The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes
<p>Heatmap of Pearson moment correlation coefficients (r) between the analysed traits in <span class="html-italic">Phaseolus vulgaris</span> cultivars submitted to two weeks (<b>a</b>) and three weeks (<b>b</b>) of water and salt stresses. Dark blue denotes high correlation (<span class="html-italic">r</span> → 1), dark red high negative correlation (<span class="html-italic">r</span> → −1). Abbreviations: RL, root length; RFW, root fresh weight; RWC, root water content; SD, stem diameter; SL, stem length; SFW, stem fresh weight; SWC, stem water content; Lno, leaf number; LFW, leaf fresh weight; LWC, leaf water content; Pro, proline content.</p> "> Figure 2
<p>Loading plot of the principal component analysis (PCA) conducted with the analysed traits, in <span class="html-italic">P. vulgaris</span> cultivars subjected to control, water deficit and salt stress treatments. Two-week treatments (<b>a</b>); 56.5% and 13.6% of the total variability are explained by the first (<span class="html-italic">x</span>-axis) and the second (<span class="html-italic">y</span>-axis) components, respectively. Three-week treatments (<b>b</b>); 44.3% and 14.0% of the total variability are explained by the first (<span class="html-italic">x</span>-axis) and the second (<span class="html-italic">y</span>-axis) components, respectively. Abbreviations: RL, root length; RFW, root fresh weight; RWC, root water content; SD, stem diameter; SL, stem length; SFW, stem fresh weight; SWC, stem water content; Lno, leaf number; LFW, leaf fresh weight; LWC, leaf water content; Pro, proline.</p> "> Figure 3
<p>Scatter plot of the PCA scores. Plants treated for two (<b>a</b>) or three weeks (<b>b</b>); control (green), water deficit (pink) and salt stress (blue) treatments. (<b>a</b>) 1–9, cultivars from Spain; 10–15, from Colombia and 16–18, from Cuba and (<b>b</b>) 19–32, cultivars from Spain; 33–45, from Colombia and 46 and 47 from Cuba.</p> "> Figure 3 Cont.
<p>Scatter plot of the PCA scores. Plants treated for two (<b>a</b>) or three weeks (<b>b</b>); control (green), water deficit (pink) and salt stress (blue) treatments. (<b>a</b>) 1–9, cultivars from Spain; 10–15, from Colombia and 16–18, from Cuba and (<b>b</b>) 19–32, cultivars from Spain; 33–45, from Colombia and 46 and 47 from Cuba.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Growth and Stress Treatments
2.3. Quantification of Proline Contents
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance of Registered Traits
3.2. Correlation Analysis
3.3. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mantri, N.; Patade, V.; Penna, S.; Ford, R.; Pang, E. Abiotic stress responses in plants: Present and future. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 1–19. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Eds.; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.; Flowers, S. Why does salinity pose such a difficult problem for plant breeders? Agric. Water Manag. 2005, 78, 15–24. [Google Scholar] [CrossRef]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, E.; Bitocchi, E.; Rau, D.; Rodriguez, M.; Biagetti, E.; Giardini, A.; Attene, G.; Nanni, L.; Papa, R. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In Genomics of Plant Genetics Resources; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 483–507. [Google Scholar] [CrossRef]
- Freytag, G.F.; Debouck, D.G. Taxonomy, Distribution, and Ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America; Botanical Research Institute of Texas (BRIT): Forth Worth, TX, USA, 2002; pp. 1–298. [Google Scholar]
- Delgado-Salinas, A.; Bibler, R.; Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 2006, 31, 779–791. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernández, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef] [Green Version]
- Gepts, P.; Debouck, D.G. Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In Common Beans: Research for Crop Improvement; van Schoonhoven, A., Voysest, O., Eds.; Cab Intern: Wallingford, UK, 1991; pp. 7–53. [Google Scholar]
- Rendón-Anaya, M.; Montero-Vargas, J.M.; Saburido-Álvarez, S.; Vlasova, A.; Capella-Gutierrez, S.; Ordaz-Ortiz, J.J.; Aguilar, O.M.; Vianello-Brondani, R.P.; Santalla, M.; Delaye, L.; et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 2017, 18, 60. [Google Scholar] [CrossRef] [Green Version]
- Ortwin-Sauer, C. The Early Spanish Men; University of California Press: Berkeley, CA, USA, 1966. [Google Scholar]
- Brucher, O.B.; Brucher, H. The South American wild bean (Phaseolus aborigeneus Burk.) as ancestor of the common bean. Econ. Bot. 1976, 30, 257–272. [Google Scholar] [CrossRef]
- Debouck, D.G.; Smartt, J. Bean. In Evolution of Crop Plants, 2nd ed.; Smartt, J., Simmonds, N.W., Eds.; Longman Scientific and Technical: Harlow, UK, 1995; pp. 287–296. [Google Scholar]
- Arteaga, S.; Yabor, L.; Torres, J.; Solbes, E.; Muñoz, E.; Díez, M.J.; Vicente, O.; Boscaiu, M. Morphological and agronomic characterization of Spanish landraces of Phaseolus vulgaris L. Agriculture 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, C.; Baeta, J.P.; Pereira, A.M.; Dominguez, H.; Ricardo, C. Mineral elements correlations in a Portuguese germplasm collection of Phaseolus vulgaris. Integrating Legume Biology for sustainable Agriculture. In Proceedings of the 6th European Conference on Grain Legumes, Lisbon, Portugal, 12–16 November 2007; pp. 125–126. [Google Scholar]
- Molina, J.; Moda-Cirino, V.; Da Silva Fonseca, N.J.; Faria, R.; Destro, D. Response of common bean cultivars and lines to water stress. Crop Breed. Appl. Biotechnol. 2001, 1. [Google Scholar] [CrossRef]
- Graham, P.; Ranalli, P. Common bean (Phaseolus vulgaris L.). Field Crop Res. 1997, 53, 131–146. [Google Scholar] [CrossRef]
- Singh, S.P. Drought resistance in the race Durango dry bean landraces and cultivars. Agron. J. 2007, 99, 1219–1225. [Google Scholar] [CrossRef]
- Cuellar-Ortiz, S.; Arrieta-Montiel, M.; Acosta-Gallegos, J.; Covar-Rubias, A. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef]
- Maas, E.; Hoffman, G. Crop salt tolerance-current assessment. J. Irrig. Drain. Eng. 1977, 103, 115–134. [Google Scholar]
- Gama, P.; Inanaga, S.; Tanaka, K.; Nakazawa, R. Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr. J. Biotechnol. 2007, 6, 79–88. [Google Scholar]
- Zhumabayeva, B.A.; Biotechnology, K.A.; Aytasheva, Z.G.; Dzhangalina, E.D.; Esen, A.; Lebedeva, L.P. Screening of domestic common bean cultivar for salt tolerance during in vitro cell cultivation. Int. J. Biol. 2019, 12, 94–102. [Google Scholar] [CrossRef]
- Fess, T.L.; Kotcon, J.B.; Benedito, V.A. Crop breeding for low input agriculture: A sustainable response to feed a growing world population. Sustainability 2011, 3, 1742–1772. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, M.; Vilanova, S.; Plazas, M.; Gramazio, P.; Andújar, I.; Herraiz, F.J.; Prohens, J. Enhancing conservation and use of local vegetable landraces: The Almagro eggplant (Solanum melongena L.) case study. Genet. Resour. Crop Evol. 2014, 61, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Verslues, P.E.; Sharma, S. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 2010, 8, e0140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapuya, J.A.; Barendse, G.W.M.; Linskens, H.F. Water stress tolerance and proline accumulation in Phaseolus vulgaris L. Acta Bot. Neerl. 1985, 34, 293–300. [Google Scholar] [CrossRef]
- Misra, N.; Gupta, A.K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci. 2005, 169, 331–339. [Google Scholar] [CrossRef]
- Cárdenas-Avila, M.; Verde-Star, J.; Maiti, R.; Foroughbakhch, R.; Gámez-González, H.; Martínez-Lozano, S.; Núñez-González, M.; García Díaz, G.; Hernández-Piñero, J.; Morales-Vallarta, M. Variability in accumulation of free proline on in vitro calli of four bean (Phaseolus vulgaris L.) cultivars exposed to salinity and induced moisture stress. Phyton 2006, 75, 103–108. [Google Scholar]
- Kaymakonova, M.; Stoeva, N. Physiological responses of bean plants (Phaseolus vulg. L.) to salt stress. Gen. Appl. Plant Physiol. 2008, 34, 177–188. [Google Scholar]
- Herrera Flores, T.S.; Ortíz Cereceres, J.; Delgado Alvarado, A.; Acosta Galleros, J.A. Growth and, proline and carbohydrate content of bean seedlings subjected to drought stress. Rev. Mexicana Cienc. Agric. 2012, 3, 713–725. [Google Scholar]
- Ghanbari, A.A.; Mousavi, S.H.; Mousapou Gorji, A.; Rao, I. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk. J. Field Crops 2013, 18, 73–77. [Google Scholar]
- Kusvuran, S.; Dasgan, H.Y. Effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris L. Legume Res. 2017, 40, 55–62. [Google Scholar]
- Wang, Q.; Ang, Q.; Lin, F.; Wei, S.H.; Meng, X.X.; Yin, Z.G.; Guo, Y.F.; Yang, G.D. Effects of drought stress on endogenous hormones and osmotic regulatory substances of common bean (Phaseolus vulgaris L.) at seedling stage. Appl. Ecol. Environ. Res. 2019, 17, 4447–4457. [Google Scholar] [CrossRef]
- Jiménez-Bremont, J.F.; Becerra-Flora, A.; Hernández-Lucero, E.; Rodríguez-Kessler, M.; Acosta-Gallegos, J.; Ramírez Pimentel, J. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol. Plant. 2006, 50, 763–766. [Google Scholar] [CrossRef]
- Al Hassan, M.; Morosan, M.; López-Gresa, M.P.; Prohens, J.; Vicente, O.; Boscaiu, M. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. Int. J. Mol. Sci. 2016, 17, 1582. [Google Scholar] [CrossRef] [PubMed]
- Morosan, M.; Al Hassan, M.; Naranjo, M.; Lopez-Gresa, M.P.; Vicente, O. Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivar. EuroBiotech J. 2017, 1, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.; Arnon, D. The water-culture method for growing plants without soil. Circ. Califor. Agric. Exp. Stat. 1950, 347, 32–63. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Arteaga, S.; Al Hassan, M.; Wijesinghe, C.; Yabor, L.; Llinares, J.; Boscaiu, M.; Vicente, O. Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.; Ribeiro, V.; Azvedo, C.; Chiorato, A.; Williams, T.; Carbonell, S. Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica 2016, 210, 277–289. [Google Scholar] [CrossRef]
- Bacha, H.; Tekaya, M.; Drine, S.; Guasami, F.; Touil, L.; Enneb, H.; Triki, T.; Cheour, F.; Ferchichi, A. Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. S. Afr. J. Bot. 2017, 108, 364–369. [Google Scholar] [CrossRef]
- Sen, A.; Ozturk, I.; Yaycili, O.; Alikamanoglu, S. Drought tolerance in irradiated wheat studied by genetic and biochemical markers. J. Plant Growth Regul. 2017, 36, 669–676. [Google Scholar] [CrossRef]
- Koźmińska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Al Hassan, M.; Halecki, W.; Vicente, O. Identification of salt and drought biochemical stress markers in several Silene vulgaris populations. Sustainability 2019, 11, 800. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Grigore, M.N.; Boscaiu, M.; Vicente, O. Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur. J. Plant Sci. Biotechnol. 2011, 5, 12–19. [Google Scholar]
- Parvaiz, A.S.; Satyawati, S. Salt stress and phyto-biochemical responses of plants—A review. Plant Soil Environ. 2008, 54, 89–99. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.; Ram, S.; Nehra, K. Proline biosynthesis and its role in abiotic stress. Int. J. Agric. Res. Innov. Technol. 2017, 6. [Google Scholar]
- Kavi Kishor, P.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Al Hassan, M.; López-Gresa, M.P.; Boscaiu, M.; Vicente, O. Stress tolerance mechanisms in Juncus: Responses to salinity and drought in three Juncus species adapted to different natural environments. Funct. Plant Biol. 2016, 43, 949–960. [Google Scholar] [CrossRef]
- Al Hassan, M.; Pacurar, A.; López-Gresa, M.P.; Donat-Torres, M.; Llinares, J.; Boscaiu, M.; Vicente, O. Effects of salt stress on three ecologically distinct Plantago species. PLoS ONE 2016, 11, e0160236. [Google Scholar] [CrossRef]
- Plazas, M.; Nguyen, H.; González-Orenga, S.; Fita, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 2019, 143, 72–82. [Google Scholar] [CrossRef]
- Chen, Z.; Cuin, T.; Zhou, M.; Twomei, A.; Naidu, B.; Shabala, S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 2007, 58, 4245–4255. [Google Scholar] [CrossRef] [Green Version]
- Koźmińska, A.; Al Hassan, M.; Hanus-Fajerska, E.; Naranjo, M.A.; Vicente, O.; Boscaiu, M. Comparative analysis of water deficit and salt tolerance mechanisms in Silene. S. Afr. J. Bot. 2018, 117, 193–206. [Google Scholar] [CrossRef]
- Nagesh, B.; Devaraj, V. High temperature and salt stress response in French bean (Phaseolus vulgaris). Austr. J. Crop Sci. 2008, 2, 40–42. [Google Scholar]
- Ashraf, M.; Iram, A. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 2005, 200, 535–546. [Google Scholar] [CrossRef]
- Rosales, M.A.; Ocampo, O.; Rodríguez-Valentín, R.; Olvera-Carrillo, Y.; Acosta-Gallegos, J.; Covarrubias, A.A. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol. Biochem. 2012, 56, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Ruiz, J.M.; López-Lefebre, L.R.; Rivero, R.M.; García, P.C.; Romero, L. Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv Strike). J. Plant Physiol. 2001, 158, 593–598. [Google Scholar]
- Mackay, C.E.; Hall, C.; Hofstra, G.; Fletcher, R.A. Uniconazole-induced changes in abscisic acid, total amino acids, and proline in Phaseolus vulgaris. Pestic. Biochem. Phys. 1990, 37, 74–82. [Google Scholar] [CrossRef]
- Zengin, F.K.; Munzuroglu, O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Cracov. Bot. 2005, 47, 157–164. [Google Scholar]
- Abdelhamid, M.T.; Rady, M.M.; Osman, A.S.; Abdalla, M.A. Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. J. Hortic. Sci. Biotech. 2013, 88, 439–446. [Google Scholar] [CrossRef]
- Domínguez, A.; Yunel Pérez, Y.; Alemán, S.; Sosa, M.; Fuentes, L.; Darias, R.; Demey, J.; Rea, R.; Sosa, D. Respuesta de cultivares de Phaseolus vulgaris L. al estrés por sequía. Biot. Veg. 2014, 14, 29–36. [Google Scholar]
- Gürel, F.; Öztürk, Z.N.; Uçarlı, C.; Rosellini, D. Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci. 2016, 7, 1137. [Google Scholar] [CrossRef]
- Yoshida, J.; Tomooka, N.; Khaing, T.Y.; Sunil Shantha, P.G.; Naito, H.; Matsuda, Y.; Ehara, H. Unique responses of three highly salt-tolerant wild Vigna species against salt stress. Plant Prod. Sci. 2020, 23, 114–128. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | Treatment (Weeks) | Genebank Code | Country | Origin | Cultivar Name |
---|---|---|---|---|---|
Sp 1 | 2 | BGV000143 | Spain | Lecina, Huesca | Judía amarilla de enrame |
Sp 2 | 2 | BGV001191 | Spain | Velez Rubio, Almería | Judía |
Sp 3 | 2 | BGV001581 | Spain | Mercado el Olivar, Palma de Mallorca | Judia de careta |
Sp 4 | 2 | BGV003176 | Spain | Barlovento, Santa Cruz de Tenerife | Judia blanca mantecosa |
Sp 5 | 2 | BGV003616 | Spain | La Bañeza, León | |
Sp 6 | 2 | BGV003941 | Spain | AldeaNueva de Barbarroya, Toledo | Judía larguilla |
Sp 7 | 2 | BGV004159 | Spain | Plascencia, Cáceres | |
Sp 8 | 2 | BGV011254 | Spain | Las Presillas, Puente Viesgo, Cantabria | Garrafal oro |
Sp 9 | 2 | BGV013605 | Spain | Campo, Huesca | Negra |
Co 10 | 2 | INB-39 | Colombia | - | |
Co 11 | 2 | INB-40 | Colombia | - | |
Co 12 | 2 | INB-42 | Colombia | - | |
Co 13 | 2 | INB-43 | Colombia | - | |
Co 14 | 2 | INB-48 | Colombia | - | |
Co 15 | 2 | INB-48I | Colombia | - | |
Cu 16 | 2 | V-71 | Cuba | INIFAT | Bolita 11 a |
Cu 17 | 2 | E-125 | Cuba | IIHLD | E-125 b |
Cu 18 | 2 | Milagro VIII | Cuba | INIFAT | Milagro Villareño a |
Sp 19 | 3 | BGV001167 | Spain | Chirivel, Almeria | Judia |
Sp 20 | 3 | BGV001169 | Spain | Laujar de Andarax, Almeria | Judia mocha |
Sp 21 | 3 | BGV001182 | Spain | Juviles, Granada | Alubias |
Sp 22 | 3 | BGV003610 | Spain | Ponferrada, León | |
Sp 23 | 3 | BGV003614 | Spain | La Bañeza, León | |
Sp 24 | 3 | BGV003618 | Spain | La Bañeza, León | |
Sp 25 | 3 | BGV004161 | Spain | Plasencia, Cáceres | |
Sp 26 | 3 | BGV004466 | Spain | Bilbao, Vizcaya | Alubias pintas |
Sp 27 | 3 | BGV011235 | Spain | Beranga, Hazas de Cesto, Cantabria | Carica |
Sp 28 | 3 | BGV013603 | Spain | Beceite, Teruel | Judia de Franco |
Sp 29 | 3 | BGV013609 | Spain | Centenero, Huesca | Judia Fartapobres |
Sp 30 | 3 | BGV014980 | Spain | Alcorisa, Teruel | De tabilla ancha |
Sp 31 | 3 | BGV015856 | Spain | Alicante | Habichuela del barco |
Sp 32 | 3 | BGV015859 | Spain | Albarracín | Judia |
Co 33 | 3 | ALB-74 | Colombia | - | |
Co 34 | 3 | INB-35 | Colombia | - | |
Co 35 | 3 | INB-38 | Colombia | - | |
Co 36 | 3 | INB-41 | Colombia | - | |
Co 37 | 3 | INB-44 | Colombia | - | |
Co 38 | 3 | INB-45 | Colombia | - | |
Co 39 | 3 | INB-46 | Colombia | - | |
Co 40 | 3 | INB-47 | Colombia | - | |
Co 41 | 3 | SEF-9 | Colombia | - | |
Co 42 | 3 | SEF-52 | Colombia | - | |
Co 43 | 3 | SEF-53 | Colombia | - | |
Co 44 | 3 | SEF-55 | Colombia | - | |
Co 45 | 3 | SEF-56 | Colombia | - | |
Cu 46 | 3 | V-13 | Cuba | INIFAT | P 2240 b |
Cu 47 | 3 | V-51 | Cuba | INIFAT | P 186 b |
Trait | Two Weeks | Three Weeks | ||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | Interaction | Residual | Cultivar | Treatment | Interaction | Residual | |
RL | 22.14 *** | 18.42 *** | 9.24 ns | 50.19 | 32.90 *** | 10.43 *** | 21.52 *** | 35.16 |
RFW | 33.01 *** | 17.20 *** | 18.45 *** | 31.34 | 24.88 *** | 4.54 *** | 15.05 ** | 55.53 |
RWC | 4.34 *** | 70.52 *** | 14.75 *** | 10.39 | 22.23 *** | 52.05 *** | 13.58 *** | 12.15 |
SD | 24.77 *** | 27.08 *** | 13.15 *** | 35.00 | 14.17 *** | 1.06 ** | 23.61 *** | 61.16 |
SL | 52.63 *** | 11.77 *** | 9.85 *** | 25.76 | 42.71 *** | 18.30 *** | 18.17 *** | 20.81 |
SFW | 19.51 *** | 47.29 *** | 13.84 *** | 19.36 | 26.50 *** | 38.21 *** | 15.10 *** | 20.19 |
SWC | 30.07 *** | 33.12 *** | 16.07 *** | 20.74 | 31.64 *** | 21.15 *** | 32.13 *** | 15.08 |
Lno | 24.67 *** | 32.12 *** | 10.16 *** | 33.05 | 14.69 *** | 9.06 *** | 21.14 *** | 55.12 |
LFW | 15.70 *** | 53.55 *** | 16.85 *** | 13.89 | 32.54 *** | 32.42 *** | 23.8 *** | 11.24 |
LWC | 25.53 *** | 37.59 *** | 14.52 *** | 22.36 | 32.50 *** | 24.36 *** | 20.21 *** | 22.93 |
Pro | 30.46 *** | 28.92 *** | 18.89 *** | 21.72 | 40.52 *** | 20.08 *** | 15.61 *** | 23.79 |
Trait | Two Weeks | Three Weeks | ||||
---|---|---|---|---|---|---|
C | WS | SS | C | WS | SS | |
RL (cm) | 36.04c | 23.24a | 30.39b | 29.50C | 21.14A | 25.73B |
% | 64.48 | 84.32 | 71.66 | 87.22 | ||
RFW (g) | 3.22b | 0.44a | 3.36b | 2.78C | 0.69A | 1.85B |
% | 13.66 | 104.35 | 24.82 | 66.55 | ||
RWC (%) | 85.70b | 31.94a | 82.08b | 84.07B | 42.11A | 85.28B |
% | 37.27 | 95.78 | 50.09 | 101.44 | ||
SD (mm) | 3.87c | 2.91a | 3.55b | 3.89C | 3.18A | 3.45B |
% | 75.19 | 91.73 | 81.75 | 88.69 | ||
SL(cm) | 148.63b | 109.95a | 115.75a | 139.90B | 95.43A | 90.85A |
% | 73.98 | 77.88 | 68.21 | 64.94 | ||
SFW (g) | 10.40c | 2.82a | 5.37b | 9.00C | 3.18A | 4.63B |
% | 27.12 | 51.63 | 35.33 | 51.44 | ||
SWC (%) | 82.14b | 56.84a | 78.31b | 82.82B | 64.06A | 79.47B |
% | 69.20 | 95.34 | 77.35 | 95.96 | ||
Lno | 12.43b | 6.47a | 7.42a | 13.28B | 7.35A | 7.98A |
% | 52.05 | 59.69 | 55.35 | 60.09 | ||
LFW (g) | 22.73c | 2.57a | 5.94b | 18.21B | 4.08A | 5.40A |
% | 11.31 | 26.13 | 22.41 | 29.65 | ||
LWC | 84.04c | 38.39a | 58.58b | 81.62C | 49.31A | 55.48B |
% | 45.68 | 69.70 | 60.41 | 67.97 | ||
Pro (µmol g−¹ DW) | 31.67a | 86.61b | 82.74b | 25.89A | 53.57B | 68.29C |
% | 273.48 | 261.26 | 206.91 | 263.77 |
Trait | Two Weeks | Three Weeks | ||
---|---|---|---|---|
Component 1 | Component 2 | Component 1 | Component 2 | |
RL | 0.320 | −0.054 | 0.243 | 0.109 |
RFW | 0.222 | 0.329 | 0.282 | −0.017 |
RWC | 0.318 | 0.267 | 0.250 | 0.529 |
SL | 0.201 | −0.578 | 0.262 | −0.470 |
SFW | 0.388 | −0.178 | 0.421 | −0.217 |
SWC | 0.325 | 0.436 | 0.319 | 0.491 |
Lno | 0.322 | −0.374 | 0.286 | −0.282 |
LFW | 0.370 | −0.227 | 0.406 | −0.264 |
LWC | 0.354 | 0.260 | 0.384 | 0.218 |
Pro | −0.291 | −0.053 | −0.240 | −0.030 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arteaga, S.; Yabor, L.; Díez, M.J.; Prohens, J.; Boscaiu, M.; Vicente, O. The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy 2020, 10, 817. https://doi.org/10.3390/agronomy10060817
Arteaga S, Yabor L, Díez MJ, Prohens J, Boscaiu M, Vicente O. The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy. 2020; 10(6):817. https://doi.org/10.3390/agronomy10060817
Chicago/Turabian StyleArteaga, Sugenith, Lourdes Yabor, María José Díez, Jaime Prohens, Monica Boscaiu, and Oscar Vicente. 2020. "The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes" Agronomy 10, no. 6: 817. https://doi.org/10.3390/agronomy10060817
APA StyleArteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. https://doi.org/10.3390/agronomy10060817