Proteomic Analysis Unveils the Protective Mechanism of Active Modified Atmosphere Packaging Against Senescence Decay and Respiration in Postharvest Loose-Leaf Lettuce
<p>Effects of MAP on the sensory state (<b>A</b>), overall visual quality score (<b>B</b>), and chlorophyll content (<b>C</b>) in postharvest loose-leaf lettuce stored at 4 °C for 6 d. The asterisk (*) denotes a significant difference between MAP treatment and the control (<span class="html-italic">p</span> < 0.05), the asterisk (***) denotes a significant difference between MAP treatment and the control (<span class="html-italic">p</span> < 0.001).</p> "> Figure 2
<p>Effect of MAP on weight loss (<b>A</b>) and gas percentage (<b>B</b>) in postharvest lettuces during storage at 4 °C. The asterisk (***) denotes a significant difference between MAP treatment and the control (<span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Effect of MAP on electrolyte leakage (<b>A</b>), hydroxyl radical superoxide radical (<b>B</b>), and superoxide radical (<b>C</b>) contents in postharvest lettuces during storage at 4 °C. The asterisk (***) denotes a significant difference between MAP treatment and the control (<span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Differentially expressed genes of loose-leaf lettuce at the end of the storage period (control vs. MAP-treated). Enrichment of differentially expressed proteins for cellular components (<b>A</b>), molecular function (<b>B</b>), and biological processes (<b>C</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Treatment
2.2. Sensory Properties and the Total Chlorophyll Content
2.3. Weight Loss and Gas Composition in Packaging
2.4. Electrolyte Leakage and Reactive Oxygen Species Contents
2.5. Protein Extraction
2.6. Protein Digestion and iTRAQ Labeling
2.7. Strong Cation Exchange and LC-MS/MS SCX
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of Loose-Leaf Lettuce Under MAP
3.2. Weight Loss of Loose-Leaf Lettuce and Changes in Gas Composition in MAP-Treated Packaging
3.3. Electrolyte Leakage Rate and Reactive Oxygen Species Contents of Loose-Leaf Lettuce Under MAP
3.4. Lettuce Protein Profiling: Identification, Quantification, and GO Enrichment of Differentially Expressed Proteins
3.4.1. Cellular Components
3.4.2. Molecular Function
3.4.3. Biological Processes
3.5. KEGG Enrichment Analysis of Differentially Expressed Proteins
3.5.1. Analysis of Differentially Expressed Proteins in the Glycolysis and TCA Pathway
3.5.2. Analysis of Differentially Expressed Proteins in the Oxidative Phosphorylation Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Morales, F.; Garmendia, I.; Goicoechea, N. Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Sci. Hortic. 2013, 151, 103–111. [Google Scholar] [CrossRef]
- Ru, X.; You, W.; Zhang, J.; Xu, F.; Wu, Z.; Jin, P.; Zheng, Y.; Cao, S. γ-Aminobutyric acid treatment inhibits browning and promotes storage quality by regulating reactive oxygen species and membrane lipid metabolism in fresh-cut stem lettuce. Food Chem. 2024, 459, 140420. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Li, Y.; Hu, J.; Pang, L.; Fan, H. Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high-intensity light. Innov. Food Sci. Emerg. Technol. 2012, 14, 70–76. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Han, C.; Chen, Q.; Jiao, W.; Fu, M. Combined treatment of ε-polylysine and UV-C inhibited aerobic bacteria growth, and maintained the color, texture, flavor of vacuum-packed fresh-cut lettuce slices. Postharvest Biol. Technol. 2024, 218, 113156. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, W.; Li, J.; Huang, Z.; Tao, Y.; Hong, J.; Zhang, L.; Zhou, Y. Pre-harvest short-term continuous LED lighting improves the nutritional quality and flavor of hydroponic purple-leaf lettuce. Sci. Hortic. 2024, 334, 113304. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Han, C.; Chen, Q.; Sun, F.; Fu, M.; Zhao, H.; Xiao, Z.; Tang, Z. ε-Polylysine treatment maintains sensory quality, texture, flavor, and inhibits aerobic bacteria growth in vacuum-packed fresh-cut lettuce. Postharvest Biol. Technol. 2024, 214, 113011. [Google Scholar] [CrossRef]
- Yousuf, B.; Qadri, O.S.; Srivastava, A. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT—Food Sci. Technol. 2018, 8, 198–209. [Google Scholar] [CrossRef]
- Altınkaya, A. Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca sativa). Food Chem. 2011, 128, 754–760. [Google Scholar] [CrossRef]
- Chen, X.N.; Jin, W.B.; Dong, Y.R.; Meng, L.C.; Wei, Q. Research progress in preservation of post-harvest edible fungi. Adv. Mater. Res. 2012, 476, 614–619. [Google Scholar] [CrossRef]
- Sandhya, R. Modified atmosphere packaging of fresh produce: Current status and future needs. LWT—Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- E Postiglione, A.; Delange, A.M.; Ali, M.F.; Wang, E.Y.; Houben, M.; Hahn, S.L.; Khoury, M.G.; Roark, C.M.; Davis, M.; Reid, R.W.; et al. Flavonols improve tomato pollen thermotolerance during germination and tube elongation by maintaining reactive oxygen species homeostasis. Plant Cell 2024, 36, 4511–4534. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; De Paepe, R.; Foyer, C.H. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 2007, 12, 125–134. [Google Scholar] [CrossRef]
- Rahman, M.M.; Miaruddin, M.; Chowdhury MG, F.; Khan, M.H.H.; Matin, M.A. Effect of different packaging systems and chlorination on the quality and shelf life of green chili. Bangladesh J. Agric. Res. 2013, 37, 729–736. [Google Scholar] [CrossRef]
- Firouz, M.S.; Alimardani, R.; Mobli, H.; Mohtasebi, S.S. Effect of modified atmosphere packaging on the mechanical properties of lettuce during shelf life in cold storage. Inf. Process. Agric. 2021, 8, 485–493. [Google Scholar] [CrossRef]
- Islam, M.; Lee, Y.; Mele, M.; Choi, I.; Jang, D.; Ko, Y.; Kim, Y.; Kang, H. Effect of modified atmosphere packaging on quality and shelf life of baby leaf lettuce. Qual. Assur. Saf. Crops Foods 2021, 11, 749–756. [Google Scholar] [CrossRef]
- Palma, J.M.; Corpas, F.J.; Del Rio, L.A. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J. Proteom. 2011, 74, 1230–1243. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, W.; Zhao, S.; Wang, P.; Wang, Y.; Zhao, Y.; Zhao, X.; Wang, D. Comparison between vacuum and modified-atmosphere packaging on dynamic analysis of flavor properties and microbial communities in fresh-cut potatoes (Solanum tuberosum L.). Food Packag. Shelf Life 2023, 39, 101149. [Google Scholar] [CrossRef]
- Zulewska, J.; Lobacz, A.; Bialobrzewski, I.; Grochowina, A.; Kaminska, A. Influence of Different Packaging Materials on the Composition of the Headspace of Rennet Cheeses under Different Modified Atmosphere Conditions. Foods 2024, 13, 2500. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Tudela, J.A.; Luna, C.; Allende, A.; Gil, M.I. Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biol. Technol. 2011, 59, 4–12. [Google Scholar] [CrossRef]
- Jiang, L.; Hou, T.; Yuan, X.; Jiang, J.; Yu, Z. Effect of storage temperature and packaging method on the decay and physiology of fresh leaves of Gynura bicolor D.C. J. Food Process. Preserv. 2010, 34, 858–871. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Lin, Y.; Zhang, S.; Chen, Y.; Jiang, X. The roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biol. Technol. 2016, 111, 53–61. [Google Scholar] [CrossRef]
- Francisco, L.G.; Peter, R.; Ladie, A.P.; Markus, E.; Frank, D. Effect of new sanitizing formulations on quality of fresh-cut iceberg lettuce. Postharvest Biol. Technol. 2013, 85, 102–108. [Google Scholar]
- Ramos, B.; Miller, F.A.; Brandão TR, S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Torales, A.C.; Gutiérrez, D.R.; Rodríguez, S.D.C. Influence of passive and active modified atmosphere packaging on yellowing and chlorophyll degrading enzymes activity in fresh-cut rocket leaves. Food Packag. Shelf Life 2020, 26, 100569. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, Y.; Huang, J.; An, L.; Zhang, Y.; Yang, W.; Lei, T. Low oxygen concentration alleviates banana peel browning by inhibiting membrane lipid oxidation and polyphenol oxidase activity. Int. J. Food Sci. Technol. 2024, 59, 3350–3359. [Google Scholar] [CrossRef]
- Haba, F.; N’guettia, R.K.; Koffi, J.K.; Phaceli, D.E.; Tioté, L.; Djalega, A.F.; Dembélé, A. Post-harvest conservation of mangosteen (Garcinia mangostana): Influence of fruit harvest stage and effectiveness of some practical conservation treatments. J. Hortic. Sci. Biotechnol. 2023, 98, 786–798. [Google Scholar] [CrossRef]
- Peng, X.L.; Yang, J.P.; Cui, P.L.; Chen, F.; Fu, Y.; Hu, Y.Y.; Zhang, Q.; Xia, X.D. Influence of allicin on quality and volatile compounds of fresh-cut stem lettuce during cold storage. LWT—Food Sci. Technol. 2015, 60, 300–307. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A. Modified atmosphere packaging technology of fresh and freshcut produce and the microbial consequences—A review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Powrie, W.D.; Skura, B.J. Modified Atmosphere Packaging of Fruits and Vegetables. In Modified Atmosphere Packaging of Food; Springer: Boston, MA, USA, 1991; ISBN 978-0-7476-0064-0. [Google Scholar]
- Lei, M.; Guo, L.; Zhang, Y.; Yan, X.; Jiang, F.; Sun, B. Effectiveness of anaerobic treatment combined with microperforated film packaging in reducing Agaricus bisporus postharvest browning. Postharvest Biol. Technol. 2011, 211, 112833. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhang, Y.X.; Ge, H.B. The membrane may be an important factor in browning of fresh-cut pear. Food Chem. 2017, 230, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. The language of reactive oxygen species signaling in plants. J. Bot. 2012, 2012, 259–272. [Google Scholar] [CrossRef]
- Sharma, T.; Ramana Rao, T.V. Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT—Food Sci. Technol. 2015, 62, 791–800. [Google Scholar] [CrossRef]
- Noor, Z.; Ahn, S.B.; Baker, M.S.; Ranganathan, S.; Mohamedali, A. Mass spectrometry–based protein identification in proteomics—A review. Brief. Bioinform. 2021, 22, 1620–1638. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Monterisi, S.; Zhang, L.; Garcia-Perez, P.; Zuluaga, M.Y.A.; Ciriello, M.; El-Nakhel, C.; Buffagni, V.; Cardarelli, M.; Colla, G.; Rouphael, Y.; et al. Integrated multi-omic approach reveals the effect of a Graminaceae-derived biostimulant and its lighter fraction on salt-stressed lettuce plants. Sci. Rep. 2024, 14, 10710. [Google Scholar] [CrossRef]
- Hui, K.-M.; Hao, F.-Y.; Li, W.; Zhang, Z.; Zhang, C.-Y.; Wang, W.; Ren, Q. Cloning and identification of four Mu-type glutathione S-transferases from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish. Immunol. 2013, 35, 546–552. [Google Scholar] [CrossRef]
- Yoshida, K.; Hisabori, T. Adenine nucleotide-dependent and redoxindependent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochim. Et Biophys. Acta (BBA)—Bioenerg. 2016, 1857, 810–818. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, W.; Tian, X.; Jia, F.; Xu, L.; Dai, R.; Li, X. Comparative proteomics to reveal muscle-specific beef color stability of Holstein cattle during post-mortem storage. Food Chem. 2017, 229, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, H.; Cai, J.; Li, D.; Song, F. NAC transcription factors in plant immunity. Phytopathol. Res. 2019, 1, 3. [Google Scholar] [CrossRef]
- Ramaswamy, M. Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Li, F.; Shan, Y.; Wang, H.; Jiang, G.; Ding, X.; Liang, H.; Wang, C.; Kong, X.; Xie, L.; Jiang, Y. A NAC transcriptional factor BrNAC029 is involved in cytokinin-delayed leaf senescence in postharvest Chinese flowering cabbage. Food Chem. 2023, 404, 134657. [Google Scholar] [CrossRef] [PubMed]
- Hanschmann, E.M.; Godoy, J.R.; Berndt, C.; Hudemann, C.; Lillig, C.H. Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: From Cofactors to Antioxidants to Redox Signaling. Antioxid. Redox Signal. 2013, 19, 1539–1605. [Google Scholar] [CrossRef]
- Appenzeller-Herzog, C.; Ellgaard, L. The human PDI family: Versatility packed into a single fold. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 2008, 1783, 535–548. [Google Scholar] [CrossRef]
- Amir, M.; Kumar, V.; Dohare, R.; Rehman, M.T.; Hussain, A.; Alajmi, M.F.; El-Seedi, H.R.; Hassan HM, A.; Islam, A.; Ahmad, F. Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach. Int. J. Biol. Macromol. 2019, 133, 484–494. [Google Scholar] [CrossRef]
- Amir, M.; Haque, M.A.; Dar, M.A.; Islam, A.; Ahmad, F.; Hassan, M.I. Purification and characterization of oligonucleotide binding (OB)-fold protein from medicinal plant Tinospora cordifolia. J. Chromatogr. B 2016, 1008, 38–44. [Google Scholar] [CrossRef]
- Hu, T.; Wu, J.; Lin, Z.; Lin, Y.; Lin, L.; Wei, W.; Wei, D. The impact of glutamine synthetase PbgsA on the growth, conidiation and mycophenolic acid production of Penicillium brevicompactum. Fungal Genet. Biol. 2024, 17, 103941. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, J.; Zhang, R.; Zhang, R. Ammonia stress on nitrogen metabolism in tolerant aquatic plant—Myriophyllum aquaticum. Ecotoxicol. Environ. Saf. 2017, 143, 102–110. [Google Scholar] [CrossRef]
- Škerlová, J.; Berndtsson, J.; Nolte, H.; Ott, M.; Stenmark, P. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nat. Commun. 2021, 12, 5277. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Wang, X.; Chen, J. OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol. Biochem. 2011, 49, 33–38. [Google Scholar] [CrossRef]
Serial Number | Pathway | Target Protein Number | Background Protein Number | p-Value |
---|---|---|---|---|
1 | Metabolic pathway | 110 | 876 | 0.87 × 10−4 |
2 | Secondary metabolite biosynthesis | 49 | 403 | 0.18 |
3 | Ribosome metabolism | 38 | 172 | 0.44 × 10−4 |
4 | Carbon metabolism | 31 | 313 | 0.78 |
5 | Photosynthesis | 22 | 77 | 0.62 × 10−4 |
6 | Carbon fixation in photosynthetic organic matter | 19 | 207 | 0.89 |
7 | Oxidative phosphorylation | 16 | 95 | 0.10 |
8 | Amino acid biosynthesis | 16 | 164 | 0.82 |
9 | Glycolysis | 14 | 101 | 0.32 |
10 | Glyoxylic acid and dicarboxylic acid metabolism | 14 | 165 | 0.93 |
11 | TCA cycle | 9 | 45 | 0.90 |
12 | Pyruvate metabolism | 9 | 68 | 0.44 |
13 | Photosynthetic-sensitive protein metabolism | 8 | 20 | 0.00 |
14 | Glycine, serine, and threonine | 8 | 42 | 0.13 |
15 | Cysteine and methionine metabolism | 7 | 42 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, L.; Han, J.; Wu, R.; Liu, W.; Zhou, J.; Chen, X.; Zhang, H. Proteomic Analysis Unveils the Protective Mechanism of Active Modified Atmosphere Packaging Against Senescence Decay and Respiration in Postharvest Loose-Leaf Lettuce. Agriculture 2024, 14, 2156. https://doi.org/10.3390/agriculture14122156
Weng L, Han J, Wu R, Liu W, Zhou J, Chen X, Zhang H. Proteomic Analysis Unveils the Protective Mechanism of Active Modified Atmosphere Packaging Against Senescence Decay and Respiration in Postharvest Loose-Leaf Lettuce. Agriculture. 2024; 14(12):2156. https://doi.org/10.3390/agriculture14122156
Chicago/Turabian StyleWeng, Lili, Jiyuan Han, Runyan Wu, Wei Liu, Jing Zhou, Xiangning Chen, and Huijuan Zhang. 2024. "Proteomic Analysis Unveils the Protective Mechanism of Active Modified Atmosphere Packaging Against Senescence Decay and Respiration in Postharvest Loose-Leaf Lettuce" Agriculture 14, no. 12: 2156. https://doi.org/10.3390/agriculture14122156
APA StyleWeng, L., Han, J., Wu, R., Liu, W., Zhou, J., Chen, X., & Zhang, H. (2024). Proteomic Analysis Unveils the Protective Mechanism of Active Modified Atmosphere Packaging Against Senescence Decay and Respiration in Postharvest Loose-Leaf Lettuce. Agriculture, 14(12), 2156. https://doi.org/10.3390/agriculture14122156