Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems
<p>(<b>a</b>) Aerial view of a typical erosion gully in the Cerrado of Brazil. On the right, soy bean plantation showing bare soils after harvest, on the left, riparian vegetation surrounding a stream. In the foreground, an earth road and two erosion gullies of different age. The erosion gullies breach the riparian vegetation (capture date of photographs July 1995); (<b>b)</b> Active erosion gully in Figure (<b>a</b>). Deep lateral piping hollows drain groundwater from the surroundings, which flows off through the channel even during the dry season; (<b>c</b>) Stream receiving sediment from the active erosion gully in Figure (<b>b</b>) during the dry season. The gully delivers up to 60 metric tons of sediment per day during the rainy season,; (<b>d</b>) Pioneer vegetation developing on the bottom of the erosion gully in <a href="#agriculture-03-00660-f001" class="html-fig">Figure 1</a><b>c</b> during the dry season. <sup>©</sup> Karl M. Wantzen.</p> "> Figure 2
<p>Mobilization of sediment on Wishmeier-plots (2 × 2 m) in the riparian zone of the stream near the mouth of the erosion gully shown in <a href="#agriculture-03-00660-f001" class="html-fig">Figure 1</a>c. (<b>a</b>) Amount of mobilised sediment (kg per 14day, bars, left axis, a maximum value of 27.3 kg was found on 13.1.1995 for a 4-week interval), REI 14 (RainEventIndex) was calculated as the sum of squares of the rainfall of the 14 days prior to measurement (line, right axis) (<b>b</b>) Granulometry of mobilised sediments on Wishmeier-plots from an unprotected site (A) and from a site covered by tree vegetation. Data from Karl M. Wantzen [<a href="#B29-agriculture-03-00660" class="html-bibr">29</a>].</p> "> Figure 3
<p>Artisanal gold mining, soil erosion and stream sedimentation in Suriname; (<b>a</b>) In 2005, the riparian forest was cleared at a recently developed gold mining site along Maykabuka Creek, Gros Rosebel Area (05°04′45′′N, 55°16′9′′W), In 2001, the then pristine Maykabuka catchment still had the forest canopy closing over the stream and the site in the photograph was used as a control in a 1994–2001 study of the effects of gold mining related erosion on instream habitat and fish community [<a href="#B34-agriculture-03-00660" class="html-bibr">34</a>], (capture date of photograph 8 December 2006); (<b>b</b>) Satellite image showing extensive clearance of riparian forest associated with small-scale gold mining in the catchments of the Merian (05°06′ N, 54°31′ W) and Tumatu rainforest streams, Marowijne River Basin, Suriname, September 2010, Source Quickbird; (<b>c</b>) High pressure water is used to remove the topsoil and then the gold-bearing layer of sand and clay, (capture date photograph of 7 May 2008); (<b>d</b>) In a sluice box heavy particles and gold are gravity separated from the superfluous lighter particles in the slurry which then are discharged into an abandoned mining pit in the adjacent forest or stream, (capture date of photograph 7 May 2008); (<b>e</b>) Downstream a mining site in the Gros Rosebel Area, a shallow dry-season pool in a turbid rainforest stream with intact riparian forest and closed canopy cover (4°30′ N, 55°20′ W) has low dissolved oxygen (1.3 mg/L) and an unusually low fish diversity virtually monopolized by the auchenipterid catfish <span class="html-italic">Trachelyopterus galeatus</span>, (capture date of photograph 5 November 2008); (<b>f</b>) An abandoned mine site in the Merian Creek catchment (05°06′44′′ N, 54°31′16′′ W) shows slow riparian forest regeneration, abundant growth of grasses and a shallow, turbid, sunlit stream, (capture date of photograph 26 November 2011). <sup>©</sup>Jan H. Mol.</p> "> Figure 4
<p>Accumulating effects on the abundance aquatic insects (Chironomidae and Plecoptera, individuals per standardised artificial substrate, averages plus standard deviation) from the beginning (22 October 1994–16 December 1994) to the late (8 March 1995–3 May 1995) rainy season (Each pillar represents a 14 day interval) in a Cerrado stream. RC1, RC2: reference sites above the confluence with the erosion gully (RC3), RC4-RC6: impact sites with growing distance below the confluence. Data from Karl M. Wantzen [<a href="#B29-agriculture-03-00660" class="html-bibr">29</a>], see [<a href="#B14-agriculture-03-00660" class="html-bibr">14</a>,<a href="#B49-agriculture-03-00660" class="html-bibr">49</a>] for site and method description.</p> "> Figure 5
<p>Impact of small-scale gold mining on fish communities of rainforest streams as revealed by fish collections from two small rainforest streams in Suriname; (<b>a</b>) Surface feeding hatchet fishes and nocturnal electric knife fishes and catfishes dominate the catch in a mining-impacted stream; note the unpigmented or silvery colours of the fishes; (<b>b</b>) Large diurnal piscivores (<span class="html-italic">Hoplias</span> spp.) and brightly coloured fishes dominate the catch in an undisturbed neighbouring stream. See Mol and Ouboter [<a href="#B34-agriculture-03-00660" class="html-bibr">34</a>] for details. <sup>©</sup>Jan H. Mol (capture date of photographs April 2001).</p> "> Figure 6
<p>Die-back of riparian vegetation and stream braiding due to excessive sediment deposition originating from agricultural erosion. See Wantzen [<a href="#B66-agriculture-03-00660" class="html-bibr">66</a>] for details. <sup>©</sup> K.M. Wantzen, capture date of photograph July 1995.</p> "> Figure 7
<p>Fine white sediment originating from upstream gold mining is deposited in the riparian forest along Mamanari Creek, Suriname, after inundation of the floodplain forest during a high-flow event. See Mol and Ouboter [<a href="#B34-agriculture-03-00660" class="html-bibr">34</a>] for details. <sup>©</sup> Jan H. Mol (capture date of photograph 12 April 2001).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Entry Paths of Eroded Particles into the Streams and Rivers
2.1.1. Agriculturally Caused Erosion, Including Drainage and Earth Road Construction
2.1.2. Erosion from Artisanal, Small-Scale Gold Mining Activities
2.2. Effects of Increased Sediment Load on Habitats and Biota in and Near Streams
2.2.1. Effects on Stream Habitat Structures
2.2.2. Effects on Stream Plants and Animals
Undisturbed Stream Maykabuka Creek | Mining-Impacted Stream Mamanari Creek | |
---|---|---|
Monthly flow (m3 s−1) | 0.54–1.65 | 0.92–3.92 |
Riparian rain forest | Undisturbed | Undisturbed |
Total suspended solids (mg L−1) | 19.0–28.9 | 318–2469 |
Turbidity (NTU) | 28.2–31.1 | 424–2874 |
Secchi disc visibility (cm) | >50 | <10 |
Sediment yield (tonnes year km2) | 13 | 310 (of which 95.6% produced by the gold mine) |
Thickness of layer of fine sediment on the streambed (cm) | 0 | 12.8 (runs)–33.2 (pools) (maximum 57 cm) |
Substrate diversity (Shannon-Wiener index) | 1.57 | 0.70 |
Number of fish species | 68 | 56 |
Fish diversity (Shannon-Wiener index) | 3.19–3.39 | 2.60–2.70 |
Erythrinidae (% of total number of fishes caught) | 3.48 | 0.41 |
Gasteropelecidae (%) | 4.81 | 18.61 |
Gymnotiformes (%) | 3.54 | 12.62 |
Auchenipteridae (%) | 1.20 | 3.33 |
Callichthyidae (%) | 14.65 | 0.62 |
Cichlidae (%) | 5.98 | 0.58 |
Juvenile fishes (%) | 57.3 | 14.1 |
Food fishes (% of total fish biomass) | 33.2 | 13.4 |
2.3. Effects on Riparian Habitat Structures
2.4. Effects on Riparian Animals and Plants
3. Possible Actions
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soils and food sufficiency. A review. Agron. Sustain. Dev. 2009, 29, 113–133. [Google Scholar] [CrossRef]
- Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil erosion and the global carbon budget. Environ. Inter. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Christ, S.; Shrpirtz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Sioli, H. Das Wasser im Amazonasgebiet. Forsch. Fortschr. 1950, 26, 274–280. [Google Scholar]
- Ryan, P.A. Environmental effects of sediments on New Zealand streams: A review. New Zealand J. Mar. Freshwater Res. 1991, 25, 207–221. [Google Scholar] [CrossRef]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar]
- Castello, L.; McGrath, D.G.; Hess, L.L.; Coe, M.T.; Lefebre, P.A.; Petry, P.; Macedo, M.N.; Reno, V.F.; Arantes, C.C. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 2013, 6, 217–229. [Google Scholar] [CrossRef]
- Boulton, A.J.; Boyero, L.; Covich, A.P.; Dobson, M.; Lake, P.S.; Pearson, R.G. Are Tropical Streams Ecologically Different from Temperate Streams? In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: Amsterdam, the Netherlands, 2008; pp. 257–284. [Google Scholar]
- Wantzen, K.M.; Junk, W.J. The Importance of Stream-Wetland-Systems for Biodiversity: A Tropical Perspective. In Biodiversity in Wetlands: Assessment, Function and Conservation; Gopal, B., Junk, W.J., Davies, J.A., Eds.; Backhuys: Leiden, the Netherlands, 2000; pp. 11–34. [Google Scholar]
- Wantzen, K.M.; Mathooko, J.; Yule, C.; Pringle, C.M. Organic Matter Processing in Tropical Streams. In Tropical Stream Ecology; Dudgeon, D., Ed.; Elsevier: Amsterdam, the Netherlands, 2008; pp. 43–64. [Google Scholar]
- Jacobsen, D.; Encalada, A. The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Arch. Hydrobiol. 1998, 142, 53–70. [Google Scholar]
- Lewis, W.M., Jr.; Hamilton, S.K.; Saunders, J.F., III. Rivers of Northern South America. In River and Stream Ecosystems; Cushing, C.E., Cummins, K.W., Minshall, G.W., Eds.; Elsevier: New York, NY, USA, 1995; pp. 219–256. [Google Scholar]
- Wantzen, K.M. Physical pollution: Effects of gully erosion in a tropical clear-water stream. Aquat. Conserv. 2006, 16, 733–749. [Google Scholar] [CrossRef]
- Wantzen, K.M. Cerrado Streams—Characteristics of a threatened freshwater ecosystem type on the tertiary shields of South America. Amazoniana 2003, 17, 485–502. [Google Scholar]
- Johnson, D.L.; Lewis, L.A. Land Degradation: Creation and Destruction; Blackwell: London, UK, 1995; pp. 1–335. [Google Scholar]
- Nepstad, D.; McGrath, D.; Alencar, A.; Barros, A.C.; Carvalho, G.; Santilli, M.; Vera Diaz, M.C. Frontier governance in Amazonia. Science 2009, 295, 629–631. [Google Scholar]
- Veiga, M.M.; Hinton, J.J. Abandoned artisanal gold mines in the Brazilian Amazon: A legacy of mercury pollution. Nat. Resour. For. 2002, 26, 13–24. [Google Scholar]
- Heemskerk, M. Livelihood decision making and environmental degradation: Small-scale gold mining in the Suriname Amazon. Soc. Nat. Resour. 2002, 15, 327–344. [Google Scholar] [CrossRef]
- Swenson, J.J.; Carter, C.E.; Domec, J.C.; Delgado, C.I. Gold mining in the Peruvian Amazon: Global prices, deforestation, and mercury imports. PLoS One 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Ouboter, P.E.; Landburg, G.; Quik, J.; Mol, J.; van der Lugt, F. Mercury levels in pristine and gold mining impacted aquatic ecosystems of Suriname, South America. Ambio 2012, 41, 873–882. [Google Scholar] [CrossRef]
- Balogh, S.J.; Meyer, M.L.; Johnson, D.K. Transport of mercury in three contrasting river basins. Environ. Sci. Technol. 1998, 32, 456–462. [Google Scholar] [CrossRef]
- Secretaria de Assuntos Estratégicos (SAE) Impacto da revisão do Código Florestal: como viabilizar o grande desafio adiante? Internet report. Available online: http://www.sae.gov.br/site/?p=15735 (accessed on 24 September 2013).
- Silva, J.A.A.; Nobre, A.D.; Manzatto, C.V.; Joly, C.A.; Rodrigues, R.R.; Skorupa, L.A.; Nobre, C.A.; Ahrens, S.; May, P.H.; Sá, T.D.A.; et al. O Código Florestal e a Ciência: Contribuição para o Diálogo; Sociedade Brasileira para o Progresso da Ciência & Academia Brasileira de Ciências: São Paulo, Brazil, 2011; pp. 1–124. [Google Scholar]
- Wantzen, K.M.; Siqueira, A.; Nunes da Cunha, C.; Sa, M.F.P. Stream-valley systems of the Brazilian Cerrado: Impact assessment and conservation scheme. Aquat. Conserv. 2006, 16, 713–732. [Google Scholar] [CrossRef]
- Harding, J.S.; Benfield, E.F.; Bolstad, P.V.; Helfman, G.S.; Jones, E.B.D., III. Stream biodiversity: The ghost of land use past. Proc. Natl. Acad. Sci. USA 1998, 95, 14843–14847. [Google Scholar] [CrossRef]
- Batlle-Bayer, L. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agric. Ecosyst. Environ. 2010, 137, 47–58. [Google Scholar] [CrossRef]
- Couto, E.G. O uso da terra e o garimpo na bacia do rio Sao Lourenco, Mato Grosso: Reflexos No Ambiente; FEMA/UFMT-CCA: Cuiabá, Mato Grosso, Brazil, 1990; p. 206. [Google Scholar]
- Wantzen, K.M. Influence of Man-Made Siltation on Habitat Structure and Biotic Communities of Cerrado Streams of Mato Grosso. Ph.D. Thesis, Herbert Utz Verlag, Munich, 1997; p. 186. [Google Scholar]
- Wantzen, K.M. Effects of siltation on benthic communities in clear water streams in Mato Grosso, Brazil. Verh. Int. Ver. Limnol. 1998, 26, 1155–1159. [Google Scholar]
- DellaSala, D.A.; Karr, J.R.; Olson, D.M. Roadless areas and clean water. J. Soil Water Conserv. 2011, 66, 78–84. [Google Scholar] [CrossRef]
- Peterson, G.D.; Heemskerk, M. Deforestation and forest regeneration following small-scale gold mining in the Amazon: The case of Suriname. Environ. Conserv. 2001, 28, 117–126. [Google Scholar]
- Centrum voor Landbouwkundig Onderzoek in Suriname (CELOS), Assessments of the extend of land categories, land uses and changes for the Second National Communication—AFOLU GHC Inventory 2011. CELOS, Natural Resources and Environmental Assessment: Paramarib, Suriname, 2011; unpublished work.
- Mol, J.H.; Ouboter, P.E. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conserv. Biol. 2004, 18, 201–214. [Google Scholar] [CrossRef]
- Power, M.E. The importance of sediment in the grazing ecology and size class interactions of the armored catfish, Ancistrus spinosus. Environ. Biol. Fish. 1984, 10, 173–181. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.G. Turbidity, suspended sediment, and water clarity: A review. J. Amer. Water Resources Ass. 2001, 37, 1085–1101. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Nejstgaard, J.; Sœdberg, E.; Sørnes, T. Optical control of fish and zooplankton populations. Limnol. Oceanogr. 2004, 49, 233–238. [Google Scholar] [CrossRef]
- Walker, I. Amazonian Streams and Small Rivers. In Limnology in Brazil; Tundisi, J.G., Bicudo, C.E.M., Matsamura-Tundisi, T., Eds.; Brazilian Academy of Sciences: Rio de Janeiro, Brazil, 1995; pp. 167–194. [Google Scholar]
- Lau, D.C.P.; Leung, K.M.Y.; Dudgeon, D. What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biol. 2009, 54, 127–141. [Google Scholar] [CrossRef]
- Brito, E.F.; Moulton, T.P.; de Souza, M.L.; Bunn, S.E. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecol. 2006, 31, 623–633. [Google Scholar] [CrossRef]
- Newcombe, C.P.; MacDonald, D.D. Effects of suspended sediments on aquatic ecosystems. North Amer. J. Fish. Manage. 1991, 11, 72–82. [Google Scholar] [CrossRef]
- Waters, T.F. Sediments in Streams—Sources, Biological Effects, and Control; American Fisheries Society: Bethesda, MD, USA, 1995; p. 250. [Google Scholar]
- Kleeberg, A.; Köhler, J.A.N.; Sukhodolova, T.; Sukhodolov, A. Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshwater Biol. 2010, 55, 326–345. [Google Scholar] [CrossRef]
- Brookes, A. Response of aquatic vegetation to sedimentation downstream from river channelisation works in England and Wales. Biol. Conserv. 1986, 38, 351–367. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Junk, W.J. Aquatic-terrestrial linkages from streams to rivers: Biotic hot spots and hot moments. Arch. Hydrobiol. Suppl. 2006, 158, 595–611. [Google Scholar]
- Horeau, V.; Cerdan, P.; Champeau, A.; Richard, S. Importance of aquatic invertebrates in the diet of rapids-dwelling fish in the Sinnamary River, French Guiana. J. Trop. Ecol. 1998, 14, 851–864. [Google Scholar] [CrossRef]
- Odinetz Collart, O.; Jégu, M.; Thatcher, V.; Tavares, A.S. Les prairies aquatiques de l’Amazonie bresilienne. RSTOM Actualités 1996, 49, 8–14. [Google Scholar]
- Cope, W.G.; Bringolf, R.B.; Buchwalter, D.B.; Newton, T.J.; Ingersoll, C.G.; Wang, N.; Augspurger, T.; Dwyer, F.J.; Barnhart, M.C.; Neves, R.J.; et al. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. J. North Amer. Benthological Soc. 2008, 27, 451–462. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Pinto-Silva, V. Uso de substratos artificiais para macroinvertebrados bentônicos para a avaliação do impacto de assoreamento em nascentes dos tributrios do Pantanal do Mato Grosso, Brasil. Revista Brasileira de Recursos Hídricos 2006, 11, 99–107. [Google Scholar]
- Bash, J. Effects of Turbidity and Suspended Solids on Salmonids; Center for Streamside Studies, University of Washington: Seattle, WA, USA, 2001; p. 74. [Google Scholar]
- Lloyd, D.S. Turbidity as a water quality standard for salmonid habitats in Alska. North Amer. J. Fish. Manage. 1987, 7, 34–45. [Google Scholar] [CrossRef]
- Bruton, M.N. The effects of suspensoids on fish. Hydrobiologia 1985, 125, 221–242. [Google Scholar] [CrossRef]
- Gende, S.M.; Edwards, R.T.; Willson, M.F.; Wipfli, M.S. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 2002, 52, 917–928. [Google Scholar] [CrossRef]
- Carolsfeld, J.; Harvey, C.; Ross, C.; Baer, A. Migratory Fishes of South America: Biology, Fisheries and Conservation; International Development Centre & the World Bank: Ottawa, Ontario, Canada, 2003; p. 372. [Google Scholar]
- Cederholm, C.J.; Salo, E.O. The Effects of Logging Road Landslide Siltation on the Salmon and Trout Spawning Gravels of Stequaleho Creek and Clearwater River Basin, Jefferson County, Washington, 1972–1978; Fisheries Research Institute, University of Washington: Seattle, WA, USA, 1979; p. 90. [Google Scholar]
- Van der Sluijs, I.; Gray, S.M.; Amorim, M.C.P.; Candolin, U.; Hendry, A.P.; Krahe, R.; Maan, M.F.; Utne-Palm, A.C.; Wagner, H.J.; Wong, N.B.M. Communication in troubled waters: Responses of fish communication systems to changing environments. Evol. Ecol. 2011, 25, 623–640. [Google Scholar] [CrossRef]
- Keenleyside, M.H.A. Some aspects of schooling in fish. Behaviour 1955, 8, 183–249. [Google Scholar] [CrossRef]
- Keenleyside, M.H.A.; Bietz, B.F. The reproductive behavior of Aequidens vittatus (Pisces, Cichlidae) in Surinam, South America. Environ. Biol. Fish. 1981, 6, 87–94. [Google Scholar] [CrossRef]
- Seehausen, O.; Van Alphen, J.J.M.; Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 1997, 277, 1808–1811. [Google Scholar] [CrossRef]
- Dias, A.M.; Tejerina-Garro, F.L. Changes in the structure of fish assemblages in streams along an undisturbed-impacted gradient, upper Parana River basin, Central Brazil. Neotrop. Ichthyol. 2010, 8, 587–598. [Google Scholar] [CrossRef]
- Mol, J.H.; You, K.W.T.; Vrede, I.; Flynn, A.; Ouboter, P.; van der Lugt, F. Fishes of Lely and Nassau Mountains, Suriname. In a Rapid Biological Assessment of the Lely and Nassau Plateaus, Suriname (with Additional Information on the Brownsberg Plateau); Alonso, L.E., Mol, J.H., Eds.; Conservation International: Arlington, TX, USA, 2007; pp. 107–118. [Google Scholar]
- Lujan, N.K.; Roach, K.A.; Jacobsen, D.; Winemiller, K.O.; Vargas, V.M.; Ching, V.R.; Maestre, J.A. Aquatic community structure across an Andes-to-Amazon fluvial gradient. J. Biogeogr. 2013. [Google Scholar]
- Moyle, P.B.; Leidy, R.A. Loss of Biodiversity in Aquatic Ecosystems: Evidence from Fish Faunas. In Conservation Biology; Fiedler, P.L., Jain, S.K., Eds.; Chapman & Hall: New York, NY, USA, 1992; pp. 127–169. [Google Scholar]
- Burcher, C.L.; McTammany, M.E.; Benfield, E.F.; Helfman, G.S. Fish assemblage responses to forest cover. Environ. Manage. 2008, 41, 336–346. [Google Scholar] [CrossRef]
- Casatti, L.; Ferreira, C.P.; Carvalho, F.R. Grass-Dominated stream sides exhibit low fish diversity and dominance by guppies: An assessment of two tropical pasture river basins. Hydrobiologia 2009, 632, 273–283. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Nunes da Cunha, C.; Siqueira, A.J.B. Cerrado Stream Valleys and their Vegetation: Structure, Impacts by Erosion and Recuperation Strategies. In the Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Junk, W.J., da Silva, C.J., Nunes da Cunha, C., Wantzen, K.M., Eds.; Pensoft: Moscow and Sofia, Russia, 2011; pp. 143–165. [Google Scholar]
- Valentin, C.; Poesem, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Hammond, D.S.; Rosales, J.; Ouboter, P.E. Managing the Freshwater Impacts of Surface Mining in Latin America; IDB Technical Note 519; Inter-American Development Bank: Washington, DC, USA, 2013; p. 36. [Google Scholar]
- Wang, J.J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China. Earth Surf. Process. Landf. 2009, 34, 1082–1092. [Google Scholar] [CrossRef]
- CARBIOCIAL (Carbon Sequestration, Biodiversity and Social Structures in Southern Amazonia: Models and Implementation of Carbon-Optimized Land Management Strategies) Project. Available online: http://www.carbiocial.de/ (accessed on 24 September 2013).
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wantzen, K.M.; Mol, J.H. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture 2013, 3, 660-683. https://doi.org/10.3390/agriculture3040660
Wantzen KM, Mol JH. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture. 2013; 3(4):660-683. https://doi.org/10.3390/agriculture3040660
Chicago/Turabian StyleWantzen, Karl M., and Jan H. Mol. 2013. "Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems" Agriculture 3, no. 4: 660-683. https://doi.org/10.3390/agriculture3040660
APA StyleWantzen, K. M., & Mol, J. H. (2013). Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture, 3(4), 660-683. https://doi.org/10.3390/agriculture3040660