Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities
<p>Distribution of the selected publications by year. In total, 8485 publications were collected from three digital repositories (Web of Science, ScienceDirect and Scopus) from 2011 to 2020, using the provided search string.</p> "> Figure 2
<p>Top 50 of most frequent bigrams resulting from the analysis of the corpus of 8485 abstracts, using the NLP approach.</p> "> Figure 3
<p>Top 50 of most frequent trigrams resulting from the analysis of the corpus of 8485 abstracts, using the NLP approach.</p> "> Figure 4
<p>Data flow between the core technologies of the Agriculture 4.0 paradigm. Five main stages have been identified: sensor and robotics (includes perception and actuation functions, depending on the requirements of the system), Internet of Things (for data communication), cloud computing (for data storage and processing), data analytics (includes big data and AI-based methods for data analysis) and decision support system (for data visualisation, recommendation functions and user interaction).</p> "> Figure 5
<p>General structure of a decision support system, consisting in four components: data, model, knowledge management and user interface (based on [<a href="#B64-agronomy-11-00667" class="html-bibr">64</a>]).</p> "> Figure 6
<p>Schematic representation of a generic agri-food supply chain, from the producer to the final consumer.</p> "> Figure 7
<p>Distribution of Agriculture 4.0 applications domains and respective examples of applications (sub-domains).</p> "> Figure 8
<p>Some of the key challenges to be addressed in Agriculture 4.0 divided into five main levels, namely: device, data, network, application and system.</p> "> Figure 9
<p>Conceptual cloud-based IoT architecture for Agriculture 4.0, consisting on four layers: physical layer (where data are collected at the perception layer), communication layer (where an adequate network allows the data communication between layers), service layer (for data storage, processing and analysis) and application layer (for access of agricultural information and control actions).</p> ">
Abstract
:1. Introduction
- RQ1: What are the emerging trends of Agriculture 4.0 in the last ten years?
- RQ2: What are the existing application domains for Agriculture 4.0?
- RQ3: In which way can Agriculture 4.0 assist in sustainable development?
- RQ4: What are the main challenges Agriculture 4.0 is facing?
- RQ5: In which way can a common architecture be formalised to encompass Agriculture 4.0 core elements and support the implementation of future smart agricultural systems?
2. Principles and Methods
2.1. Review Principles
2.1.1. Quantitative Method
2.1.2. Qualitative Method
2.2. Search String
2.3. Methodology
2.3.1. Data Collection
2.3.2. Data Pre-Processing
3. Emerging Trends of Agriculture 4.0
4. Agriculture 4.0 Core Technologies
4.1. Sensors
4.1.1. Remote Sensing
4.1.2. Wireless Sensor (and Actuator) Networks
4.2. Robotics
4.3. Internet of Things
4.4. Cloud Computing
4.5. Data Analytics
4.5.1. Big Data (Analytics)
4.5.2. Artificial Intelligence and Machine Learning
4.6. Decision Support System
5. Agriculture 4.0 Applications
5.1. Monitoring
5.1.1. Weather and Greenhouse Gases Monitoring
5.1.2. Crop Monitoring
5.1.3. Soil Monitoring
5.1.4. Water Monitoring
5.2. Control
5.2.1. Irrigation Systems
5.2.2. Fertilisation and Fertigation
5.2.3. Crop Pest and Disease Control
5.2.4. Smart Greenhouses
5.2.5. Harvesting Systems
5.3. Prediction
5.3.1. Forecasting Weather Conditions
5.3.2. Crop Development and Yield Estimation
5.3.3. Forecasting Market Demand
5.4. Logistics
5.5. Application Examples
Domain | Sub-Domain | Application Example and References | IoT | S | R | CC | DA | DSS |
---|---|---|---|---|---|---|---|---|
Monitoring | Weather and GHGs | IoT-based system to monitor weather parameters in real-time and notify the users, whenever the parameters cross the threshold levels [106,107,108,109] | ✓ | ✓ | - | ✓ | ✓ | ✓ |
Integrated UAV to record weather data, process and analyse data through MATLAB and communicate to the users [110] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Solar powered UAV and WSN system for GHGs (CH4 and CO2) monitoring [69] | ✓ | ✓ | ✓ | - | ✓ | ✓ | ||
Crop | IoT-based system to monitor the growth of Phalaenopsis leaves and estimate leaf area, using of machine-vision and image processing [111] | ✓ | ✓ | - | ✓ | ✓ | - | |
Quadcopter that autonomously traverse and take aerial shots of a specified field for NDVI analysis [112] | - | ✓ | ✓ | - | ✓ | - | ||
AI-based systems to detect and identify crop disease [47,74,75,76,77,113,114,115,116,117] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Weed mapping and AI-based weed detection [48,71,72] | ✓ | ✓ | ✓ | - | ✓ | - | ||
Pest recognition using AI-based methods [73,118,119] | ✓ | ✓ | - | - | ✓ | ✓ | ||
Soil | Monitoring system for multi-layer soil [120] | ✓ | ✓ | - | - | ✓ | ✓ | |
System to remotely measure soil’s parameters in real-time [78] | ✓ | ✓ | - | - | - | - | ||
Monitoring system for soil’s parameters and nutrient detection (N, P and K) and recommendation for water and fertilisers quantity [121] | ✓ | ✓ | - | ✓ | ✓ | ✓ | ||
Real-time monitoring of citrus soil moisture and nutrients with fertilisation and irrigation decision support [122] | ✓ | ✓ | - | - | ✓ | ✓ | ||
Water | Low-cost system for monitoring nitrate concentration in real-time in surface and groundwater [123] | ✓ | ✓ | - | ✓ | ✓ | - | |
Control | Irrigation | Autonomous irrigation system [81,82,83] | ✓ | ✓ | - | ✓ | ✓ | ✓ |
Fertilisation | Nutrients detection and autonomous fertigation system [124,125] | ✓ | ✓ | - | ✓ | ✓ | ✓ | |
Crop pest | Weed controller using machine-vision, DL methods and robotics for crop-weed classification [126] | - | ✓ | ✓ | - | ✓ | - | |
Smart spraying and weed mapping system, capable of targeting weeds (using machine-vision and AI) and precisely spray the target [90] | ✓ | ✓ | ✓ | - | ✓ | - | ||
UAV-integrated system for RS, weed identification and mapping and for herbicide spraying at the specific location [45] | - | ✓ | ✓ | - | ✓ | - | ||
Pest control system, using Infrared sensors ultrasonic sound generator and image processing technologies [127] | ✓ | ✓ | - | - | ✓ | - | ||
Smart greenhouses | Smart control system for tomato greenhouses and growth prediction [128] | ✓ | ✓ | - | ✓ | ✓ | ✓ | |
Low-cost ubiquitous sensor networks for greenhouse hydroponics [41] | ✓ | ✓ | - | ✓ | ✓ | ✓ | ||
Arduino-based system to monitor and control environmental and soil parameters in greenhouses [129] | ✓ | ✓ | - | - | - | ✓ | ||
Greenhouse control system using fuzzy logic enhanced with wireless data monitoring [130] | ✓ | ✓ | - | - | ✓ | ✓ | ||
Harvesting | Autonomous harvesting robots for fresh tomatoes [131], cherry-tomatoes [132] and sweet pepper fruit [51] | - | ✓ | ✓ | - | ✓ | - | |
Prediction | Weather conditions | Weather forecasting to support automated agricultural systems, using AI-based approaches: ANN [133], LSTM technique [134], fuzzy logic algorithm [135] | ✓ | ✓ | - | ✓ | ✓ | ✓ |
Crop development | Smart irrigation system and plan scheduling using predictive models [84,85,136,137,138] | ✓ | ✓ | - | ✓ | ✓ | ✓ | |
Nutrient level estimation in soil using ANN [139] | ✓ | ✓ | - | ✓ | ✓ | ✓ | ||
Estimation of optimal pesticide dosage distribution using fuzzy logic theory [140] | ✓ | ✓ | - | - | ✓ | ✓ | ||
Prevention of crop diseases [75,76,141] | ✓ | ✓ | - | ✓ | ✓ | ✓ | ||
Yield estimation | Crop yield estimations using AI-based approaches for citrus fruit [46], wheat [142,143], wheat, maize (grain and silage) and potato [144] | - | ✓ | ✓ | - | ✓ | ✓ | |
Market demand | Forecasting monthly prices of arecanuts in India using ML methods [145] | - | - | - | - | ✓ | - | |
Sales forecasting and order planning operations using statistical analysis for packaged fresh and highly perishable products management [146] | - | - | - | - | ✓ | ✓ | ||
Logistics | Storage | Crop storage temperature and moisture levels using WSNs [102] | ✓ | ✓ | - | - | - | ✓ |
Distribution | Smart monitoring system for refrigerator trucks [147] | ✓ | ✓ | - | - | - | ✓ | |
Supply chain management | Scheduling optimisation for AFSC management using big data [148] | ✓ | ✓ | - | ✓ | ✓ | ✓ | |
Fruit and vegetable identification using computer-vision and CNNs for retail applications [149] | ✓ | ✓ | - | - | ✓ | ✓ | ||
Supply chain traceability | IoT-based traceability system using RFID [150,151] QR Code and RFID [152], NFC [153], blockchain and HACCP methods [154] | ✓ | ✓ | - | ✓ | ✓ | ✓ | |
Provenance of supply chain products using blockchain [155,156] | ✓ | ✓ | - | - | ✓ | ✓ |
6. Agriculture 4.0 Challenges and Research Opportunities
6.1. Device Level
6.2. Data Level
6.3. Network Level
6.4. Application Level
6.5. System Level
7. Cloud-Based IoT Architecture for Agriculture 4.0
7.1. Physical Layer
7.2. Edge and Fog Computing Layer (Optional)
7.3. Communication Layer
7.4. Service Layer
7.5. Application Layer
8. Discussion and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFSC | Agri-Food Supply Chain |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CH4 | Methane |
CO2 | Carbon dioxide |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DNN | Deep Neural Network |
DSS | Decision Support System |
FAIR | Findable, Accessible, Interoperable, Reusable |
FAO | Food and Agriculture Organization (of the United Nations) |
GHG | Greenhouse Gas |
HACCP | Hazard Analysis and Critical Control Points |
ICT | Information and Communications Technology |
IoT | Internet of Things |
K | Potassium |
LAI | Leaf Area Index |
LSTM | Long-Short Term Memory |
ML | Machine Learning |
MLR | Multiple Linear Regression |
N | Nitrogen |
NDVI | Normalised Difference Vegetation Index |
NFC | Near-Field Communication |
N2O | Nitrous oxide |
NLP | Natural Language Processing |
P | Phosphorus |
QR | Quick Response |
RFID | Radio-Frequency Identification |
RNN | Recurrent Neural Network |
RQ | Research Question |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
TRL | Technology Readiness Level |
UAV | Unmanned Aerial Vehicle |
UGV | Unmanned Ground Vehicle |
WSAN | Wireless Sensor and Actuator Network |
WSN | Wireless Sensor Network |
References
- Food and Agriculture Organization. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Powell, N.; Ji, X.; Ravash, R.; Edlington, J.; Dolferus, R. Yield stability for cereals in a changing climate. Funct. Plant Biol. 2012, 39, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. The State of Food and Agriculture. Climate Change, Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- European Commission. The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 23 November 2020).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 23 November 2020).
- Mukhopadhyay, S.C. Smart sensing technology for agriculture and environmental monitoring. In Lecture Notes in Electrical Engineering, 146; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Trendov, N.M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas: Status Report; Licence: cc by-nc-sa 3.0 igo: Rome, Italy, 2019. [Google Scholar]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Kovács, I.; Husti, I. The role of digitalization in the agricultural 4.0—How to connect the industry 4.0 to agriculture? Hung. Agric. Eng. 2018. [Google Scholar] [CrossRef]
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, United Arab Emirates, 2018; pp. 11–13. [Google Scholar]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2020. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- European Agricultural Machinery. Digital Farming: What Does It Really Mean? Available online: https://www.cema-agri.org/images/publications/position-papers/CEMA_Digital_Farming_-_Agriculture_4.0__13_02_2017_0.pdf (accessed on 11 August 2020).
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 2015; pp. 2147–2152. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-art Internet of things in protected agriculture. Sensors 2019, 19, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial Artificial Intelligence in Industry 4.0-Systematic Review, Challenges and Outlook. IEEE Access 2020, 8, 220121–220139. [Google Scholar] [CrossRef]
- Loper, E.; Bird, S. NLTK: The Natural Language Toolkit. In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, Philadelphia, PA, USA, 2002. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote. Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.T.C.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Ur Rehman, A.; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Kassim, M.R.M.; Harun, A.N. Applications of WSN in agricultural environment monitoring systems. In Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 2016; pp. 344–349. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Morris, D.; Johannsen, C.; Brouder, S.; Steinhardt, G. Remote Sensing/Organic Matter; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; pp. 385–392. [Google Scholar] [CrossRef]
- Pinter-Wollman, N.; Mabry, K. Remote-Sensing of Behavior. Encyclopedia of Animal Behaviour; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; Volume 3, pp. 33–40. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bédard, F. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218, 74–84. [Google Scholar] [CrossRef]
- Sessa, R.; Dolman, H. (Eds.) Terrestrial Essential Climate Variables for Climate Change Assessment, Mitigation and Adaptation (GTOS 52); Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Minet, J.; Curnel, Y.; Gobin, A.; Goffart, J.P.; Melard, F.; Tychon, B.; Wellens, J.; Defourny, P. Crowdsourcing for agricultural applications: A review of uses and opportunities for a farmsourcing approach. Comput. Electron. Agric. 2017, 142, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [Green Version]
- Moschitta, A.; Neri, I. Power consumption assessment in wireless sensor networks. In ICT-Energy-Concepts Towards Zero-Power Information and Communication Technology; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Kassim, M.R.M.; Mat, I.; Harun, A.N. Wireless Sensor Network in precision agriculture application. In Proceedings of the International Conference on Computer, Information and Telecommunication Systems (CITS), Jeju, Korea, 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing ubiquitous sensor network platform using Internet of things: Application in precision agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Hellmann Santos, C.; Pekkeriet, E. Agricultural Robotics for Field Operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Weltzien, C.; Hameed, I.A.; Yule, J.I.; Grift, E.T.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. 2018. [Google Scholar] [CrossRef]
- Roldán, J.J.; del Cerro, J.; Garzón-Ramos, D.; Garcia-Aunon, P.; Garzón, M.; de León, J.; Barrientos, A. Robots in agriculture: State of art and practical experiences. Serv. Robot. 2018. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.E., III; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest Manag. Sci. 2019, 76, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. Eur. J. Agron. 2020, 115, 126030. [Google Scholar] [CrossRef]
- Chung, C.L.; Huang, K.J.; Chen, S.Y.; Lai, M.H.; Chen, Y.C.; Kuo, Y.F. Detecting Bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 2016, 121, 404–411. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Tamouridou, A.A.; Alexandridis, T.K.; Lagopodi, A.L.; Kashefi, J.; Moshou, D. Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Comput. Electron. Agric. 2017, 139, 224–230. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Bonadies, S.; Lefcourt, A.; Gadsden, S.A. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, International Society for Optics and Photonics, Baltimore, MD, USA, 2016; Volume 9866, p. 98660Q. [Google Scholar] [CrossRef]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T.; et al. Development of a sweet pepper harvesting robot. J. Field Robot. 2020. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, K.; Han, Y.; Qiao, Z. A cloud-based digital farm management system for vegetable production process management and quality traceability. Sustainability 2018, 10, 4007. [Google Scholar] [CrossRef] [Green Version]
- Kaloxylos, A.; Groumas, A.; Sarris, V.; Katsikas, L.; Magdalinos, P.; Antoniou, E.; Politopoulou, Z.; Wolfert, S.; Brewster, C.; Eigenmann, R.; et al. A cloud-based Farm Management System: Architecture and implementation. Comput. Electron. Agric. 2014, 100, 168–179. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile cloud computing, Helsinki, Finland, 2012; pp. 13–16. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming-a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Demchenko, Y.; Grosso, P.; De Laat, C.; Membrey, P. Addressing big data issues in scientific data infrastructure. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 2013; pp. 48–55. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, J.; Naraseeyappa, S.; Ankalaki, S. Analysis of agriculture data using data mining techniques: Application of big data. J. Big Data 2017, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Frelat, R.; Lopez-Ridaura, S.; Giller, K.E.; Herrero, M.; Douxchamps, S.; Djurfeldt, A.A.; Erenstein, O.; Henderson, B.; Kassie, M.; Paul, B.K.; et al. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. USA 2016, 113, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 911–926. [Google Scholar] [CrossRef]
- Turban, E.; Aronson, J.E.; Liang, T.P. Decision Support Systems and Intelligent Systems, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Food and Agriculture Organization. FAO Regional Conference for the Near East: Digital Innovation for Promoting Agriculture 4.0 in the Near East and North Africa; Food and Agriculture Organization of the United Nations: Muscat, Oman, 2020. [Google Scholar]
- Ahumada, O.; Villalobos, J.R. Application of planning models in the agri-food supply chain: A review. Eur. J. Oper. Res. 2009, 196, 1–20. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Malaver, A.; Motta, N.; Corke, P.; Gonzalez, F. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases. Sensors 2015, 15, 4072–4096. [Google Scholar] [CrossRef]
- Abbas, T.; Zahir, Z.A.; Naveed, M.; Kremer, R.J. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv. Agron. 2018, 147, 239–280. [Google Scholar] [CrossRef]
- Dyrmann, M.; Skovsen, S.; Sørensen, R.A.; Nielsen, P.R.; Jørgensen, R.N. Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 2018. [Google Scholar]
- Pflanz, M.; Nordmeyer, H.; Schirrmann, M. Weed mapping with UAS imagery and a Bag of Visual Words based image classifier. Remote. Sens. 2018, 10, 1530. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 2020, 169, 105174. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Das, J.; Ehsani, R.; Kumar, V. Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016; pp. 5143–5148. [Google Scholar] [CrossRef]
- Foughali, K.; Fathallah, K.; Frihida, A. Using Cloud IOT for disease prevention in precision agriculture. Procedia Comput. Sci. 2018, 130, 575–582. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ehsani, R.; Abd-Elrahman, A.; Ampatzidis, Y. A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric. 2019, 156, 549–557. [Google Scholar] [CrossRef]
- Sun, G.; Jia, X.; Geng, T. Plant diseases recognition based on image processing technology. J. Electr. Comput. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Na, A.; Isaac, W.; Varshney, S.; Khan, E. An IoT based system for remote monitoring of soil characteristics. In Proceedings of the 2016 International Conference on Information Technology (InCITe)-The Next Generation IT Summit on the Theme-Internet of Things: Connect Your Worlds, Noida, India, 2016; pp. 316–320. [Google Scholar] [CrossRef]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards automated aquaponics: A review on monitoring, IoT, and smart systems. J. Clean. Prod. 2020, 121571. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Khelifa, B.; Amel, D.; Amel, B.; Mohamed, C.; Tarek, B. Smart irrigation using Internet of things. In Proceedings of the 2015 Fourth International Conference on Future Generation Communication Technology (FGCT), Luton, UK, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Viani, F.; Bertolli, M.; Salucci, M.; Polo, A. Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture. IEEE Sens. J. 2017, 17. [Google Scholar] [CrossRef]
- Ramachandran, V.; Ramalakshmi, R.; Srinivasan, S. An automated irrigation system for smart agriculture using the Internet of Things. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018; pp. 210–215. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Suciu, G.; Marcu, I.; Balaceanu, C.; Dobrea, M.; Botezat, E. Efficient IoT system for Precision Agriculture. In Proceedings of the 2019 15th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 2019; pp. 173–176. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Delgado, A.; Lopez-Bernal, A.; Quemada, M. FertiliCalc: A Decision Support System for Fertilizer Management. Int. J. Plant Prod. 2020. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Barberi, P. Preventive and cultural methods for weed management. FAO Plant Prod. Prot. 2003, 120. [Google Scholar]
- Abouziena, H.F.; Haggag, W.M. Weed control in clean agriculture: A review 1. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Partel, V.; Kakarla, S.C.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Saridakis, G.; Dalamagkidis, K.; Dolianitis, S.; Kaliakatsos, I. Development of an intelligent indoor environment and energy management system for greenhouses. Energy Convers. Manag. 2010, 51, 155–168. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ding, Y.; Li, D.; Miao, Z. Automatic carbon dioxide enrichment strategies in the greenhouse: A review. Biosyst. Eng. 2018, 171, 101–119. [Google Scholar] [CrossRef]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; De Pascale, S.; Qaryouti, M.; Duffy, R. Good agricultural practices for greenhouse vegetable crops: Principles for mediterranean climate areas. FAO Plant Prod. Prot. 2013. [Google Scholar]
- Lü, Q.; Cai, J.; Liu, B.; Deng, L.; Zhang, Y. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int. J. Agric. Biol. 2014, 7, 115–121. [Google Scholar] [CrossRef]
- Russello, H. Convolutional Neural Networks for Crop Yield Prediction Using Satellite Images. Master’s Thesis, IBM Center for Advanced Studies, Amsterdam, The Netherlands, 2018. [Google Scholar]
- Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Huber, J.; Stuckenschmidt, H. Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 2020, 36, 1420–1438. [Google Scholar] [CrossRef]
- Nukala, R.; Panduru, K.; Shields, A.; Riordan, D.; Doody, P.; Walsh, J. Internet of Things: A review from ‘Farm to Fork’. In Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC), Londonderry, UK, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Prashar, D.; Jha, N.; Jha, S.; Lee, Y.; Joshi, G.P. Blockchain-Based Traceability and Visibility for Agricultural Products: A Decentralized Way of Ensuring Food Safety in India. Sustainability 2020, 12, 3497. [Google Scholar] [CrossRef] [Green Version]
- Juul, J.P.; Green, O.; Jacobsen, R.H. Deployment of wireless sensor networks in crop storages. Wirel. Pers. Commun. 2015, 81, 1437–1454. [Google Scholar] [CrossRef]
- Kshetri, N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. TrAC Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Nechifor, S.; Petrescu, A.; Damian, D.; Puiu, D.; Târnaucă, B. Predictive analytics based on CEP for logistic of sensitive goods. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Bran, Romania, 2014; pp. 817–822. [Google Scholar] [CrossRef]
- Tenzin, S.; Siyang, S.; Pobkrut, T.; Kerdcharoen, T. Low cost weather station for climate-smart agriculture. In Proceedings of the 9th international conference on knowledge and smart technology (KST), Chonburi, Thailand, 2017; pp. 172–177. [Google Scholar] [CrossRef]
- Yan, M.; Liu, P.; Zhao, R.; Liu, L.; Chen, W.; Yu, X.; Zhang, J. Field microclimate monitoring system based on wireless sensor network. J. Intell. Fuzzy Syst. 2018, 35, 1325–1337. [Google Scholar] [CrossRef]
- Math, R.K.M.; Dharwadkar, N.V. IoT Based low-cost weather station and monitoring system for precision agriculture in India. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2018; pp. 81–86. [Google Scholar] [CrossRef]
- Kodali, R.K.; Rajanarayanan, S.C.; Boppana, L. IoT based Weather Monitoring and Notification System for Greenhouses. In Proceedings of the 11th International Conference on Advanced Computing (ICoAC), Chennai, India, 2019; pp. 342–345. [Google Scholar] [CrossRef]
- Mao, H.; Paul, O.K.; Yang, N.; Li, L. Smart Arduino Sensor Integrated Drone for Weather Indices: Prototype. In Drones-Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.S.; Chen, S.F.; Chou, C.Y.; Chen, H.Y.; Yeh, S.H.; Chang, Y.C.; Jiang, J.A. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Daroya, R.; Ramos, M. NDVI image extraction of an agricultural land using an autonomous quadcopter with a filter-modified camera. In Proceedings of the 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 2017; pp. 110–114. [Google Scholar] [CrossRef]
- Nandhini, S.A.; Hemalatha, R.; Radha, S.; Indumathi, K. Web enabled plant disease detection system for agricultural applications using WMSN. Wirel. Pers. Commun. 2018, 102, 725–740. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Halfeld-Vieira, B.A.; Costa, R.V.; Nechet, K.L.; Godoy, C.V.; Junior, M.L.; Patricio, F.R.A.; Talamini, V.; Chitarra, L.G.; et al. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat. Am. Trans. 2018, 16, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Abdulridha, J.; Ehsani, R.; De Castro, A. Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture 2016, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 2017, 8, 1741. [Google Scholar] [CrossRef]
- Pavel, M.I.; Kamruzzaman, S.M.; Hasan, S.S.; Sabuj, S.R. An IoT Based Plant Health Monitoring System Implementing Image Processing. In Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), Singapore, 2019; pp. 299–303. [Google Scholar] [CrossRef]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A decision support system based on multisensor data fusion for sustainable greenhouse management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Song, Y.; Duan, X.; Ren, Y.; Xu, J.; Luo, L.; Li, D. Identification of the Agricultural Pests Based on Deep Learning Models. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 2019; pp. 195–198. [Google Scholar] [CrossRef]
- Chen, K.T.; Zhang, H.H.; Wu, T.T.; Hu, J.; Zhai, C.Y.; Wang, D. Design of monitoring system for multilayer soil temperature and moisture based on WSN. In Proceedings of the 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, China, 2014; pp. 425–430. [Google Scholar] [CrossRef]
- Madhumathi, R.; Arumuganathan, T.; Shruthi, R. Soil NPK and Moisture analysis using Wireless Sensor Networks. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring citrus soil moisture and nutrients using an iot based system. Sensors 2017, 17, 447. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Xie, L.; Mukhopadhyay, S.; Burkitt, L. A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 2017, 64, 7333–7341. [Google Scholar] [CrossRef]
- Rau, A.J.; Sankar, J.; Mohan, A.R.; Krishna, D.D.; Mathew, J. IoT based smart irrigation system and nutrient detection with disease analysis. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Raut, R.; Varma, H.; Mulla, C.; Pawar, V.R. Soil monitoring, fertigation, and irrigation system using IoT for agricultural application. In Intelligent Communication and Computational Technologies; Springer: Singapore, 2018; pp. 67–73. [Google Scholar] [CrossRef]
- Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877. [Google Scholar] [CrossRef] [Green Version]
- Saranya, K.; Dharini, P.U.; Darshni, P.U.; Monisha, S. IoT Based Pest Controlling System for Smart Agriculture. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2019; pp. 1548–1552. [Google Scholar] [CrossRef]
- Somov, A.; Shadrin, D.; Fastovets, I.; Nikitin, A.; Matveev, S.; Seledets, I.; Hrinchuk, O. Pervasive agriculture: IoT-enabled greenhouse for plant growth control. IEEE Pervasive Comput. 2018, 17, 65–75. [Google Scholar] [CrossRef]
- Vimal, P.V.; Shivaprakasha, K.S. IOT based greenhouse environment monitoring and controlling system using Arduino platform. In Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kerala, India, 2017; pp. 1514–1519. [Google Scholar] [CrossRef]
- Azaza, M.; Tanougast, C.; Fabrizio, E.; Mami, A. Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring. ISA Trans. 2016, 61, 297–307. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, X.; Wang, G.; Li, Z. Design and test of tomatoes harvesting robot. In Proceedings of the 2015 International Conference on Information and Automation, Lijiang, China, 2015; pp. 949–952. [Google Scholar] [CrossRef]
- Taqi, F.; Al-Langawi, F.; Abdulraheem, H.; El-Abd, M. A cherry-tomato harvesting robot. In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 2017; pp. 463–468. [Google Scholar] [CrossRef]
- Abhishek, K.; Singh, M.P.; Ghosh, S.; Anand, A. Weather forecasting model using artificial neural network. Procedia Technol. 2012, 4, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Fente, D.N.; Singh, D.K. Weather forecasting using artificial neural network. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018; pp. 1757–1761. [Google Scholar] [CrossRef]
- Kurniawan, A.P.; Jati, A.N.; Azmi, F. Weather prediction based on fuzzy logic algorithm for supporting general farming automation system. In Proceedings of the 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), Yogyakarta, Indonesia, 2017; pp. 152–157. [Google Scholar] [CrossRef]
- Giusti, E.; Marsili-Libelli, S. A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environ. Model. Softw. 2015, 63, 73–86. [Google Scholar] [CrossRef]
- Navarro-Hellín, H.; Martínez-del Rincon, J.; Domingo-Miguel, R.; Soto-Valles, F.; Torres-Sánchez, R. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric. 2016, 124, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.P.C.; Gupta, D.; de Albuquerque, V.H.C. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019, 31, 277–292. [Google Scholar] [CrossRef]
- Estrada-López, J.J.; Castillo-Atoche, A.A.; Vázquez-Castillo, J.; Sánchez-Sinencio, E. Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sens. J. 2018, 18, 8913–8923. [Google Scholar] [CrossRef]
- Viani, F.; Bertolli, M.; Polo, A. Low-cost wireless system for agrochemical dosage reduction in precision farming. IEEE Sens. J. 2016, 17, 5–6. [Google Scholar] [CrossRef]
- Truong, T.; Dinh, A.; Wahid, K. An IoT environmental data collection system for fungal detection in crop fields. In Proceedings of the 2017 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Romero, J.R.; Roncallo, P.F.; Akkiraju, P.C.; Ponzoni, I.; Echenique, V.C.; Carballido, J.A. Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires. Comput. Electron. Agric. 2013, 96, 173–179. [Google Scholar] [CrossRef]
- Haider, S.A.; Naqvi, S.R.; Akram, T.; Umar, G.A.; Shahzad, A.; Sial, M.R.; Khaliq, S.; Kamran, M. LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Sabu, K.M.; Kumar, T.K.M. Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala. Procedia Comput. Sci. 2020, 171, 699–708. [Google Scholar] [CrossRef]
- Dellino, G.; Laudadio, T.; Mari, R.; Mastronardi, N.; Meloni, C. A reliable decision support system for fresh food supply chain management. Int. J. Prod. Res. 2018, 56, 1458–1485. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Lu, X. Intelligent monitoring system on refrigerator trucks based on the Internet of things. In Proceedings of the International Conference on Wireless Communications and Applications (ICWCA), Sanya, China, 2011; pp. 201–206. [Google Scholar] [CrossRef]
- Tao, Q.; Gu, C.; Wang, Z.; Rocchio, J.; Hu, W.; Yu, X. Big data driven agricultural products supply chain management: A trustworthy scheduling optimization approach. IEEE Access 2018, 6, 49990–50002. [Google Scholar] [CrossRef]
- Femling, F.; Olsson, A.; Alonso-Fernandez, F. Fruit and vegetable identification using machine learning for retail applications. In Proceedings of the 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 2018; pp. 9–15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Yu, H.; Wang, G.; Sui, Y.; Zhang, L. Applied research of IOT and RFID technology in agricultural product traceability system. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture (CCTA) VIII, Beijing, China, 2014; pp. 506–514. [Google Scholar] [CrossRef] [Green Version]
- Alfian, G.; Syafrudin, M.; Farooq, U.; Ma’arif, M.R.; Syaekhoni, M.A.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving efficiency of RFID-based traceability system for perishable food by utilizing iot sensors and machine learning model. Food Control 2020, 110, 107016. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.; Liu, L.; Lai, X.; Xu, G. IoT-based tracking and tracing platform for prepackaged food supply chain. Ind. Manag. Data Syst. 2017, 117, 1906–1916. [Google Scholar] [CrossRef]
- Pigini, D.; Conti, M. NFC-based traceability in the food chain. Sustainability 2017, 9, 1910. [Google Scholar] [CrossRef] [Green Version]
- Tian, F. A supply chain traceability system for food safety based on HACCP, Blockchain & Internet of Things. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Malik, S.; Kanhere, S.S.; Jurdak, R. Productchain: Scalable blockchain framework to support provenance in supply chains. In Proceedings of the 2018 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- HORIZON 2020. Technology Readiness Levels (TRL). Available online: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf (accessed on 23 March 2021).
- Balafoutis, A.T.; Evert, F.K.V.; Fountas, S. Smart farming technology trends: Economic and environmental effects, labor impact, and adoption readiness. Agronomy 2020, 10, 743. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Lee, Y.W.; Strong, D.M.; Kahn, B.K.; Wang, R.Y. AIMQ: A methodology for information quality assessment. Inf. Manag. 2002, 40, 133–146. [Google Scholar] [CrossRef]
- Collins, S.; Genova, F.; Harrower, N.; Hodson, S.; Jones, S.; Laaksonen, L.; Mietchen, D.; Petrauskaitė, R.; Wittenburg, P. Turning FAIR into Reality: Final Report and Action Plan from the European Commission Expert Group on FAIR Data. Available online: https://ec.europa.eu/info/sites/info/files/turning_fair_into_reality_1.pdf (accessed on 9 February 2021).
- Deng, J.; Han, Y.S.; Chen, P.N.; Varshney, P.K. Optimum transmission range for wireless ad hoc networks. In Proceedings of the 2004 IEEE wireless communications and networking conference (IEEE Cat. No. 04TH8733), Atlanta, GA, USA, 2004; Volume 2, pp. 1024–1029. [Google Scholar] [CrossRef] [Green Version]
- Bing, F. The research of IOT of agriculture based on three layers architecture. In Proceedings of the 2016 2nd International Conference on Cloud Computing and Internet of Things (CCIOT), Dalian, China, 2016; pp. 162–165. [Google Scholar] [CrossRef]
- Khattab, A.; Abdelgawad, A.; Yelmarthi, K. Design and implementation of a cloud-based IoT scheme for precision agriculture. In Proceedings of the 2016 28th International Conference on Microelectronics (ICM), Giza, Egypt, 2016; pp. 201–204. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision agriculture design method using a distributed computing architecture on Internet of things context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [Green Version]
- Triantafyllou, A.; Tsouros, D.C.; Sarigiannidis, P.; Bibi, S. An Architecture model for Smart Farming. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 2019; pp. 385–392. [Google Scholar] [CrossRef]
- Papoutsoglou, E.A.; Faria, D.; Arend, D.; Arnaud, E.; Athanasiadis, I.N.; Chaves, I.; Coppens, F.; Cornut, G.; Costa, B.V.; Ćwiek-Kupczyńska, H.; et al. Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytol. 2020, 227, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, V.; Copigneaux, B.; Probst, L.; Pedersen, B. Digital Transformation Monitor. Industry 4.0 in agriculture: Focus on IoT Aspects. European Commission, Internal Market, Industry, Entrepreneurship and SMEs. 2017. Available online: https://ati.ec.europa.eu/sites/default/files/2020-07/Industry%204.0%20in%20Agriculture%20-%20Focus%20on%20IoT%20aspects%20%28v1%29.pdf (accessed on 18 February 2021).
- Hankel, M.; Rexroth, B. The Reference Architectural Model Industrie 4.0 (RAMI 4.0). ZWEI 2015, 2, 4. [Google Scholar]
Criteria | Description |
---|---|
Search period | From 2011 to 2020, inclusive |
Digital repositories | Web of Science, Scopus, ScienceDirect |
Records Screening | Must include the title, year, source, abstract and DOI |
Document types | Article, conference paper, book chapter, early access |
Language | English |
Group | Keywords |
---|---|
1 | “Internet of Things”, “Artificial Intelligence”, “Machine Learning”, “Data science”, “Robotic*” |
2 | “Agricultur*”, “Smart Farm*”, “Precision Farm*” |
Search String |
---|
“Internet of Things” OR “Artificial Intelligence” OR “Machine Learning” |
OR “Data science” OR “Robotic*”) |
AND |
(“Agricultur*” OR “Smart Farm*” OR “Precision Farm*”) |
Standard | Frequency Band | Transmission Range | Data Rate | Energy Consumption | Cost | |
---|---|---|---|---|---|---|
Bluetooth | Bluetooth (Formerly IEEE 802.15.1) | 2.4 GHz | 10–100 m | 1–3 Mb/s | 0.1–1 W | Low |
LoRaWAN | LoRaWAN | Various | 2–15 km | 0.3–50 kb/s | 100 mW | Low |
NFC | ISO/IEC 13157 | 13.56 MHz | 0.1 m | 424 kb/s | 1–2 mW | Low |
Mobile communication | 2G-GSM, GPRS 3G-UMTS, CDMA2000 4G-LTE | 865 MHz, 2.4 GHz | Entire mobile network area | 2G: 50–100 kb/s 3G: 200 kb/s 4G: 0.1–1 Gb/s | 1 W | Medium |
RFID | Various | 13.56 MHz | 1 m | 423 kb/s | 1 mW | Low |
Sigfox | Sigfox | 908.42 MHz | 30–100 km | 10–1000 b/s | 122 mW | Low |
Wi-Fi | IEEE 802.11 a/c/b/d/g/n | 2.4, 3.6, 5, 60 GHz | 100 m | 6–780 Mb/s 6.75 Gb/s at 60 GHz | 1 W | High |
ZigBee | IEEE 802.15.4 | 2400–2483.5 MHz | 100 m | 250 kb/s | 1 mW | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy 2021, 11, 667. https://doi.org/10.3390/agronomy11040667
Araújo SO, Peres RS, Barata J, Lidon F, Ramalho JC. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy. 2021; 11(4):667. https://doi.org/10.3390/agronomy11040667
Chicago/Turabian StyleAraújo, Sara Oleiro, Ricardo Silva Peres, José Barata, Fernando Lidon, and José Cochicho Ramalho. 2021. "Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities" Agronomy 11, no. 4: 667. https://doi.org/10.3390/agronomy11040667
APA StyleAraújo, S. O., Peres, R. S., Barata, J., Lidon, F., & Ramalho, J. C. (2021). Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy, 11(4), 667. https://doi.org/10.3390/agronomy11040667