Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review
<p>Global distribution of publications on the impact of fire in RSC across major countries (<span class="html-italic">n</span> = 75). The numbers in bracket represents the number of papers from each country.</p> "> Figure 2
<p>Number of publications on the impact of fire in RSC over 5-year intervals, color-coded by research topic (<span class="html-italic">n</span> = 75).</p> "> Figure 3
<p>Network of keywords based on the co-occurrence method for the study of the impact of fire on soil in RSC (1998–2024).</p> "> Figure 4
<p>Land clearing of RSC in Northern Thailand. (<b>a</b>) cutting, (<b>b</b>) burning, (<b>c</b>) after burning, and (<b>d</b>) remaining ash and charcoal. Photos were taken by Noppol Arunrat.</p> "> Figure 5
<p>Soil profile (0–30 cm) at different periods of RSC in Northern Thailand. (<b>a</b>) before burning, (<b>b</b>) 5 min after burning, (<b>c</b>) 6 months after burning, and (<b>d</b>) 12 months after burning. Photos were taken by Noppol Arunrat.</p> "> Figure 6
<p>Post-fire rotational plots of RSC in Northern Thailand. (<b>a</b>) 3 months after burning, (<b>b</b>) 6 months after burning, (<b>c</b>) 9 months after burning, and (<b>d</b>) 12 months after burning. Photos were taken by Noppol Arunrat.</p> "> Figure 7
<p>Examples of vegetables and flowers in RSC in Northern Thailand. Photos were taken by Noppol Arunrat.</p> ">
Abstract
:1. Introduction
2. Effects of Fire on Soil Properties
Microbial Parameter | Post-Fire Recovery | Relate Factors | References |
---|---|---|---|
Bacterial diversity and richness | increase | higher C source | [88] |
Actinobacteria | increase | higher N source | [108] |
Acidobacteria | increase | higher soil pH | [75,77] |
Proteobacteria | increase | higher P source | [75,76,77] |
Firmicutes | increase | higher soil pH | [76] |
Fungal community composition | decrease | lower C source | [109] |
Arbuscular Mycorrhizal Fungi (AMF) | decrease | Lower MBC | [110,111] |
Ectomycorrhizal Fungi | decrease | lower C and N source | [91,109] |
Cellulolytic Fungi | decrease | lower C source | [112] |
Enzyme activities | |||
Urease | decrease | denatured/lower N source | [55,86,113] |
Phosphatase | decrease | lower P source | [55,89,113,114] |
β-glucosidase | decrease | denatured, lower MBC | [86,89,90,113,114] |
Microbial C utilization | decrease | Lower labile C | [86,110,115] |
Microbial Biomass Carbon (MBC) | increase | higher DOC | [47,89,110] |
decrease | denatured/lower DOC | [75,86,87] |
3. Impacts of Fire on Soil Erosion
4. Post-Fire Recovery, Successional Changes after Fire
5. Implications for Sustainability: Mitigation and Management Strategies
6. Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukushima, M.; Kanzaki, M.; Hara, M.; Ohkubo, T.; Preechapanya, P.; Choocharoen, C. Secondary forest succession after the cessation of swidden cultivation in the montane forest area in Northern Thailand. For. Ecol. Manag. 2008, 255, 1994–2006. [Google Scholar] [CrossRef]
- Brussaard, L.; Pulleman, M.M.; Ouédraogo, É.; Mando, A.; Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia 2007, 50, 447–462. [Google Scholar] [CrossRef]
- Strydom, T.; Smit, I.P.J.; van Tol, J.J. Short and long-term fire effects on soil C and N in an African savanna. Geoderma Reg. 2024, 37, e00802. [Google Scholar] [CrossRef]
- Muqaddas, B.; Lewis, T.; Esfandbod, M.; Chen, C. Responses of labile soil organic carbon and nitrogen pools to long-term prescribed burning regimes in a wet sclerophyll forest of southeast Queensland, Australia. Sci. Total Environ. 2019, 647, 110–120. [Google Scholar] [CrossRef]
- Roth, H.K.; McKenna, A.M.; Simpson, M.J.; Chen, H.; Srikanthan, N.; Fegel, T.S.; Nelson, A.R.; Rhoades, C.C.; Wilkins, M.J.; Borch, T. Effects of burn severity on organic nitrogen and carbon chemistry in high-elevation forest soils. Soil. Environ. Health 2023, 1, 100023. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; de las Heras, J.; Moya Navarro, D.; González-Romero, J.; Peña-Molina, E.; Navidi, M.; Fajardo-Cantos, Á.; Miralles Mellado, I.; Plaza-Alvarez, P.A.; Gianmarco Carrà, B.; et al. Short-term effects of prescribed fires with different severity on rainsplash erosion and physico-chemical properties of surface soil in Mediterranean forests. J. Environ. Manag. 2022, 322, 116143. [Google Scholar] [CrossRef]
- Fox, D.M.; Darboux, F.; Carrega, P. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrol. Process. 2007, 21, 2377–2384. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Grogan, P.; Lalnunmawia, F.; Tripathi, S.K. Shifting cultivation in steeply sloped regions: A review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst. 2012, 84, 163–177. [Google Scholar] [CrossRef]
- Howard, R.J. Cultural control of plant diseases: A historical perspective. Can. J. Plant Pathol. 1996, 18, 145–150. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997, 12, 211–224. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Van Noordwijk, M.; Bigham, J.M. Soil phosphorus availability after slash-and-burn fires of different intensities in rubber agroforests in Sumatra, Indonesia. Agric. Ecosyst. Environ. 2002, 92, 37–48. [Google Scholar] [CrossRef]
- Gay-des-Combes, J.M.; Sanz Carrillo, C.; Robroek, B.J.M.; Jassey, V.E.J.; Mills, R.T.E.; Arif, M.S.; Falquet, L.; Frossard, E.; Buttler, A. Tropical soils degraded by slash-and-burn cultivation can be recultivated when amended with ashes and compost. Ecol. Evol. 2017, 7, 5378–5388. [Google Scholar] [CrossRef] [PubMed]
- Warner, K. Shifting Cultivators: Local Technical Knowledge and Natural Resource Management in the Humid Tropics; FAO: Rome, Italy, 2001. [Google Scholar]
- Otto, J.S.; Anderson, N.E. Slash-and-Burn Cultivation in the Highlands South: A Problem in Comparative Agricultural History. Comp. Stud. Soc. Hist. 1982, 24, 131–147. [Google Scholar] [CrossRef]
- Schuck, E.C.; Nganje, W.; Yantio, D. The role of land tenure and extension education in the adoption of slash and burn agriculture. Ecol. Econ. 2002, 43, 61–70. [Google Scholar] [CrossRef]
- Vosti, S.A.; Witcover, J. Slash-and-burn agriculture—Household perspectives. Agric. Ecosyst. Environ. 1996, 58, 23–38. [Google Scholar] [CrossRef]
- Mertz, O.; Padoch, C.; Fox, J.; Cramb, R.A.; Leisz, S.J.; Lam, N.T.; Vien, T.D. Swidden change in southeast Asia: Understanding causes and consequences. Hum. Ecol. 2009, 37, 259–264. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z.; Jiang, L.; Liao, C.; Zhang, J. A Review of Swidden Agriculture in Southeast Asia. Remote Sens. 2014, 6, 1654–1683. [Google Scholar] [CrossRef]
- Nakano, K. An Ecological Study or Swidden Agriculture at a Village in Northern Thailand. Jpn. J. Southeast Asian Stud. 1978, 16, 411–446. [Google Scholar]
- Pellegrini, A.F.A.; Hobbie, S.E.; Reich, P.B.; Jumpponen, A.; Brookshire, E.N.J.; Caprio, A.C.; Coetsee, C.; Jackson, R.B. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 2020, 90, e01409. [Google Scholar] [CrossRef]
- Hauser, S.; Norgrove, L. Slash-and-Burn Agriculture, Effects of. In Encyclopedia of Biodiversity, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 551–562. [Google Scholar] [CrossRef]
- Lal, R. Shifting Cultivation Versus Sustainable Intensification. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: New York, NY, USA, 2015; pp. 1–12. [Google Scholar] [CrossRef]
- van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S.; et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Glob. Environ. Chang. 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Schritt, H.; Beusch, C.; Guayasamín, P.R.; Kaupenjohann, M. Transformation of traditional shifting cultivation into permanent cropping systems: A case study in Sarayaku, Ecuador. Ecol. Soc. 2020, 25, 10. [Google Scholar] [CrossRef]
- Tinker, P.B.; Ingram, J.S.I.; Struwe, S. Effects of slash-and-burn agriculture and deforestation on climate change. Agric. Ecosyst. Environ. 1996, 58, 13–22. [Google Scholar] [CrossRef]
- Varma, A. The economics of slash and burn: A case study of the 1997–1998 Indonesian forest fires. Ecol. Econ. 2003, 46, 159–171. [Google Scholar] [CrossRef]
- Brady, N.C. Alternatives to slash-and-burn: A global imperative. Agric. Ecosyst. Environ. 1996, 58, 3–11. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Pimentel, D.; Bryant, R.B. The ecological sustainability of slash-and-burn agriculture. Agric. Ecosyst. Environ. 1995, 52, 235–249. [Google Scholar] [CrossRef]
- Ickowitz, A. Shifting Cultivation and Deforestation in Tropical Africa: Critical Reflections. Dev. Chang. 2006, 37, 599–626. [Google Scholar] [CrossRef]
- Kato, M.S.A.; Kato, O.R.; Denich, M.; Vlek, P.L.G. Fire-free alternatives to slash-and-burn for shifting cultivation in the eastern Amazon region: The role of fertilizers. Field Crops Res. 1999, 62, 225–237. [Google Scholar] [CrossRef]
- Hands, M. The search for a sustainable alternative to slash-and-burn agriculture in the World’s rain forests: The Guama Model and its implementation. R. Soc. Open Sci. 2021, 8, 201204. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Yuttitham, M.; Hatano, R. Variations of soil properties and soil surface loss after fire in rotational shifting cultivation in Northern Thailand. Front. Environ. Sci. 2023, 11, 1213181. [Google Scholar] [CrossRef]
- Laskar, S.Y.; Sileshi, G.W.; Pathak, K.; Debnath, N.; Nath, A.J.; Laskar, K.Y.; Singnar, P.; Das, A.K. Variations in soil organic carbon content with chronosequence, soil depth and aggregate size under shifting cultivation. Sci. Total Environ. 2021, 762, 143114. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, T.; Zhou, J.; Yu, Y.; Petropoulos, E.; Müller, C. Slash-and-burn in karst regions lowers soil gross nitrogen (N) transformation rates and N-turnover. Geoderma 2022, 425, 116084. [Google Scholar] [CrossRef]
- Tomforde, M. The Global in the Local: Contested Resource-use Systems of the Karen and Hmong in Northern Thailand. J. Southeast Asian Stud. 2003, 34, 347–360. [Google Scholar] [CrossRef]
- Moran, J.; NaSuwan, C.; Poocharoen, O.O. The haze problem in Northern Thailand and policies to combat it: A review. Environ. Sci. Policy 2019, 97, 1–15. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 2018, 9, 145. [Google Scholar] [CrossRef]
- Mostafanezhad, M.; Evrard, O. Chronopolitics of crisis: A historical political ecology of seasonal air pollution in northern Thailand. Geoforum 2021, 124, 400–408. [Google Scholar] [CrossRef]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Sereenonchai, S.; Hatano, R.; Lal, R. Fire-induced changes in soil properties and bacterial communities in rotational shifting cultivation fields in Northern Thailand. Biology 2024, 13, 383. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Hatano, R. Effects of fire on soil organic carbon, soil total nitrogen, and soil properties under rotational shifting cultivation in northern Thailand. J. Environ. Manag. 2022, 302, 113978. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Iwai, C.B.; Yuttitham, M.; Hatano, R. Post-fire recovery of soil organic carbon, soil total nitrogen, soil nutrients, and soil erodibility in rotational shifting cultivation in Northern Thailand. Front. Environ. Sci. 2023, 11, 1117427. [Google Scholar] [CrossRef]
- Úbeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad. Dev. 2009, 20, 589–608. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Badía, D.; Martí, C. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Res Manag. 2003, 17, 23–41. [Google Scholar] [CrossRef]
- Zhao, H.; Tong, D.Q.; Lin, Q.; Lu, X.; Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 2012, 189–190, 532–539. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Bigham, J.M.; Laperche, V. Changes in Soil Mineralogy and Texture Caused by Slash-and-Burn Fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 2000, 64, 1108–1117. [Google Scholar] [CrossRef]
- Memoli, V.; Panico, S.C.; Santorufo, L.; Barile, R.; Di Natale, G.; Di Nunzio, A.; Toscanesi, M.; Trifuoggi, M.; De Marco, A.; Maisto, G. Do Wildfires Cause Changes in Soil Quality in the Short Term? Int. J. Environ. Res. Public Health 2020, 17, 5343. [Google Scholar] [CrossRef] [PubMed]
- Doerr, S.H.; Santín, C.; Mataix-Solera, J. Fire effects on soil. In Encyclopedia of Biodiversity, 2nd ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 448–457. [Google Scholar] [CrossRef]
- Leal, O.d.A.; Jiménez-Morillo, N.T.; González-Pérez, J.A.; Knicker, H.; de Souza Costa, F.; Jiménez-Morillo, P.N.; de Carvalho Júnior, J.A.; dos Santos, J.C.; Pinheiro Dick, D. Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest. Int. J. Environ. Res. Public Health 2023, 20, 3485. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Jackson, R.B. The long and short of it: A review of the timescales of how fire affects soils using the pulse-press framework. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2020; Volume 62, pp. 147–171. ISBN 9780128211342. [Google Scholar]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Xue, L.; Li, Q.; Chen, H. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China. Forests 2014, 5, 2947–2966. [Google Scholar] [CrossRef]
- Saplalrinliana, H.; Thakuria, D.; Changkija, S.; Hazarika, S. Impact of shifting cultivation on litter accumulation and properties of Jhum soils of north east India. J. Indian Soc. Soil Sci. 2016, 64, 402–413. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Jangir, A.; Vasu, D.; Rodrigo-Comino, J. Understanding the effect of shifting cultivation practice (slash-burn-cultivation-abandonment) on soil physicochemical properties in the North-eastern Himalayan region. Investig. Geogr. 2021, 76, 243–261. [Google Scholar] [CrossRef]
- Ekinci, H. Effect of Forest Fire on Some Physical, Chemical and Biological Properties of Soil in Çanakkale, Turkey. Int. J. Agric. Biol. 2006, 8, 102–106. [Google Scholar]
- Li, T.; Jeřábek, J.; Winkler, J.; Vaverková, M.D.; Zumr, D. Effects of prescribed fire on topsoil properties: A small-scale straw burning experiment. J. Hydrol. Hydromech. 2022, 70, 450–461. [Google Scholar] [CrossRef]
- Moreno-Roso, S.; Chávez-Vergara, B.; Solleiro-Rebolledo, E.; Quintero-Gradilla, S.; Merino, A.; Ruiz-Rojas, M. Soil Burn Severities Evaluation Using Micromorphology and Morphometry Traits After a Prescribed Burn in a Managed Forest. Span. J. Soil Sci. 2023, 13, 11488. [Google Scholar] [CrossRef]
- Thomaz, E.L. High fire temperature changes soil aggregate stability in slash-and-burn agricultural systems. Sci. Agric. 2017, 74, 157–162. [Google Scholar] [CrossRef]
- Busse, M.D.; Shestak, C.J.; Hubbert, K.R.; Knapp, E.E. Soil Physical Properties Regulate Lethal Heating during Burning of Woody Residues. Soil Sci. Soc. Am. J. 2010, 74, 947–955. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601–602, 1119–1128. [Google Scholar] [CrossRef]
- Urbanek, E. Why are aggregates destroyed in low intensity fire? Plant Soil 2013, 362, 33–36. [Google Scholar] [CrossRef]
- Ulery, A.L.; Graham, R.C. Forest Fire Effects on Soil Color and Texture. Soil Sci. Soc. Am. J. 1993, 57, 135–140. [Google Scholar] [CrossRef]
- Ying, H.S.; Bin Wasli, M.E.; Perumal, M. Soil characteristics under intensified shifting cultivation for upland rice cultivation in upland Sabal, Sarawak, Malaysia. Biotropia 2018, 25, 72–83. [Google Scholar] [CrossRef]
- Thomaz, E.L.; Antoneli, V.; Doerr, S.H. Effects of fire on the physicochemical properties of soil in a slash-and-burn agriculture. Catena 2014, 122, 209–215. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, R.K.; Woods, P.V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. For. Res. 2011, 15, 657–664. [Google Scholar] [CrossRef]
- Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Chungu, D.; Ng’andwe, P.; Mubanga, H.; Chileshe, F. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia. J. For. Res. 2020, 31, 1637–1645. [Google Scholar] [CrossRef]
- Escudey, M.; Arancibia-Miranda, N.; Pizarro, C.; Antilén, M. Effect of ash from forest fires on leaching in volcanic soils. Catena 2015, 135, 383–392. [Google Scholar] [CrossRef]
- Ulery, A.L.; Graham, R.C.; Goforth, B.R.; Hubbert, K.R. Fire effects on cation exchange capacity of California forest and woodland soils. Geoderma 2017, 286, 125–130. [Google Scholar] [CrossRef]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 2014, 221–222, 131–138. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Xu, Z.; Bai, Y.; Bai, S.H. Biochar application for enhancing water and nitrogen use efficiency of understory acacia species in a suburban native forest subjected to nitrogen deposition in Southeast Queensland. Plant Soil 2024. [Google Scholar] [CrossRef]
- Shen, J.P.; Chen, C.R.; Lewis, T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci. Rep. 2016, 6, 19639. [Google Scholar] [CrossRef]
- Kang, J.W.; Park, Y.D. Effects of deforestation on microbial diversity in a Siberian larch (Larix sibirica) stand in Mongolia. J. For. Res. 2019, 30, 1885–1893. [Google Scholar] [CrossRef]
- Rafie, S.A.A.; Blentlinger, L.R.; Putt, A.D.; Williams, D.E.; Joyner, D.C.; Campa, M.F.; Schubert, M.J.; Hoyt, K.P.; Horn, S.P.; Franklin, J.A.; et al. Impact of prescribed fire on soil microbial communities in a Southern Appalachian Forest clear-cut. Front. Microbiol. 2024, 15, 1322151. [Google Scholar] [CrossRef] [PubMed]
- Goberna, M.; García, C.; Insam, H.; Hernández, M.T.; Verdú, M. Burning Fire-Prone Mediterranean Shrublands: Immediate Changes in Soil Microbial Community Structure and Ecosystem Functions. Microb. Ecol. 2012, 64, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Armas-Herrera, C.M.; Martí, C.; Badía, D.; Ortiz-Perpiñá, O.; Girona-García, A.; Porta, J. Immediate effects of prescribed burning in the Central Pyrenees on the amount and stability of topsoil organic matter. CATENA 2016, 147, 238–244. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 2012, 183–184, 80–91. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Harden, J.; Georgiou, K.; Hemes, K.S.; Malhotra, A.; Nolan, C.J.; Jackson, R.B. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 2021, 15, 5–13. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.; Lewis, T.; Wild, C.; Chen, C. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X.; Pereira, P.; Alcañiz, M. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total Environ. 2018, 615, 664–671. [Google Scholar] [CrossRef]
- Francos, M.; Stefanuto, E.B.; Úbeda, X.; Pereira, P. Long-term impact of prescribed fire on soil chemical properties in a wildland-urban interface. Northeastern Iberian Peninsula. Sci. Total Environ. 2019, 689, 305–311. [Google Scholar] [CrossRef]
- Fonseca, F.; de Figueiredo, T.; Nogueira, C.; Queirós, A. Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma 2017, 307, 172–180. [Google Scholar] [CrossRef]
- Díaz-Raviña, M.; Lombao Vázquez, A.; Barreiro Buján, A.I.; Martín Jiménez, A.; Carballas Fernández, T. Medium-term impact of post-fire emergency rehabilitation techniques on a shrubland ecosystem in galicia (NW Spain). Span. J. Soil Sci. 2018, 8, 322–346. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Yan, Q.; Hu, Y. Impacts of slash burning on soil carbon pools vary with slope position in a pine plantation in subtropical China. CATENA 2019, 183, 104212. [Google Scholar] [CrossRef]
- Moya, D.; Fonturbel, M.T.; Lucas-Borja, M.E.; Peña, E.; Alfaro-Sanchez, R.; Plaza-Álvarez, P.A.; González-Romero, J.; de Las Heras, J. Burning season and vegetation coverage influenced the community-level physiological profile of Mediterranean mixed-mesogean pine forest soils. J. Environ. Manag. 2021, 277, 111405. [Google Scholar] [CrossRef] [PubMed]
- Armas-Herrera, C.M.; Martí, C.; Badía, D.; Ortiz-Perpiñá, O.; Girona-García, A.; Mora, J.L. Short-term and midterm evolution of topsoil organic matter and biological properties after prescribed burning for pasture recovery (Tella, Central Pyrenees, Spain). L. Degrad. Dev. 2018, 29, 1545–1554. [Google Scholar] [CrossRef]
- Fairbanks, D.; Shepard, C.; Murphy, M.; Rasmussen, C.; Chorover, J.; Rich, V.; Gallery, R. Depth and topographic controls on microbial activity in a recently burned sub-alpine catchment. Soil Biol. Biochem. 2020, 148, 107844. [Google Scholar] [CrossRef]
- Hart, B.T.N.; Smith, J.E.; Luoma, D.L.; Hatten, J.A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 2018, 422, 11–22. [Google Scholar] [CrossRef]
- Kapoor, B.; Onufrak, A.; Klingeman, W.; DeBruyn, J.M.; Cregger, M.A.; Willcox, E.; Trigiano, R.; Hadziabdic, D. Signatures of prescribed fire in the microbial communities of Cornus florida are largely undetectable five months post-fire. PeerJ 2023, 11, e15822. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P. Fire effects on soils and restoration strategies. In Forest Fire Effects on Soil Microbiology; Cerda, A., Robichaud, P.R., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 149–192. [Google Scholar]
- Hamman, S.T.; Burke, I.C.; Stromberger, M.E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 2007, 39, 1703–1711. [Google Scholar] [CrossRef]
- Smith, N.R.; Kishchuk, B.E.; Mohn, W.W. Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl. Environ. Microbiol. 2008, 74, 216–224. [Google Scholar] [CrossRef]
- Lombao, A.; Barreiro, A.; Fontúrbel, M.T.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Sci. Total Environ. 2020, 741, 140363. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Caprio, A.C.; Georgiou, K.; Finnegan, C.; Hobbie, S.E.; Hatten, J.A.; Jackson, R.B. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 2021, 27, 3810–3823. [Google Scholar] [CrossRef]
- Köster, K.; Berninger, F.; Heinonsalo, J.; Lindén, A.; Köster, E.; Ilvesniemi, H.; Pumpanen, J. The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. Int. J. Wildl. Fire 2016, 25, 213. [Google Scholar] [CrossRef]
- Miesel, J.R.; Boerner, R.E.J.; Skinner, C.N. Soil nitrogen mineralization and enzymatic activities in fire and fire surrogate treatments in California. Can. J. Soil Sci. 2011, 91, 935–946. [Google Scholar] [CrossRef]
- Moya, D.; Fonturbel, T.; Peña, E.; Alfaro-Sanchez, R.; Plaza-Álvarez, P.A.; González-Romero, J.; Lucas-Borja, M.E.; de Las Heras, J. Fire Damage to the Soil Bacterial Structure and Function Depends on Burn Severity: Experimental Burnings at a Lysimetric Facility (MedForECOtron). Forests 2022, 13, 1118. [Google Scholar] [CrossRef]
- Fioretto, A.; Papa, S.; Pellegrino, A. Effects of fire on soil respiration, ATP content and enzyme activities in Mediterranean maquis. Appl. Veg. Sci. 2005, 8, 13–20. [Google Scholar] [CrossRef]
- Reazin, C.; Morris, S.; Smith, J.E.; Cowan, A.D.; Jumpponen, A. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. For. Ecol. Manag. 2016, 377, 118–127. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Sereenonchai, S.; Hatano, R. Short-term response of soil bacterial and fungal communities to fire in rotational shifting cultivation, northern Thailand. Appl. Soil Ecol. 2024, 196, 105303. [Google Scholar] [CrossRef]
- Fox, S.; Sikes, B.A.; Brown, S.P.; Cripps, C.L.; Glassman, S.I.; Hughes, K.; Semenova-Nelsen, T.; Jumpponen, A. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycologia 2022, 114, 215–241. [Google Scholar] [CrossRef]
- Cutler, N.A.; Arróniz-Crespo, M.; Street, L.E.; Jones, D.L.; Chaput, D.L.; DeLuca, T.H. Long-Term Recovery of Microbial Communities in the Boreal Bryosphere Following Fire Disturbance. Microb. Ecol. 2017, 73, 75–90. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J.M. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front. Microbiol. 2016, 7, 1045. [Google Scholar] [CrossRef]
- Yeager, C.M.; Northup, D.E.; Grow, C.C.; Barns, S.M.; Kuske, C.R. Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire. Appl. Environ. Microbiol. 2005, 71, 2713. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Tsai, S.M.; Mendes, L.W.; Faust, K.; De Hollander, M.; Cassman, N.A.; Raes, J.; Van Veen, J.A.; Kuramae, E.E. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol. Ecol. 2015, 24, 2433–2448. [Google Scholar] [CrossRef] [PubMed]
- Castaño, C.; Hernández-Rodríguez, M.; Geml, J.; Eberhart, J.; Olaizola, J.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. For. Ecol. Manag. 2020, 472, 118217. [Google Scholar] [CrossRef]
- Cheng, Z.; Wu, S.; Du, J.; Liu, Y.; Sui, X.; Yang, L. Reduced Arbuscular Mycorrhizal Fungi (AMF) Diversity in Light and Moderate Fire Sites in Taiga Forests, Northeast China. Microorganisms 2023, 11, 1836. [Google Scholar] [CrossRef]
- Barraclough, A.D.; Olsson, P.A. Slash-and-Burn Practices Decrease Arbuscular Mycorrhizal Fungi Abundance in Soil and the Roots of Didierea madagascariensis in the Dry Tropical Forest of Madagascar. Fire 2018, 1, 37. [Google Scholar] [CrossRef]
- Bastias, B.A.; Anderson, I.C.; Rangel-Castro, J.I.; Parkin, P.I.; Prosser, J.I.; Cairney, J.W.G. Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biol. Biochem. 2009, 41, 467–472. [Google Scholar] [CrossRef]
- Eivazi, F.; Bayan, M.R. Effects of long-term prescribed burning on the activity of select soil enzymes in an oak–hickory forest. Can. J. For. Res. 2011, 26, 1799–1804. [Google Scholar] [CrossRef]
- Boerner, R.E.J.; Brinkman, J.A. Fire frequency and soil enzyme activity in southern Ohio oak–hickory forests. Appl. Soil Ecol. 2003, 23, 137–146. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Liu, X.; Yan, Q.; Hu, Y. Short-term impact of fire-deposited charcoal on soil microbial community abundance and composition in a subtropical plantation in China. Geoderma 2020, 359, 113992. [Google Scholar] [CrossRef]
- Hubbert, K.R.; Wohlgemuth, P.M.; Beyers, J.L.; Narog, M.G.; Gerrard, R. Post-fire soil water repellency, hydrologic response, and sediment yield compared between grass-converted and chaparral watersheds. Fire Ecol. 2012, 8, 143–162. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Are, K.S.; Oluwatosin, G.A.; Adeyolanu, O.D.; Oke, A.O. Slash and burn effect on soil quality of an Alfisol: Soil physical properties. Soil Tillage Res. 2009, 103, 4–10. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Jin, T.; Yang, Y.; Chao, X. Research on the Influence Depth of Soil with Different Burn Severity in the Burned Areas of E’gu Village in Yajiang County. Earth Sci. 2019, 8, 317–322. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Smith, H.G.; Lane, P.N.J.; Sheridan, G.J. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 2016, 278, 12–22. [Google Scholar] [CrossRef]
- Jiménez-Pinilla, P.; Mataix-Solera, J.; Arcenegui, V.; Delgado, R.; Martín-García, J.M.; Lozano, E.; Martínez-Zavala, L.; Jordán, A. Advances in the knowledge of how heating can affect aggregate stability in Mediterranean soils: A XDR and SEM-EDX approach. Catena 2016, 147, 315–324. [Google Scholar] [CrossRef]
- Ravi, S.; D’Odorico, P.; Herbert, B.E.; Zobeck, T.M.; Over, T.M. Enhancement of wind erosion by fire-induced water repellency. Water Resour. Res. 2006, 42, W11422. [Google Scholar] [CrossRef]
- Whicker, J.J.; Breshears, D.D.; Wasiolek, P.T.; Kirchner, T.B.; Tavani, R.A.; Schoep, D.A.; Rodgers, J.C. Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland. J. Environ. Qual. 2002, 31, 599–612. [Google Scholar] [CrossRef]
- Eaton, J.M.; Lawrence, D. Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatán. For. Ecol. Manag. 2009, 258, 949–958. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Fernández, C.; Vega, J.A.; Keizer, J.J. Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. J. Hydrol. 2015, 523, 452–464. [Google Scholar] [CrossRef]
- Fontúrbel, T.; Carrera, N.; Vega, J.A.; Fernández, C. The effect of repeated prescribed burning on soil properties: A review. Forests 2021, 12, 767. [Google Scholar] [CrossRef]
- Pereira, P.; Martínez-Murillo, J.F.; Francos, M. Environments affected by fire. Adv. Chem. Pollut. Environ. Manag. Prot. 2019, 4, 119–155. [Google Scholar] [CrossRef]
- Creech, M.N.; Katherine Kirkman, L.; Morris, L.A. Alteration and recovery of slash pile burn sites in the restoration of a fire-maintained ecosystem. Restor. Ecol. 2012, 20, 505–516. [Google Scholar] [CrossRef]
- Aboim, M.C.R.; Coutinho, H.L.C.; Peixoto, R.S.; Barbosa, J.C.; Rosado, A.S. Soil bacterial community structure and soil quality in a slash-and-burn cultivation system in Southeastern Brazil. Appl. Soil Ecol. 2008, 38, 100–108. [Google Scholar] [CrossRef]
- López-Poma, R.; Orr, B.J.; Bautista, S. Successional stage after land abandonment modulates fire severity and post-fire recovery in a Mediterranean mountain landscape. Int. J. Wildl. Fire 2014, 23, 1005–1015. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Fonturbel, T.; Pérez-Gorostiaga, P.; Jiménez, E.; Madrigal, J. Effects of wildfire, salvage logging and slash treatments on soil degradation. Land Degrad. Dev. 2007, 18, 591–607. [Google Scholar] [CrossRef]
- Pickup, M.; Wilson, S.; Freudenberger, D.; Nicholls, N.; Gould, L.; Hnatiuk, S.; Delandre, J. Post-fire recovery of revegetated woodland communities in south-eastern Australia. Austral Ecol. 2013, 38, 300–312. [Google Scholar] [CrossRef]
- Kutiel, P.; Shaviv, A. Effect of simulated forest fire on the availability of N and P in mediterranean soils. Plant Soil 1989, 120, 57–63. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Widodo, M.; Suyamto, D. Fire risks in forest carbon projects in Indonesia. Sci. China (Ser. C) 2002, 45, 65–74. [Google Scholar]
- Piché, N.; Kelting, D.L. Recovery of soil productivity with forest succession on abandoned agricultural land. Restor. Ecol. 2015, 23, 645–654. [Google Scholar] [CrossRef]
- Rai, D.; Silveira, M.L.; Strauss, S.L.; Meyer, J.L.; Castellano-Hinojosa, A.; Kohmann, M.M.; Brandani, C.B.; Gerber, S. Short-term prescribed fire-induced changes in soil microbial communities and nutrients in native rangelands of Florida. Appl. Soil Ecol. 2023, 189, 104914. [Google Scholar] [CrossRef]
- Rascio, I.; Curci, M.; Gattullo, C.E.; Lavecchia, A.; Yaghoubi Khanghahi, M.; Terzano, R.; Crecchio, C. Combined Effect of Laboratory-Simulated Fire and Chromium Pollution on Microbial Communities in an Agricultural Soil. Biol. 2021, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Srikanthasamy, T.; Barot, S.; Koffi, F.K.; Tambosco, K.; Marcangeli, Y.; Carmignac, D.; N’Dri, A.B.; Gervaix, J.; Le Roux, X.; Lata, J.C. Short-term impact of fire on the total soil microbial and nitrifier communities in a wet savanna. Ecol. Evol. 2021, 11, 9958–9969. [Google Scholar] [CrossRef] [PubMed]
- Rietl, A.J.; Jackson, C.R. Effects of the ecological restoration practices of prescribed burning and mechanical thinning on soil microbial enzyme activities and leaf litter decomposition. Soil Biol. Biochem. 2012, 50, 47–57. [Google Scholar] [CrossRef]
- Moura, J.B.; Souza, R.F.; Vieira-Júnior, W.G.; Lucas, L.S.; Santos, J.M.; Silva, S.D.E.; Marín, C. Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem. For. Syst. 2022, 31, e001. [Google Scholar] [CrossRef]
- Zhu, L.; Dickson, T.L.; Zhang, Z.; Dere, A.; Xu, J.; Bragg, T.; Tapprich, W.; Lu, G. Effects of burning and mowing on the soil microbiome of restored tallgrass prairie. Eur. J. Soil Sci. 2021, 72, 385–399. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Romanyà, J.; Casals, P. Post-fire recovery of soil microbial functions is promoted by plant growth. Eur. J. Soil Sci. 2022, 73, e13290. [Google Scholar] [CrossRef]
- Qiu, D.; Xu, R.; Wu, C.; Mu, X.; Zhao, G.; Gao, P. Vegetation restoration improves soil hydrological properties by regulating soil physicochemical properties in the Loess Plateau, China. J. Hydrol. 2022, 609, 127730. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhao, Y.; Fu, Q.; Li, T. Vegetation restoration and plant roots improve soil infiltration capacity after a severe forest fire in Daxing’anling, northeast China. J. Soil Water Conserv. 2022, 77, 135–143. [Google Scholar] [CrossRef]
- Randriamalala, J.R.; Randriarimalala, J.; Hervé, D.; Carrière, S.M. Slow recovery of endangered xerophytic thickets vegetation after slash-and-burn cultivation in Madagascar. Biol. Conserv. 2019, 233, 260–267. [Google Scholar] [CrossRef]
- Wittenberg, L.; Malkinson, D.; Wittenberg, L.; Malkinson, D. Monitoring Water Repellency Effects on Post-wildfire Infiltration and Runoff. In Proceedings of the EGU General Assembly, Vienna, Austria, 27 April–2 May 2014; p. 6025. [Google Scholar]
- Drobyshev, I.; Aleinikov, A.; Lisitsyna, O.; Aleksutin, V.; Vozmitel, F.; Ryzhkova, N. The first annually resolved analysis of slash-and-burn practices in the boreal Eurasia suggests their strong climatic and socio-economic controls. Veg. Hist. Archaeobot. 2024, 33, 301–312. [Google Scholar] [CrossRef]
- Chiroma, A.M.; Alhassan, A.B. A Review of the Impact of Bush Burning on the Environment: Potential Effects on Soil Chemical Attributes. Int. J. Sci. Environ. 2023, 3, 101–121. [Google Scholar] [CrossRef]
- Reang, D.; Nath, A.J.; Sileshi, G.W.; Hazarika, A.; Das, A.K. Post-fire restoration of land under shifting cultivation: A case study of pineapple agroforestry in the Sub-Himalayan region. J. Environ. Manag. 2022, 305, 114372. [Google Scholar] [CrossRef]
- Lintemani, M.G.; Loss, A.; Mendes, C.S.; Fantini, A.C. Long fallows allow soil regeneration in slash-and-burn agriculture. J. Sci. Food Agric. 2020, 100, 1142–1154. [Google Scholar] [CrossRef] [PubMed]
- Condron, L.; Stark, C.; O’Callaghan, M.; Clinton, P.; Huang, Z. The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. In Soil Microbiology and Sustainable Crop Production; Springer: Dordrecht, The Netherlands, 2010; pp. 81–118. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.; Bååth, E. Soil microbial recolonisation after a fire in a Mediterranean forest. Biol. Fertil. Soils 2011, 47, 261–272. [Google Scholar] [CrossRef]
- De Vries, F.T.; Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 2013, 4, 265. [Google Scholar] [CrossRef]
- Fornwalt, P.J.; Rhoades, C.C. Rehabilitating Slash Pile Burn Scars in Upper Montane Forests of the Colorado Front Range. Nat. Areas J. 2011, 31, 177–182. [Google Scholar] [CrossRef]
- Da Silva Neto, E.C.; Pereira, M.G.; Frade, E.F.; Da Silva, S.B.; De Carvalho, J.A.; Dos Santos, J.C. Temporal evaluation of soil chemical attributes after slash-and-burn agriculture in the Western Brazilian Amazon. Acta Sci. Agron. 2019, 41, e42609. [Google Scholar] [CrossRef]
- Szott, L.T.; Palm, C.A.; Buresh, R.J. Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor. Syst. 1999, 47, 163–196. [Google Scholar] [CrossRef]
- Lungmuana; Singh, S.B.; Vanthawmliana; Saha, S.; Dutta, S.K.; Rambuatsaiha; Singh, A.R.; Boopathi, T. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India. CATENA 2017, 156, 10–17. [Google Scholar] [CrossRef]
- Chowdhury, F.I.; Barua, I.; Chowdhury, A.I.; Resco de Dios, V.; Alam, M.S. Agroforestry shows higher potential than reforestation for soil restoration after slash-and-burn: A case study from Bangladesh. Geol. Ecol. Landsc. 2022, 6, 48–54. [Google Scholar] [CrossRef]
- Nath, A.J.; Sileshi, G.W.; Laskar, S.Y.; Pathak, K.; Reang, D.; Nath, A.; Das, A.K. Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J. Clean. Prod. 2021, 281, 124831. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.H.; Bao, X.G.; Zhang, F.S.; Van Der Werf, W. Intercropping enhances soil carbon and nitrogen. Glob. Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Comte, I.; Davidson, R.; Lucotte, M.; de Carvalho, C.J.R.; de Assis Oliveira, F.; da Silva, B.P.; Rousseau, G.X. Physicochemical properties of soils in the Brazilian Amazon following fire-free land preparation and slash-and-burn practices. Agric. Ecosyst. Environ. 2012, 156, 108–115. [Google Scholar] [CrossRef]
- Roa-Fuentes, L.L.; Martínez-Garza, C.; Etchevers, J.; Campo, J. Recovery of Soil C and N in a Tropical Pasture: Passive and Active Restoration. L. Degrad. Dev. 2015, 26, 201–210. [Google Scholar] [CrossRef]
- Mueller, L.; Schindler, U.; Mirschel, W.; Shepherd, T.G.; Ball, B.C.; Helming, K.; Rogasik, J.; Eulenstein, F.; Wiggering, H. Assessing the productivity function of soils. A review. Agron. Sustain. Dev. 2010, 30, 601–614. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Povilaitis, V.; Putramentaite, A.; Janusauskaite, D.; Seibutis, V.; Slepetys, J. Soil sustainability changes in organic crop rotations with diverse crop species and the share of legumes. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 36–51. [Google Scholar] [CrossRef]
- Selim, M.M. A Review of Advantages, Disadvantages and Challenges of Crop Rotations. Egypt. J. Agron. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Jain, T.B.; Gould, W.A.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G. A soil burn severity index for understanding soil-fire relations in tropical forests. AMBIO A J. Hum. Environ. 2008, 37, 563–568. [Google Scholar] [CrossRef]
- Padalia, H.; Mondal, P.P. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-8, 53–59. [Google Scholar] [CrossRef]
- Lopresti, A.; Hayden, M.T.; Siegel, K.; Poulter, B.; Stavros, E.N.; Dee, L.E. Remote sensing applications for prescribed burn research. Int. J. Wildl. Fire 2024, 33, WF23130. [Google Scholar] [CrossRef]
- Kayad, A.; Paraforos, D.S.; Marinello, F.; Fountas, S. Latest Advances in Sensor Applications in Agriculture. Agriculture 2020, 10, 362. [Google Scholar] [CrossRef]
- Shakya, A.K.; Ramola, A.; Kandwal, A.; Vidyarthi, A. Soil moisture sensor for agricultural applications inspired from state of art study of surfaces scattering models & semi-empirical soil moisture models. J. Saudi Soc. Agric. Sci. 2021, 20, 559–572. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Q.; Guo, X.; Crits-Christoph, A.; Mayes, M.A.; IV, W.J.H.; Lebeis, S.L.; Banfield, J.F.; Hurst, G.B.; Hettich, R.L.; et al. Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol. Front. Microbiol. 2019, 10, 485423. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Changes | Post-Fire Period | References |
---|---|---|---|
Bulk density | increase | 5–15 years | [56,60] |
decrease | 5–15 years | [59,66] | |
Porosity | decrease | 0–7 years | [55,59] |
%Sand | increase | 0–2 years | [33,66] |
%Silt | increase | 10–12 years | [57] |
decrease | 5–15 years | [66] | |
%Clay | decrease | 0–15 years | [33,66] |
Aggregation | decrease | 0–1 year | [67,86] |
pH | increase | 0–15 years | [12,33,55,56,60,66,67,69,70,75,76,80,82,84,85,86,87] |
EC | increase | 5–15 years | [33,55,56,66,67,69,80,84] |
decrease | 0–3 years | [86] | |
CEC | decrease | 12 h after fire | [67,88] |
Organic carbon | increase | 0–1 year | [47,55,88] |
decrease | 0–15 years | [33,56,89] | |
Total C | increase | 12 h after fire | [80,87] |
decrease | 0–15 years | [12,66,69,75,82,86,90,91] | |
Organic nitrogen | increase | 0–13 years | [83] |
Total N | increase | 0–1 year | [55,70,80] |
decrease | 1–7 years | [55,66,75,82,83,84,86] | |
Available N | increase | 0–7 years | [55,80] |
decrease | 0–15 years | [33,56,57,82,89] | |
Available P | increase | 0–15 years | [12,33,56,67,76,78,84,85,88,90] |
Available K | increase | 0–20 years | [56] |
decrease | 0–7 years | [55,85,92] | |
Exchangeable ion (K+, Ca2+, Mg2+) | increase | 12 h after fire | [66,67,69,80] |
decrease | 0–3 years | [70,85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunrat, N.; Kongsurakan, P.; Solomon, L.W.; Sereenonchai, S. Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review. Agriculture 2024, 14, 1660. https://doi.org/10.3390/agriculture14091660
Arunrat N, Kongsurakan P, Solomon LW, Sereenonchai S. Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review. Agriculture. 2024; 14(9):1660. https://doi.org/10.3390/agriculture14091660
Chicago/Turabian StyleArunrat, Noppol, Praeploy Kongsurakan, Lemlem Wondwossen Solomon, and Sukanya Sereenonchai. 2024. "Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review" Agriculture 14, no. 9: 1660. https://doi.org/10.3390/agriculture14091660
APA StyleArunrat, N., Kongsurakan, P., Solomon, L. W., & Sereenonchai, S. (2024). Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review. Agriculture, 14(9), 1660. https://doi.org/10.3390/agriculture14091660