Impacts of Grazing Disturbance on Soil Nitrogen Component Contents and Storages in a Leymus chinensis Meadow Steppe
<p>Map of meteorological variation at sample sites.</p> "> Figure 2
<p>Soil nitrogen content dynamics at different grazing intensities over two years. Note: Different lowercase letters indicate significant differences between different grazing intensities (<span class="html-italic">p</span> < 0.05), different capital letters indicate significant differences between different soil layers (<span class="html-italic">p</span> < 0.05), and no letters indicate no significant difference.</p> "> Figure 3
<p>Dynamics of soil nitrogen components under different grazing intensities over two years. Note: The small figure on the upper right is the trend of 0–40 nitrogen component ratio. Different lowercase letters indicate significant differences between different grazing intensities (<span class="html-italic">p</span> < 0.05), and no letters indicate no significant difference.</p> "> Figure 4
<p>Dynamics of soil nitrogen stocks under different grazing intensities over two years. Note: Different lowercase letters indicate significant differences between grazing intensities (<span class="html-italic">p</span> < 0.05), and no letters indicate no significant difference.</p> "> Figure 5
<p>Correlation of different grazing intensities over two years. * 0.01 < <span class="html-italic">p</span> ≤ 0.05, ** 0.001 < <span class="html-italic">p</span> ≤ 0.01; GI: grazing intensity, TN: total nitrogen, STN: soluble total nitrogen, SON: soluble organic nitrogen, NN: NO<sub>3</sub><sup>−</sup>-N, AN: NH<sub>4</sub><sup>+</sup>-N, MBN: microbial biomass nitrogen, TNS: total nitrogen storage, STNS: soluble total nitrogen storage, SONS: soluble organic nitrogen storage, NNS: NO<sub>3</sub><sup>−</sup>-N storage, ANS: NH<sub>4</sub><sup>+</sup>-N storage, MBNS: microbial biomass nitrogen storage, H: height, C: coverage, D: density, AGB: aboveground biomass, ST: soil temperature, SM: soil moisture, SBD: soil bulk density.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Sample Collection and Measurement Method
2.3. Calculation and Statistics
3. Results
3.1. Changes in Soil Nitrogen Components Content under Different Grazing Intensities
3.2. Interaction Analysis of Soil Nitrogen Components
3.3. The Proportion of Nitrogen Components to Total Nitrogen
3.4. Changes in Soil Nitrogen Storage
3.5. Correlation between Nitrogen Components and Environmental Factors
4. Discussion
4.1. Effect of Grazing on the Contents of Different Nitrogen Components in Soil
4.2. Effects of Grazing on the Proportion and Storage of Different Nitrogen Components in Soil
4.3. Effects of Grazing on Environmental Factors and Nitrogen Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, A.; Liu, H.; Wang, Y.; Sun, H.; Han, G. Grazing intensity changed the activities of nitrogen assimilation related enzymes in desert Steppe Plants. BMC Plant Biol. 2021, 21, 436. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, L.-P.; Zheng, L.-L.; Yu, F.-H.; Song, M.-H.; Zhang, X.-Z. Long-term grazing affects relationships between nitrogen form uptake and biomass of alpine meadow plants. Plant Ecol. 2017, 218, 1035–1045. [Google Scholar] [CrossRef]
- Tian, L.; Bai, Y.; Wang, W.; Qu, G.; Deng, Z.; Li, R.; Zhao, J. Warm- and cold-season grazing affect plant diversity and soil carbon and nitrogen sequestration differently in Tibetan alpine swamp meadows. Plant Soil 2021, 458, 151–164. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Chang. Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef]
- Wang, X.; McConkey, B.G.; VandenBygaart, A.J.; Fan, J.; Iwaasa, A.; Schellenberg, M. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Sci. Rep. 2016, 6, 33190. [Google Scholar] [CrossRef]
- Hou, L.; Xia, F.; Chen, Q.; Huang, J.; He, Y.; Rose, N.; Rozelle, S. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 2021, 12, 4683. [Google Scholar] [CrossRef]
- Wang, D.; Wu, G.-L.; Zhu, Y.-J.; Shi, Z.-H. Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena 2014, 123, 113–120. [Google Scholar] [CrossRef]
- Dong, S.; Wen, L.; Liu, S.; Zhang, X.; Lassoie, J.P.; Yi, S.; Li, X.; Li, J.; Li, Y. Vulnerability of Worldwide Pastoralism to Global Changes and Interdisciplinary Strategies for Sustainable Pastoralism. Ecol. Soc. 2011, 16, 10. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Frank, D.A.; Groffman, P.M.; Evans, R.D.; Tracy, B.F. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 2000, 123, 116–121. [Google Scholar] [CrossRef]
- Gao, Y.Z.; Giese, M.; Lin, S.; Sattelmacher, B.; Zhao, Y.; Brueck, H. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 2008, 307, 41–50. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Chen, S.; Zhang, Y.; Li, Y.; Xin, X.; Wang, X.; Yan, R. Effects of Grazing Intensity on the Carbon, Nitrogen and Phosphorus Content, Stoichiometry and Storage of Plant Functional Groups in a Meadow Steppe. Agronomy 2022, 12, 3057. [Google Scholar] [CrossRef]
- Shao, H.; Sun, X.; Wang, H.; Zhang, X.; Xiang, Z.; Tan, R.; Chen, X.; Xian, W.; Qi, J. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Song, S.; Wang, X.; He, C.; Chi, Y. Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area. Agronomy 2023, 13, 1368. [Google Scholar] [CrossRef]
- Singer, F.J.; Schoenecker, K.A. Do ungulates accelerate or decelerate nitrogen cycling? For. Ecol. Manag. 2003, 181, 189–204. [Google Scholar] [CrossRef]
- Xu, Z. On the Nature and Ecological Functions of Soil Soluble Organic Nitrogen (SON) in Forest Ecosystems. J. Soils Sediments 2006, 6, 63–66. [Google Scholar] [CrossRef]
- Murphy, D.V.; Macdonald, A.J.; Stockdale, E.A.; Goulding, K.W.T.; Fortune, S.; Gaunt, J.L.; Poulton, P.R.; Wakefield, J.A.; Webster, C.P.; Wilmer, W.S. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 2000, 30, 374–387. [Google Scholar] [CrossRef]
- Vestgarden, L.S.; Kjønaas, O. Potential nitrogen transformations in mineral soils of two coniferous forests exposed to different N inputs. For. Ecol. Manag. 2003, 174, 191–202. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Li, F.; Liu, M.; Li, Z.; Jiang, C.; Han, F.; Che, Y. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil Ecol. 2013, 64, 1–6. [Google Scholar] [CrossRef]
- Tuo, Y.; Wang, Z.; Zheng, Y.; Shi, X.; Liu, X.; Ding, M.; Yang, Q. Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng. Agric. Water Manag. 2023, 278, 108145. [Google Scholar] [CrossRef]
- Xing, T.-T.; Cai, A.-D.; Lu, C.-A.; Ye, H.-L.; Wu, H.-L.; Huai, S.-C.; Wang, J.-Y.; Xu, M.-G.; Lin, Q.-M. Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application. J. Integr. Agric. 2022, 21, 1488–1500. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Wu, G.-L.; Du, G.-Z.; Liu, Z.-H.; Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 2009, 319, 115–126. [Google Scholar] [CrossRef]
- Xiong, D.; Shi, P.; Sun, Y.; Wu, J.; Zhang, X. Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chin. Geogr. Sci. 2014, 24, 488–498. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, X.; Schumann, M.; Chen, H. Effectiveness of Exclosures on Restoration of Degraded Alpine Meadow in the Eastern Tibetan Plateau. Arid. Land Res. Manag. 2011, 25, 164–175. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2010, 53, 1–17. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Ganjurjav, H.; Gao, Q.; Gao, X.; Zhang, J.; Yan, Y.; Zhang, Y.; Liu, S.; Hu, G.; et al. Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 303, 107111. [Google Scholar] [CrossRef]
- Carbonell, V.; Merbold, L.; Díaz-Pinés, E.; Dowling, T.P.F.; Butterbach-Bahl, K. Nitrogen cycling in pastoral livestock systems in Sub-Saharan Africa: Knowns and unknowns. Ecol. Appl. A Publ. Ecol. Soc. Am. 2021, 31, e02368. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Xu, M.; Zhu, J.; Wimberly, M.C.; Yu, G.; Niu, S.; Xi, Y.; Zhang, X.; Wang, J. Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau. Sci. Rep. 2015, 5, 15949. [Google Scholar] [CrossRef]
- Wang, L.; Luan, L.; Hou, F.; Siddique, K.H. Nexus of grazing management with plant and soil properties in northern China grasslands. Sci. Data 2020, 7, 39. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, Q.; Ma, J.; Hou, F. Nitrogen mineralization in grazed BSC subsoil is mediated by itself and vegetation in the Loess Plateau, China. J. Environ. Manag. 2023, 336, 117647. [Google Scholar] [CrossRef]
- Bethany, J.; Giraldo-Silva, A.; Nelson, C.; Barger, N.N.; Garcia-Pichel, F. Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils. Appl. Environ. Microbiol. 2019, 85, e00735-19. [Google Scholar] [CrossRef]
- Ayuso, S.V.; Oñatibia, G.R.; Maestre, F.T.; Yahdjian, L. Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands. Land Degrad. Dev. 2019, 31, 488–499. [Google Scholar] [CrossRef]
- Rauber, L.R.; Sequinatto, L.; Kaiser, D.R.; Bertol, I.; Baldissera, T.C.; Garagorry, F.C.; Sbrissia, A.F.; Pereira, G.E.; Pinto, C.E. Soil physical properties in a natural highland grassland in southern Brazil subjected to a range of grazing heights. Agric. Ecosyst. Environ. 2021, 319, 107515. [Google Scholar] [CrossRef]
- Graham, C.; Ramos-Pezzotti, M.; Lehman, M. Short-term impacts to the soil microbial population during grassland conversion to cropland. Soil Tillage Res. 2021, 206, 104839. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Hui, D.; Jing, X.; Feng, W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 2020, 148, 107905. [Google Scholar] [CrossRef]
- Rui, Y.; Wang, S.; Xu, Z.; Wang, Y.; Chen, C.; Zhou, X.; Kang, X.; Lu, S.; Hu, Y.; Lin, Q.; et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai–Tibet Plateau in China. J. Soils Sediments 2011, 11, 903–914. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Xin, X.; Wang, M.; Pan, F.; Yan, R.; Li, L. Effects of stocking rate on the interannual patterns of ecosystem biomass and soil nitrogen mineralization in a meadow steppe of northeast China. Plant Soil 2021, 473, 9–31. [Google Scholar] [CrossRef]
- Reay, M.K.; Marsden, K.A.; Powell, S.; Chadwick, D.R.; Jones, D.L.; Evershed, R.P. Combining field and laboratory approaches to quantify N assimilation in a soil microbe-plant-animal grazing land system. Agric. Ecosyst. Environ. 2023, 346, 108338. [Google Scholar] [CrossRef]
- Pan, Y.; Tang, H.; Fang, F.; Ma, Y.; Chen, Z. Is elemental stoichiometry (C, N, P) of soil and soil microbial biomass influenced by management modes and soil depth in agro-pastoral transitional zone of northern China? J. Soils Sediments 2023, 23, 32–48. [Google Scholar] [CrossRef]
- Mosier, S.; Apfelbaum, S.; Byck, P.; Calderon, F.; Teague, R.; Thompson, R.; Cotrufo, M.F. Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. J. Environ. Manag. 2021, 288, 112409. [Google Scholar] [CrossRef] [PubMed]
- Filazzola, A.; Brown, C.; Dettlaff, M.A.; Batbaatar, A.; Grenke, J.; Bao, T.; Heida, I.P.; Cahill, J.F., Jr. The effects of livestock grazing on biodiversity are multi-trophic: A meta-analysis. Ecol. Lett. 2020, 23, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhou, G.; Yuan, T.; Van Groenigen, K.J.; Shao, J.; Zhou, X. Grazing intensity significantly changes the C:N:P stoichiometry in grassland ecosystems. Glob. Ecol. Biogeogr. 2020, 29, 355–369. [Google Scholar] [CrossRef]
- Ramula, S.; Paige, K.N.; Lennartsson, T.; Tuomi, J. Overcompensation: A 30-year perspective. Ecology 2019, 100, e02667. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, X.; Zhou, X.; Lv, P.; Lian, J.; Yue, X. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China. Environ. Monit. Assess. 2017, 189, 216. [Google Scholar] [CrossRef]
- An, H.; Li, G. Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China. J. Arid. Land 2015, 7, 341–349. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef]
- Faghihinia, M.; Zou, Y.; Chen, Z.; Bai, Y.; Li, W.; Marrs, R.; Staddon, P.L. Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl. Soil Ecol. 2020, 153, 103591. [Google Scholar] [CrossRef]
Source of Variation | IN | GI | SL | IN × GI | IN × SL | GI × SL | IN × GI × SL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
TN content | 0.02 | 0.88 | 2.01 | 0.08 | 366.28 | <0.01 | 2.14 | 0.07 | 1.33 | 0.27 | 1.79 | <0.05 | 1.15 | 0.32 |
STN content | 4.14 | <0.05 | 0.23 | 0.95 | 6.47 | <0.01 | 0.20 | 0.96 | 0.14 | 0.94 | 0.62 | 0.85 | 0.45 | 0.96 |
SON content | 117.67 | <0.01 | 1.21 | 0.31 | 6.33 | <0.01 | 0.28 | 0.93 | 0.76 | 0.52 | 0.76 | 0.72 | 1.43 | 0.15 |
NO3−-N content | 10.26 | <0.01 | 0.99 | 0.43 | 9.49 | <0.01 | 1.42 | 0.22 | 4.18 | <0.01 | 0.37 | 0.98 | 0.35 | 0.99 |
NH4+-N content | 0.70 | 0.40 | 0.84 | 0.53 | 0.52 | 0.67 | 1.43 | 0.22 | 3.86 | <0.05 | 0.64 | 0.83 | 0.85 | 0.63 |
MBN content | 111.63 | <0.01 | 1.01 | 0.42 | 400.17 | <0.01 | 1.18 | 0.32 | 37.46 | <0.01 | 0.46 | 0.96 | 0.83 | 0.64 |
TN storage | 4.77 | <0.05 | 0.57 | 0.72 | 133.71 | <0.01 | 0.85 | 0.52 | 0.94 | 0.43 | 0.51 | 0.93 | 0.60 | 0.87 |
STN storage | 0.25 | 0.62 | 0.52 | 0.76 | 1.49 | 0.22 | 0.59 | 0.71 | 0.46 | 0.71 | 0.78 | 0.70 | 0.65 | 0.83 |
SON storage | 81.26 | <0.01 | 1.26 | 0.29 | 2.08 | 0.11 | 0.80 | 0.55 | 0.46 | 0.71 | 0.91 | 0.56 | 1.48 | 0.13 |
NO3−-N storage | 8.87 | <0.01 | 0.96 | 0.45 | 5.76 | <0.01 | 1.83 | 0.11 | 4.46 | <0.01 | 0.39 | 0.98 | 0.38 | 0.98 |
NH4+-N storage | 0.38 | 0.54 | 0.33 | 0.90 | 2.59 | 0.06 | 0.94 | 0.46 | 2.24 | 0.09 | 0.66 | 0.81 | 0.75 | 0.73 |
MBN storage | 102.81 | <0.01 | 1.33 | 0.26 | 260.77 | <0.01 | 1.26 | 0.29 | 28.27 | <0.01 | 0.55 | 0.90 | 0.35 | 0.99 |
ST | 72.23 | <0.01 | 0.50 | 0.77 | 0.00 | 1.00 | 0.02 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 |
SM | 305.15 | <0.01 | 3.42 | <0.01 | 280.58 | <0.01 | 3.23 | <0.05 | 35.72 | <0.01 | 0.47 | 0.95 | 0.65 | 0.82 |
SBD | 20.49 | <0.01 | 1.37 | 0.24 | 31.07 | <0.01 | 1.55 | 0.18 | 2.21 | 0.09 | 0.91 | 0.56 | 1.00 | 0.47 |
pH | 4.76 | <0.05 | 4.08 | <0.01 | 6.80 | <0.01 | 5.59 | <0.01 | 0.88 | 0.45 | 0.51 | 0.93 | 1.23 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, M.; Zhang, C.; Yu, T.; Xin, X.; Bai, K.; Zhu, X.; Yan, R. Impacts of Grazing Disturbance on Soil Nitrogen Component Contents and Storages in a Leymus chinensis Meadow Steppe. Agronomy 2023, 13, 1574. https://doi.org/10.3390/agronomy13061574
Chen S, Wang M, Zhang C, Yu T, Xin X, Bai K, Zhu X, Yan R. Impacts of Grazing Disturbance on Soil Nitrogen Component Contents and Storages in a Leymus chinensis Meadow Steppe. Agronomy. 2023; 13(6):1574. https://doi.org/10.3390/agronomy13061574
Chicago/Turabian StyleChen, Sisi, Miao Wang, Chu Zhang, Tianqi Yu, Xiaoping Xin, Keyu Bai, Xiaoyu Zhu, and Ruirui Yan. 2023. "Impacts of Grazing Disturbance on Soil Nitrogen Component Contents and Storages in a Leymus chinensis Meadow Steppe" Agronomy 13, no. 6: 1574. https://doi.org/10.3390/agronomy13061574
APA StyleChen, S., Wang, M., Zhang, C., Yu, T., Xin, X., Bai, K., Zhu, X., & Yan, R. (2023). Impacts of Grazing Disturbance on Soil Nitrogen Component Contents and Storages in a Leymus chinensis Meadow Steppe. Agronomy, 13(6), 1574. https://doi.org/10.3390/agronomy13061574