 | |
M3 | 8.76 ± 0.12 b | 14.51 | 15.22 ± 0.92 c | 708.39 ± 6.28 ab | 1.50 ± 0.09 b | 46.54 | |
M4 | 9.12 ± 0.09 a | 19.22 | 12.19 ± 1.10 d | 731.27 ± 9.16 a | 1.86 ± 0.11 a | 59.99 | |
2022 | CK | 8.70 ± 0.06 d | / | 12.71 ± 0.87 a | 718.29 ± 11.13 cd | 1.31 ± 0.02 d | 56.51 |
M1 | 9.35 ± 0.13 c | 7.47 | 12.17 ± 0.26 a | 733.83 ± 6.28 c | 1.53 ± 0.09 c | 60.30 | |
M2 | 9.76 ± 0.12 b | 12.18 | 10.18 ± 0.97 b | 749.17 ± 8.54 b | 1.71 ± 0.05 b | 73.59 | |
M4 | 10.56 ± 0.08 a | 21.38 | 9.33 ± 0.79 c | 776.32 ± 8.23 a | 2.31 ± 0.06 a | 83.21 | |
M5 | 9.68 ± 0.11 b | 11.26 | 9.82 ± 1.13 c | 737.29 ± 10.12 bc | 1.82 ± 0.04 b | 75.08 |
Year | Treatment | Irrigation Water Productivity (kg/m3) | Fertilizer Productivity (kg/kg) | Income (CNY) | Outcome (CNY) | Net Income (CNY) | ||
---|---|---|---|---|---|---|---|---|
N | P | K | ||||||
2021 | CK | 2.39 b | 18.85 b | 45.95 c | 34.15 c | 61,200 c | 17,900 c | 43,300 c |
M1 | 2.48 b | 19.03 b | 47.63 c | 35.40 c | 63,440 c | 19,100 b | 44,340 c | |
M2 | 2.61 ab | 19.54 ab | 50.21 b | 37.32 b | 66,880 b | 20,300 ab | 46,580 b | |
M3 | 2.74 a | 19.97 a | 52.61 a | 39.11 a | 70,080 ab | 21,500 a | 48,580 ab | |
M4 | 2.85 a | 20.28 a | 54.77 a | 40.71 a | 72,960 a | 22,700 a | 50,260 a | |
2022 | CK | 2.72 c | 21.44 ab | 52.25 d | 38.84 d | 69,600 d | 17,900 d | 51,700 c |
M1 | 2.92 bc | 22.44 a | 56.16 c | 41.74 c | 74,800 c | 19,100 cd | 55,700 b | |
M2 | 3.05 b | 22.82 a | 58.62 b | 43.57 b | 78,080 b | 20,300 c | 57,780 b | |
M4 | 3.30 a | 23.48 a | 63.42 a | 47.14 a | 84,480 a | 22,700 b | 61,780 a | |
M5 | 3.03 b | 19.61 b | 58.14 b | 43.21 b | 77,440 b | 27,500 a | 49,940 d |
Year | Treatment | Positive Ideal | Negative Ideal | Relative Proximity C | Ranking |
---|---|---|---|---|---|
2021 | CK | 3.649434798 | 1.747229901 | 0.323761063 | 10 |
M1 | 2.980332995 | 1.696047983 | 0.362683877 | 8 | |
M2 | 2.48513116 | 1.971813370 | 0.442413711 | 6 | |
M3 | 2.149913006 | 2.235547603 | 0.509763467 | 5 | |
M4 | 1.897100524 | 2.978171607 | 0.610872896 | 3 | |
2022 | CK | 3.232117645 | 1.553216327 | 0.324578459 | 9 |
M1 | 2.537163879 | 1.876340944 | 0.425136262 | 7 | |
M2 | 2.148392696 | 2.281330431 | 0.515005197 | 4 | |
M4 | 1.735140415 | 3.578581976 | 0.673460469 | 1 | |
M5 | 1.811858201 | 2.847133158 | 0.611105052 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, F.; Tao, W.; Yan, H.; Wang, Q. Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality. Agronomy 2023, 13, 2427. https://doi.org/10.3390/agronomy13092427
Shao F, Tao W, Yan H, Wang Q. Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality. Agronomy. 2023; 13(9):2427. https://doi.org/10.3390/agronomy13092427
Chicago/Turabian StyleShao, Fanfan, Wanghai Tao, Haokui Yan, and Quanjiu Wang. 2023. "Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality" Agronomy 13, no. 9: 2427. https://doi.org/10.3390/agronomy13092427
APA StyleShao, F., Tao, W., Yan, H., & Wang, Q. (2023). Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality. Agronomy, 13(9), 2427. https://doi.org/10.3390/agronomy13092427