Impact of Different Sugar Syrups on the Development of the Fat Body in Worker Bees (Apis mellifera macedonica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Place and Preparation of the Experiment
- ✓
- Determining the strength of bee colonies
- ✓
- Determining the sealed worker brood
- ✓
- Determining the amount of honey
- ✓
- Determining the amount of pollen
2.2. Experimental Design and Grouping of Bee Colonies
2.3. Determining the Degree of Development of the Fat Body of Worker Bees
- ✓
- Assessment of Fat Body Development in Worker Bees
- ✓
- Sample Collection Procedure
- ✓
- Dissection and Fat Body Examination
- ✓
- Methodological Considerations
2.4. Statistical Analysis
3. Results
3.1. Assessment of Bee Colony Development Before the Start of the Experiment
3.2. Kruskal–Wallis for Assessment of Significant Differences in the Distribution of the Degree of Fat Body Development of Worker Bees
3.3. Chi-Square Analysis and Mann–Whitney Tests for Assessment of the Relationship Between Type of Feeding and Stages of Fat Body Development of Worker Bees
3.3.1. Spring Period
3.3.2. Autumn Period
4. Discussions
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Z.; Shen, S.; Wang, K.; Ji, T. Biotic and abiotic stresses on honeybee health. Integr. Zool. 2024, 19, 442–457. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Ahmed, H.R.; El-Wahed, A.A.A.; Saeed, A.; Algethami, A.F.; Attia, N.F.; Guo, Z.; Musharraf, S.G.; Khatib, A.; Alsharif, S.M.; et al. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet. Sci. 2022, 9, 199. [Google Scholar] [CrossRef]
- Castaños, C.E.; Boyce, M.C.; Bates, T.; Millar, A.H.; Flematti, G.; Lawler, N.G.; Grassl, J. Lipidomic features of honey bee and colony health during limited supplementary feeding. Insect Mol. Biol. 2023, 32, 658–675. [Google Scholar] [CrossRef] [PubMed]
- Johansson, T.S.K.; Johansson, M.P. Feeding sugar to bees. 1. Feeders and syrup feeding. Bee World 1976, 57, 137–143. [Google Scholar] [CrossRef]
- Paray, B.A.; Kumari, I.; Hajam, Y.A.; Sharma, B.; Kumar, R.; Albeshr, M.F.; Farah, M.A.; Khan, J.M. Honeybee nutrition and pollen substitutes: A review. Saudi J. Biol. Sci. 2021, 28, 1167–1176. [Google Scholar] [CrossRef]
- Barker, R.J.; Lehner, Y. Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees. Apidologie 1978, 9, 111–116. [Google Scholar] [CrossRef]
- Severson, D.; Erickson, E. Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates. J. Econ. Entomol. 1984, 77, 1473–1478. [Google Scholar] [CrossRef]
- Graham, J.M. The Hive and the Honey Bee; Dadant & Sons: Hamilton, IL, USA, 1992. [Google Scholar]
- Alaux, C.; Brunet, J.-L.; Dussaubat, C.; Mondet, F.; Tchamitchan, S.; Cousin, M.; Brillard, J.; Baldy, A.; Belzunces, L.P.; Le Conte, Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 2010, 12, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Wahl, O.; Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 1983, 59, 106–128. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.P.; Kadri, S.M.; Benaglia, B.E.; Ribolla, P.M.; Orsi, R.O. Different energetic diets affect the maintenance of Apis mellifera L. colonies during off-season. bioRxiv 2019. [Google Scholar] [CrossRef]
- Frizzera, D.; Del Fabbro, S.; Ortis, G.; Zanni, V.; Bortolomeazzi, R.; Nazzi, F.; Annoscia, D. Possible side effects of sugar supplementary nutrition on honey bee health. Apidologie 2020, 51, 594–608. [Google Scholar] [CrossRef]
- Přidal, A.; Musila, J.; Svoboda, J. Condition and Honey Productivity of Honeybee Colonies Depending on Type of Supplemental Feed for Overwintering. Animals 2023, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Szczęsna, T.; Waś, E.; Semkiw, P.; Skubida, P.; Jaśkiewicz, K.; Witek, M. Changes of Physicochemical Properties of Starch Syrups Recommended for Winter Feeding of Honeybees during Storage. Agriculture 2021, 11, 374. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F. Effects of various sugar feeding choices on survival and tolerance of honey bee workers to low temperatures. J. Entomol. Acarol. Res. 2017, 49, e6200. [Google Scholar] [CrossRef]
- Semkiw, P.; Skubida, P. Suitability of starch syrups for winter feeding of honeybee colonies. J. Apic. Sci. 2016, 60, 141–152. [Google Scholar] [CrossRef]
- Ruiz-Matute, A.I.; Weiss, M.; Sammataro, D.; Finely, J.; Sanz, M.L. Carbohydrate composition of high-fructose corn syrups (HFCS) used for bee feeding: Effect on honey composition. J. Agric. Food Chem. 2010, 58, 7317–7322. [Google Scholar] [CrossRef]
- Papežíková, I.; Palíková, M.; Syrová, E.; Zachová, A.; Somerlíková, K.; Kováčová, V.; Pecková, L. Effect of Feeding Honey Bee (Apis mellifera Hymenoptera: Apidae) Colonies with Honey, Sugar Solution, Inverted Sugar, and Wheat Starch Syrup on Nosematosis Prevalence and Intensity. J. Econ. Entomol. 2020, 113, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Qazi, I.I.; Tabssum, F.; Hussain, A. Development, gut health, and longevity of European bee on the provision of biosugar syrup. Biocatal. Agric. Biotechnol. 2023, 47, 102532. [Google Scholar] [CrossRef]
- Eshbah, H.M.; Mohamed, A.A.; Hassan, A.R.; Mahmoud, M.E.; Shaban, M.M. Efficiency of feeding honey bee colonies, Apis mellifera L., with mixture of natural products and sugar syrup on brood and adult population. Sci Agric. 2018, 21, 14–18. [Google Scholar] [CrossRef]
- Mirjanic, G.; Gajger, I.T.; Mladenovic, M.; Kozaric, Z. Impact of different feed on intestine health of honey bees. In Proceedings of the XXXXIII International Apicultural Congress, Kyiv, Ukraine, 29 September–4 October 2013; p. 113. [Google Scholar]
- Kandolf Borovšak, A.; Ogrinc, N.; Lilek, N.; Korošec, M. Feeding honey-bee colonies (Apis mellifera carnica Poll.) and detection of honey adulteration. Acta Aliment. 2016, 46, 127–136. [Google Scholar] [CrossRef]
- Warner, M.R.; Qiu, L.; Holmes, M.J.; Mikheyev, A.S.; Linksvayer, T.A. Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes. Nat. Commun. 2019, 10, 2651. [Google Scholar] [CrossRef] [PubMed]
- Maurizio, A. Fermentwirkung während der Ueberwinterung bei Bienen der Liguslica-Rasse. Insectes Sociaux 1961, 8, 125–175. [Google Scholar] [CrossRef]
- Toth, A.L.; Robinson, G.E. Worker nutrition and division of labour in honeybees. Anim. Behav. 2005, 69, 427–435. [Google Scholar] [CrossRef]
- Crailsheim, K. The flow of jelly within a honeybee colony. J. Comp. Physiol. 1992, 162, 681–689. [Google Scholar] [CrossRef]
- Renne, M.F.; Hariri, H. Lipid Droplet-Organelle Contact Sites as Hubs for Fatty Acid Metabolism, Trafficking, and Metabolic Channeling. Front. Cell Dev. Biol. 2021, 9, 726261. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Fat Body—Multifunctional Insect Tissue. Insects 2021, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Chobotow, J.; Wójcik, Ł.; Paleolog, J.; Woyciechowski, M. Segmentation of the subcuticular fat body in Apis mellifera females with different reproductive potentials. Sci. Rep. 2021, 11, 13887. [Google Scholar] [CrossRef] [PubMed]
- Roma, G.C.; Bueno, O.C.; Camargo-Mathias, M.I. Morpho-physiological analysis of the insect fat body: A review. Micron 2010, 41, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Hoshizaki, D.K. Chapter 6. Fat body. In The Insects: Structure and Function; Simpson, S.J., Douglas, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 132–146. [Google Scholar]
- Aljedani, D.M. Comparing the histological structure of the fat body and malpighian tubules in different phases of honeybees Apis mellifera jemenatica (Hymenoptera: Apidae). J. Entomol. 2018, 15, 114–124. [Google Scholar] [CrossRef]
- Negroni, M.A.; LeBoeuf, A.C. Metabolic division of labor in social insects. Curr. Opin. Insect Sci. 2023, 59, 101085. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Wagner, A.E. Drosophila melanogaster as a Model Organism for Obesity and Type-2 Diabetes Mellitus by Applying High-Sugar and High-Fat Diets. Biomolecules 2022, 12, 307. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Robinson, G.E. Diet-dependent gene expression in honey bees: Honey vs. sucrose or high fructose corn syrup. Sci. Rep. 2014, 4, 5726. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honey Bees; Springer: Berlin/Heidelberg, Germany, 1988; pp. 120–161. [Google Scholar]
- Delaplane, K.S.; Van der Steen, J.; Guzman, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Lazarov, S.; Dineva, G. An innovative method for determining the area of the capped brood in bee colonies. J. Hyg. Eng. Des. 2022, 39, 236–241. [Google Scholar]
- Lazarov, S.; Dineva, G. Determining the amount of capped honey in honeycombs with AutoCAD program. Bulg. J. Anim. Husb. 2022, 1, 23–31. [Google Scholar]
- Maurizio, A. Pollenernarung und Lebensvorgange bei der Honigbiene (Apis mellifica L.). Landwirtschaftliche jahrbuch Schweiz 1954, 68, 115–182. [Google Scholar]
- Brodschneider, R.; Moosbeckhofer, R.; Crailsheim, K. Surveys as a tool to record winter losses of honey bee colonies: A two year case study in Austria and South Tyrol. J. Apic. Res. 2010, 49, 23–30. [Google Scholar] [CrossRef]
- Bruckner, S.; Wilson, M.; Aurell, D.; Rennich, K.; Engelsdorp, D.; Steinhauer, N.; Williams, G.R. A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2017–18, 2018–19, and 2019–20. J. Apic. Res. 2023, 62, 429–443. [Google Scholar] [CrossRef]
- Gregorc, A.; Sampson, B.; Knight, P.R.; Adamczyk, J. Diet quality affects honey bee (Hymenoptera: Apidae) mortality under laboratory conditions. J. Apic. Res. 2019, 58, 492–493. [Google Scholar] [CrossRef]
- Quinlan, G.; Döke, M.; Ortiz-Alvarado, Y.; Rodriguez-Gomez, N.; Koru, Y.; Underwood, R. Carbohydrate nutrition associated with health of overwintering honey bees. J. Insect Sci. 2023, 23. [Google Scholar] [CrossRef]
- Genç, F.; Aksoy, A. Some of the correlations between the colony development and honey production on the honeybee (Apis mellifera L.) colonies. Apiacta 1993, 28, 33–41. [Google Scholar]
- Ceksteryte, V.; Racys, J. The quality of syrups used for bee feeding before winter and their suitability for bee wintering. J. Apic. Sci. 2006, 50, 5–14. [Google Scholar]
- Hanover, L.M.; White, J.S. Manufacturing, composition, and applications of fructose. Am. J. Clin. Nutr. 1993, 58 (Suppl. S5), 724S–732S. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, B.W.; Eggleston, G.; Sammataro, D.; Cornett, C.; Dufault, R.; Deeby, T.; St. Cyr, E. Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera). J. Agric. Food. Chem. 2009, 57, 7369–7376. [Google Scholar] [CrossRef] [PubMed]
- Simcock, N.K.; Gray, H.; Bouchebti, S.; Wright, G. Appetitive olfactory learning and memory in the honeybee depend on sugar reward identity. J. Insect Physiol. 2018, 106, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ament, S.A.; Chan, Q.W.; Wheeler, M.M.; Nixon, S.E.; Johnson, S.P.; Rodriguez-Zas, S.L.; Robinson, G.E. Mechanisms of stable lipid loss in a social insect. J. Exp. Biol. 2011, 214, 3808–3821. [Google Scholar] [CrossRef]
- Ross, A.P.; Bartness, T.J.; Mielke, J.G.; Parent, M.B. A high fructose diet impairs spatial memory in male rats. Neurobiol. Learn. Mem. 2009, 92, 410–416. [Google Scholar] [CrossRef]
- Tawfik Amer, I.; Ahmed Zeinab, H.; Abdel-Rahman, M.F.; Moustafa, A.M. Influence of winter feeding on colony development and the antioxidant system of the honey bee. Apis mellifera. J. Apic. Res. 2020, 59, 752–763. [Google Scholar] [CrossRef]
Group (n = 12) | Colony Strength (kg) | Honey (kg) | Bee Pollen (Number of Cells) | Sealed Brood (Number of Cells) |
---|---|---|---|---|
Spring period | ||||
Control | 1.300 ± 0.707 ns | 2.370 ± 0.368 ns | 1025.0 ± 565.69 ns | 5400.0 ± 565.69 ns |
Group 1 | 1.275 ± 0.035 ns | 2.230 ± 0.552 ns | 1000.0 ± 35.355 ns | 5800.0 ± 989.95 ns |
Group 2 | 1.250 ± 0.354 ns | 2.450 ± 0.001 ns | 1125.0 ± 494.98 ns | 6000.0 ± 565.69 ns |
Group 3 | 1.175 ± 0.035 ns | 2.215 ± 0.149 ns | 1075.0 ± 424.26 ns | 6650.0 ± 353.55 ns |
Group 4 | 1.375 ± 0.530 ns | 2.420 ± 0.057 ns | 900.0 ± 494.98 ns | 7000.0 ± 424.26 ns |
Group 5 | 1.225 ± 0.035 ns | 2.580 ± 0.566 ns | 1062.5 ± 830.85 ns | 6550.0 ± 494.98 ns |
Levene’s Test Sig. (p) | 0.001 | 0.001 | 0.001 | 0.001 |
Autumn period | ||||
Control | 1.225 ± 0.177 ns | 10.716 ± 0.490 ns | 187.50 ± 17.678 ns | 3400.0 ± 565.69 ns |
Group 1 | 1.250 ± 0.001 ns | 11.157 ± 1.299 ns | 132.50 ± 17.678 ns | 3450.0 ± 353.55 ns |
Group 2 | 1.225 ± 0.035 ns | 11.572 ± 1.701 ns | 142.50 ± 60.104 ns | 3300.0 ± 1131.37 ns |
Group 3 | 1.275 ± 0.106 ns | 10.785 ± 2.073 ns | 137.50 ± 17.678 ns | 3050.0 ± 212.13 ns |
Group 4 | 1.187 ± 0.088 ns | 11.890 ± 2.560 ns | 175.00 ± 212.132 ns | 2950.0 ± 70.71 ns |
Group 5 | 1.300 ± 0.141 ns | 10.719 ± 0.681 ns | 137.50 ± 88.388 ns | 3112.5 ± 17.68 ns |
Levene’s Test Sig. (p) | 0.001 | 0.001 | 0.001 | 0.001 |
Kruskal–Wallis H | df | Asymp. Sig. (pAsimp.) | |
---|---|---|---|
Degree of fat body development before spring feeding (after wintering) | 2.490 | 5 | 0.778 |
Degree of fat body development after spring feeding | 6.096 | 5 | 0.029 |
Degree of fat body development before autumn feeding | 9.993 | 5 | 0.075 |
Degree of fat body development after autumn feeding | 13.436 | 5 | 0.020 |
Season | Groups According to the Type of Feeding | Degree of Fat Body Development (n), % | ||||
---|---|---|---|---|---|---|
DFBD1 | DFBD2 | DFBD3 | DFBD4 | Total | ||
Before spring feeding (after wintering) | Control | (4) 11.4 | (18) 51.4 | (11) 31.4 | (2) 5.7 | (35) 100.0 |
Group 1 | (9) 19.6 | (20) 43.5 | (14) 30.4 | (3) 6.5 | (46) 100.0 | |
Group 2 | (1) 2.3 | (25) 58.1 | (16) 37.2 | (1) 2.3 | (43) 100.0 | |
Group 3 | (5) 11.4 | (20) 45.5 | (18) 40.9 | (1) 2.3 | (44) 100.0 | |
Group 4 | (5) 12.5 | (20) 50.0 | (13) 32.5 | (2) 5.0 | (40) 100.0 | |
Group 5 | (2) 4.3 | (25) 53.2 | (15) 31.9 | (5) 10.6 | (47) 100.0 | |
Total | (26) 10.2 | (128) 50.2 | (87) 34.1 | (14) 5.5 | (255) 100.0 | |
Cramer’s V = 0.139; Sig. (p) = 0.464 | ||||||
After spring feeding | Control | (0) 0.0 | (13) 31.0 | (24) 57.1 | (5) 11.9 | (42) 100.0 |
Group 1 (1:1 sugar/water) | (0) 0.0 | (23) 53.5 | (17) 39.5 | (3) 7.0 | (43) 100.0 | |
Group 2 (2:1 sugar/water) | (0) 0.0 | (19) 45.2 | (18) 42.9 | (5) 11.9 | (42) 100.0 | |
Group 3 (Apiinvert) | (0) 0.0 | (14) 35.0 | (24) 60.0 | (2) 5.0 | (40) 100.0 | |
Group 4 (Isosweet) | (0) 0.0 | (20) 48.8 | (19) 46.3 | (2) 4.9 | (41) 100.0 | |
Group 5 (1:1 honey/water) | (0) 0.0 | (17) 44.7 | (11) 28.9 | (10) 26.3 | (38) 100.0 | |
Total | (0) 0.0 | (106) 43.1 | (113) 45.9 | (27) 11.0 | (255) 100.0 | |
Cramer’s V = 0.205; Sig. (p) = 0.023 |
Control | Group 1 (1:1 Sugar/ Water) | Group 2 (2:1 Sugar/ Water) | Group 3 (Apiinvert) | Group 4 (Isosweet) | Group 5 (1:1 Honey/Water) | ||
---|---|---|---|---|---|---|---|
Control | Mann–Whitney U | - | 693.0 | 771.0 | 770.0 | 684.0 | 780.5 |
r | 0.222 | 0.200 | 0.082 | 0.198 | 0.020 | ||
Asimp. Sig. | 0.040 * | 0.272 | 0.457 | 0.049 * | 0.855 | ||
Group 1 | Mann–Whitney U | - | - | 813.0 | 720.0 | 851.5 | 677.0 |
r | 0.096 | 0.158 | 0.033 | 0.161 | |||
Asimp. Sig. | 0.379 | 0.048 * | 0.762 | 0.047 * | |||
Group 2 | Mann–Whitney U | - | - | - | 796.0 | 801.0 | 731.5 |
r | 0.050 | 0.067 | 0.077 | ||||
Asimp. Sig. | 0.648 | 0.543 | 0.488 | ||||
Group 3 | Mann–Whitney U | - | - | - | - | 712.0 | 725.0 |
r | 0.129 | 0.043 | |||||
Asimp. Sig. | 0.047 * | 0.703 | |||||
Group 4 | Mann–Whitney U | - | - | - | - | - | 663.5 |
r | 0.140 | ||||||
Asimp. Sig. | 0.026 * |
Season | Groups According to the Type of Feeding | Degree of Fat Body Development (n), % | |||||
---|---|---|---|---|---|---|---|
DFBD1 | DFBD2 | DFBD3 | DFBD4 | DFBD5 | Total | ||
Before autumn feeding | Control | (0) 0.0 | (10) 27.0 | (19) 51.4 | (8) 21.6 | (0) 0.0 | (37) 100.0 |
Group 1 | (1) 2.1 | (20) 41.7 | (24) 50.0 | (3) 6.3 | (0) 0.0 | (48) 100.0 | |
Group 2 | (0) 0.0 | (12) 25.5 | (27) 57.4 | (7) 14.9 | (1) 2.1 | (47) 100.0 | |
Group 3 | (0) 0.0 | (14) 31.1 | (21) 46.7 | (10) 22.2 | (0) 0.0 | (45) 100.0 | |
Group 4 | (0) 0.0 | (11) 28.9 | (15) 39.5 | (11) 28.9 | (1) 2.6 | (38) 100.0 | |
Group 5 | (0) 0.0 | (9) 22.0 | (23) 56.1 | (8) 19.5 | (1) 2.4 | (41) 100.0 | |
Total | (1) 0.4 | (76) 29.7 | (129) 50.4 | (47) 18.4 | (3) 1.2 | (256) 100.0 | |
Cramer’s V = 0.139; Sig. (p) = 0.467 | |||||||
After autumn feeding | Control | (0) 0.0 | (1) 2.5 | (23) 57.5 | (13) 32.5 | (3) 7.5 | (40) 100.0 |
Group 1 (1:1 sugar/water) | (0) 0.0 | (5) 12.2 | (23) 56.1 | (13) 31.7 | (0) 0.0 | (41) 100.0 | |
Group 2 (2:1 sugar/water) | (0) 0.0 | (4) 10.8 | (21) 56.8 | (12) 32.4 | (0) 0.0 | (37) 100.0 | |
Group 3 (Apiinvert) | (0) 0.0 | (0) 0.0 | (20) 51.3 | (17) 43.6 | (2) 5.1 | (39) 100.0 | |
Group 4 (Isosweet) | (0) 0.0 | (8) 21.6 | (17) 45.9 | (9) 24.3 | (3) 8.1 | (37) 100.0 | |
Group 5 (1:1 honey/water) | (0) 0.0 | (1) 2.4 | (17) 41.5 | (20) 48.8 | (3) 7.3 | (41) 100.0 | |
Total | (0) 0.0 | (19) 8.1 | (121) 51.5 | (84) 35.7 | (11) 4.7 | (235) 100.0 | |
Cramer’s V = 0.199; Sig. (p) = 0.023 |
Control | Group 1 (1:1 Sugar/ Water) | Group 2 (2:1 Sugar/ Water) | Group 3 (Apiinvert) | Group 4 (Isosweet) | Group 5 (1:1 Honey/Water) | ||
---|---|---|---|---|---|---|---|
Control | Mann–Whitney U | - | 686.5 | 630.5 | 714.5 | 606.5 | 701.5 |
r | 0.158 | 0.144 | 0.082 | 0.170 | 0.138 | ||
Asimp. Sig. | 0.046 * | 0.206 | 0.468 | 0.036 * | 0.214 | ||
Group 1 | Mann–Whitney U | - | - | 746.5 | 600.0 | 734.0 | 585.0 |
r | 0.015 | 0.241 | 0.030 | 0.289 | |||
Asimp. Sig. | 0.892 | 0.031 * | 0.789 | 0.009 * | |||
Group 2 | Mann–Whitney U | - | - | - | 552.0 | 652.0 | 537.5 |
r | 0.228 | 0.044 | 0.277 | ||||
Asimp. Sig. | 0.047 * | 0.705 | 0.014 * | ||||
Group 3 | Mann–Whitney U | - | - | - | - | 540.5 | 745.0 |
r | 0.235 | 0.066 | |||||
Asimp. Sig. | 0.041 * | 0.558 | |||||
Group 4 | Mann–Whitney U | - | - | - | - | - | 536.0 |
r | 0.271 | ||||||
Asimp. Sig. | 0.017 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarov, S.B.; Veleva, P.M.; Atanasov, A.Z.; Hristakov, I.S.; Puškadija, Z. Impact of Different Sugar Syrups on the Development of the Fat Body in Worker Bees (Apis mellifera macedonica). Agriculture 2025, 15, 83. https://doi.org/10.3390/agriculture15010083
Lazarov SB, Veleva PM, Atanasov AZ, Hristakov IS, Puškadija Z. Impact of Different Sugar Syrups on the Development of the Fat Body in Worker Bees (Apis mellifera macedonica). Agriculture. 2025; 15(1):83. https://doi.org/10.3390/agriculture15010083
Chicago/Turabian StyleLazarov, Svilen B., Petya M. Veleva, Atanas Z. Atanasov, Ivaylo S. Hristakov, and Zlatko Puškadija. 2025. "Impact of Different Sugar Syrups on the Development of the Fat Body in Worker Bees (Apis mellifera macedonica)" Agriculture 15, no. 1: 83. https://doi.org/10.3390/agriculture15010083
APA StyleLazarov, S. B., Veleva, P. M., Atanasov, A. Z., Hristakov, I. S., & Puškadija, Z. (2025). Impact of Different Sugar Syrups on the Development of the Fat Body in Worker Bees (Apis mellifera macedonica). Agriculture, 15(1), 83. https://doi.org/10.3390/agriculture15010083