Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Seed Priming
2.3. Germination Test
Determination of Germination and Germination-Related Parameters
2.4. Determination of Seedling Growth, Biomass Accumulation, and Growth-Related Parameters
2.5. Determination of Membrane Stability Index, Relative Water Content, and Chlorophyll Content
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1–27. [Google Scholar]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat tolerance crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Mohapatra, C.; Chand, R.; Tiwari, J.K.; Singh, A.K. Effect of heat stress during flowering and pod formation in pea (Pisum sativum L.). Physiol. Mol. Biol. Plants 2020, 26, 1119–1125. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Xie, B.; Wang, Z.; Cui, J.; Hu, T. Effects of drought and salt stress on seed germination of three leguminous species. Afr. J. Biotechnol. 2011, 10, 17954–17961. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Channaoui, S.; El Idrissi, I.S.; Mazouz, H.; Nabloussi, A. Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. OCL 2019, 26, 23. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Wiese, A.J.; Ghatak, A.; Drábková, L.Z.; Weckwerth, W.; Honys, D. Heat stress response mechanisms in pollen development. New Phytol. 2021, 231, 571–585. [Google Scholar] [CrossRef]
- Wahid, A.; Close, T.J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 2007, 51, 104–109. [Google Scholar] [CrossRef]
- Riaz, M.W.; Yang, L.; Yousaf, M.I.; Sami, A.; Mei, X.D.; Shah, L.; Rehman, S.; Xue, L.; Si, H.; Ma, C. Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum L.) genotypes. Sustainability 2021, 13, 2972. [Google Scholar] [CrossRef]
- Klimenko, S.; Peshkova, A.; Dorofeev, N. Nitrate reductase activity during heat shock in winter wheat. J. Stress Physiol. Biochem. 2006, 2, 50–55. [Google Scholar]
- Ashraf, M.; Harris, P.J.C. Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches; Howarth Press Inc.: New York, NY, USA, 2005; pp. 277–300. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Yield components stability assessment of peas in conventional and low-input cultivation systems. Agriculture 2021, 11, 805. [Google Scholar] [CrossRef]
- FAOSTAT Database. Food and Agriculture Organization Statistics. Available online: https://www.fao.org/faostat/en/ (accessed on 15 June 2022).
- Kumari, V.V.; Roy, A.; Vijayan, R.; Banerjee, P.; Verma, V.C.; Nalia, A.; Pramanik, M.; Mukherjee, B.; Ghosh, A.; Reja, M.H.; et al. Drought and heat stress in cool-season food legumes in sub-tropical regions: Consequences, adaptation, and mitigation strategies. Plants 2021, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Zec, S. Prinos i Komponente Prinosa Prolećnog Povrtarskog Graška (Pisum sativum L.). Master’s Thesis, University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia, 14 October 2022; pp. 1–66. [Google Scholar]
- Červenski, J.; Medić-Pap, S.; Ignjatov, M. Proizvodnja konzumnog graška. In Proceedings of the Zbornik Referata, 55 Savetovanje Agronoma i Poljoprivrednika Srbije (SAPS), Zlatibor, Serbia, 31 January–3 February 2021; pp. 23–32. [Google Scholar]
- Brauner, S.; Murphy, R.L.; Walling, J.G.; Przyborowski, J.; Weeden, N.F. STS markers for comparative mapping in legumes. J. Am. Soc. Hortic. Sci. 2002, 127, 616–622. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef]
- Castillo, A.G.; Hampton, J.G.; Coolbear, P. Effect of population density on within canopy environment and seed vigour in garden pea (Pisum sativum L.). Proc. Agron. Soc. N. Z. 1993, 23, 99–106. [Google Scholar]
- Li, N.; Euring, D.; Cha, J.Y.; Lin, Z.; Lu, M.; Huang, L.J.; Kim, W.Y. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 2021, 11, 627969. [Google Scholar] [CrossRef] [PubMed]
- Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci. 2016, 21, 329–340. [Google Scholar] [CrossRef]
- Iqbal, H.; Yaning, C.; Rehman, H.; Waqas, M.; Ahmed, Z.; Raza, S.T.; Shareef, M. Improving heat stress tolerance in late planted spring maize by using different exogenous elicitors. Chil. J. Agric. Res. 2020, 80, 30–40. [Google Scholar] [CrossRef]
- Imran, M.; Mahmood, A.; Römheld, V.; Neumann, G. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur. J. Agron. 2013, 49, 141–148. [Google Scholar] [CrossRef]
- Mondal, S.; Bose, B. Seed Priming: An Interlinking Technology between Seeds, Seed Germination and Seedling Establishment. In Plant Reproductive Ecology—Recent Advances; Rustagi, A., Chaudhry, B., Eds.; IntechOpen: London, UK, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Catiempo, R.L.; Photchanachai, S.; Bayogan, E.R.V.; Wongs-Aree, C. Impact of hydropriming on germination and seedling establishment of sunflower seeds at elevated temperature. Plant Soil Environ. 2021, 67, 491–498. [Google Scholar] [CrossRef]
- Vidak, M.; Lazarevic, B.; Nekic, M.; Satovic, Z.; Carovic-Stanko, K. Effect of hormonal priming and osmopriming on germination of Winter Savory (Satureja montana L.) Natural Population under Drought Stress. Agronomy 2021, 1, 1288. [Google Scholar] [CrossRef]
- Lemmens, E.; Deleu, L.J.; De Brier, N.; De Man, W.L.; De Proft, M.; Prinsen, E.; Delcour, J.A. The impact of hydro-priming and osmo-priming on seedling characteristics, plant hormone concentrations, activity of selected hydrolytic enzymes, and cell wall and phytate hydrolysis in sprouted wheat (Triticum aestivum L.). ACS Omega 2019, 4, 22089–22100. [Google Scholar] [CrossRef] [PubMed]
- Rhaman, M.S.; Imran, S.; Rauf, F.; Khatun, M.; Baskin, C.C.; Murata, Y.; Hasanuzzaman, M. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants 2021, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Basra, S.M.A.; Hussain, S.; Hussain, S.A.; Rehman, A.; Ali, A. Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. J. Environ. Agric. Sci. 2015, 3, 14–22. [Google Scholar]
- Namdari, A.; Baghbani, A. Consequences of seed priming with salicylic acid and hydro priming on smooth vetch seedling growth under water deficiency. J. Agric. Sci. 2017, 9, 259–267. [Google Scholar] [CrossRef]
- Azooz, M.M. Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. Biol. 2009, 11, 343–350. [Google Scholar]
- Khan, M.I.R.; Iqbal, N.; Masood, A.; Per, T.S.; Khan, N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav. 2013, 8, e26374. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, R.; Xing, Y.; Jiang, B.; Li, B.; Xu, X.; Zhou, Y. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE 2021, 16, e0245505. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Sami, A.; Xu, Q.Q.; Wu, L.L.; Zheng, W.Y.; Chen, Z.P.; Jin, X.Z.; Zhang, H.; Li, Y.; Yu, Y.; et al. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought. PLoS ONE 2021, 16, e0257236. [Google Scholar] [CrossRef]
- Arafa, S.A.; Attia, K.A.; Niedbała, G.; Piekutowska, M.; Alamery, S.; Abdelaal, K.; Alateeq, T.K.; Ali, M.A.M.; Elkelish, A.; Attallah, S.Y. Seed Priming Boost Adaptation in Pea Plants under Drought Stress. Plants 2021, 10, 2201. [Google Scholar] [CrossRef]
- Tamindžić, G.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vlajić, S.; Petrović, G.; Ignjatov, M. Efficiency of hydro- and osmopriming in improving garden pea seed quality and initial plant development under saline stress. In Proceedings of the XII International Scientific Agriculture Symposium “AGROSYM 2021”, Jahorina, Bosnia and Herzegovina, 7–10 October 2021; p. 204. [Google Scholar]
- ISTA. International Rules for Seed Testing; Seed Science and Technology: Zurich, Switzerland, 2021. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Sairam, R.K. Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J. Exp. Biol. 1994, 32, 594–597. [Google Scholar]
- Farooq, M.; Aziz, T.; Basra, S.M.A.; Cheema, M.A.; Rehman, H. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop Sci. 2008, 194, 161–168. [Google Scholar] [CrossRef]
- George, S.; Minha, N.M.; Jatoi, S.A.; Siddiqui, S.U.; Ghafoor, A.A. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum). Pak. J. Bot. 2015, 47, 835–844. [Google Scholar]
- Essemine, J.; Ammar, S.; Bouzid, S. Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defense. J. Bio. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef]
- Han, S.-H.; Kim, J.Y.; Lee, J.-H.; Park, C.-M. Safeguarding genome integrity under heat stress in plants. J. Exp. Bot. 2021, 72, 7421–7435. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J. Biol. Sci. 2015, 22, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Moradpour, M.; Abdullah, S.N.A.; Namasivayam, P. The impact of heat stress on morpho-physiological response and expression of specific genes in the heat stress-responsive transcriptional regulatory network in Brassica oleracea. Plants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Wassie, M.; Zhang, W.; Zhang, Q.; Ji, K.; Chen, L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy 2019, 9, 597. [Google Scholar] [CrossRef]
- Muhei, S.H. Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Adv. Crop Sci. Technol. 2018, 6, 403–409. [Google Scholar] [CrossRef]
- Tania, S.S.; Rhaman, M.S.; Rauf, F.; Rahaman, M.M.; Kabir, M.H.; Hoque, M.A.; Murata, Y. Alleviation of Salt-Inhibited Germination and Seedling Growth of Kidney Bean by Seed Priming and Exogenous Application of Salicylic Acid (SA) and Hydrogen Peroxide (H2O2). Seeds 2022, 1, 87–98. [Google Scholar] [CrossRef]
- Abid, M.; Hakeem, A.; Shao, Y.; Liu, Y.; Zahoor, R.; Fan, Y.; Suyu, J.; Ata-Ul-Karim, S.; Tian, Z.; Jiang, D.; et al. Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ. Exp. Bot. 2018, 145, 12–20. [Google Scholar] [CrossRef]
- Lei, C.; Bagavathiannan, M.; Wang, H.; Sharpe, S.M.; Meng, W.; Yu, J. Osmopriming with polyethylene glycol (PEG) for abiotic stress tolerance in germinating crop seeds: A review. Agronomy 2021, 11, 2194. [Google Scholar] [CrossRef]
- Bakhtavar, M.A.; Afzal, I.; Basra, S.M.A.; Noor, M.A. Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE 2015, 10, e0124441. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Hafeez, K. Seed invigoration by osmohardening in coarse and fine rice. Seed Sci. Technol. 2006, 34, 181–187. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance of rice cultivars. Front. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yan, M. Calcium chloride priming increases chilling tolerance in Salvia miltiorrhiza Bunge. Chil. J. Agric. Res. 2020, 8, 219–226. [Google Scholar] [CrossRef]
- Rehman, H.; Iqbal, H.; Basra, S.M.A.; Afzal, I.; Farooq, M.; Wakeel, A.; Ning, W. Seed priming improves early seedling vigor, growth and productivity of spring maize. J. Integr. Agric. 2015, 14, 1745–1754. [Google Scholar] [CrossRef]
- Rehman, H.; Afzal, I.; Farooq, M.; Aziz, T.; Basra, S.M.A. Improving temperature stress resistance in spring maize by seed priming. In Proceedings of the 3rd International Conference ‘Frontiers in Agriculture’ Dankook International Cooperation on Agriculture, Dankook University, Cheonansi, Korea, 3–5 October 2012; pp. 28–32. [Google Scholar]
- Ranty, B.; Aldon, D.; Cotelle, V.; Galaud, J.; Thuleau, P.; Mazars, C. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant. Sci. 2016, 7, 327. [Google Scholar] [CrossRef]
- Ahmad, I.; Basra, S.M.A.; Akram, M.; Wasaya, A.; Ansar, M.; Hussain, S.; Iqbal, A.; Hussain, S.A. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions. Semin. Cienc. Agrar. 2017, 38, 47–56. [Google Scholar] [CrossRef]
Traits | Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|
(a) Optimal Conditions | (b) Heat Stress | ||||||||
Cultivar (C) | Treatment (T) | C × T | Error | Cultivar (C) | Treatment (T) | C × T | Error | ||
Germination Energy | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 672 | 36.9 | 20.3 | 1.3 | 840 | 50.1 | 3.6 | 1.8 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | |||
Final Germination | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 513 | 14.6 | 10.2 | 1.4 | 828 | 47.5 | 1.6 | 1.3 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | |||
Abnormal Seedlings | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 18.4 | 0.15 | 0.49 | 0.54 | 0.17 | 0.33 | 1.61 | 0.83 | |
p | 0.00 | 0.84 | 0.46 | 0.66 | 0.75 | 0.16 | |||
Shoot Length | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 313 | 29.6 | 22.4 | 0.43 | 405 | 68.6 | 25.1 | 0.84 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Root Length | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 11,726 | 676 | 592 | 7.8 | 14,970 | 751 | 572 | 5.8 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Fresh Seedlings Weight | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 9.81 | 1.16 | 0.31 | 0.00 | 7.50 | 0.58 | 0.40 | 0.00 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Dry Seedlings Weight | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 0.08 | 0.01 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Shoot Elongation Rate | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 2.94 | 1.48 | 0.36 | 0.04 | 3.60 | 3.19 | 0.93 | 0.04 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Root Elongation Rate | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 212 | 35.2 | 4.77 | 0.45 | 386 | 14.3 | 7.35 | 0.21 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Seedling Vigor Index | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 2,051,443 | 111,435 | 64,489 | 1269 | 2,165,740 | 106,413 | 84,531 | 648 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
Relative Water Content | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 26.3 | 8.4 | 0.9 | 0.4 | 2.5 | 106.5 | 23.3 | 0.6 | |
p | 0.00 | 0.00 | 0.11 | 0.05 | 0.00 | 0.00 | |||
Chlorophyll Content | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 0.00 | 0.10 | 0.02 | 0.00 | 0.01 | 0.10 | 0.01 | 0.00 | |
p | 0.70 | 0.00 | 0.03 | 0.13 | 0 | 0.03 | |||
Membrane Stability Index | df | 1 | 3 | 3 | 16 | 1 | 3 | 3 | 16 |
MS | 4.6 | 8.0 | 0.4 | 0.8 | 1.4 | 18.3 | 7.1 | 0.5 | |
p | 0.03 | 0.00 | 0.73 | 0.13 | 0.00 | 0.00 |
Treatments | Traits | |||||||
---|---|---|---|---|---|---|---|---|
GE (%) | FG (%) | AS (%) | SVI | |||||
cv. 1 | cv. 2 | cv. 1 | cv. 2 | cv. 1 | cv. 2 | cv. 1 | cv. 2 | |
Optimal Conditions (a) | ||||||||
Control | 77.0 c | 93.0 a | 84.7 c | 97.7 a | 3.00 a | 0.67 b | 760 f | 1061 d |
Hydropriming (H2O) | 85.3 b | 95.0 a | 89.3 b | 98.0 a | 2.67 a | 0.67 b | 820 ef | 1392 c |
Osmopriming (CaCl2) | 85.3 b | 94.0 a | 89.7 b | 98.0 a | 2.67 a | 1.00 b | 824 ef | 1601 a |
Hormopriming (SA) | 86.0 b | 94.0 a | 91.3 b | 98.3 a | 2.00 a | 1.00 b | 840 e | 1530 b |
Average | 83.4 B | 94.0 A | 88.8 B | 97.8 A | 2.59 A | 0.84 B | 804 B | 1396 A |
Heat Stress (b) | ||||||||
Control | 69.3 e | 83.8 b | 72.3 f | 85.0 c | 1.00 a | 2.00 a | 375 f | 648 d |
Hydropriming (H2O) | 74.3 d | 86.0 a | 76.0 e | 88.3 b | 1.33 a | 1.67 a | 417 ef | 1047 c |
Osmopriming (CaCl2) | 75.7 cd | 87.0 a | 77.0 e | 88.7 b | 2.33 a | 1.67 a | 373 f | 1214 a |
Hormopriming (SA) | 78.0 c | 88.3 a | 80.3 d | 90.7 a | 2.33 a | 1.00 a | 461 e | 1119 b |
Average | 74.3 B | 86.2 A | 76.4 B | 88.2 A | 1.75 A | 1.59 A | 406 B | 1007 A |
Treatments | Traits | |||||||
---|---|---|---|---|---|---|---|---|
SL (mm) | RL (mm) | FSW (g) | DSW (g) | |||||
cv. 1 | cv. 2 | cv. 1 | cv. 2 | cv. 1 | cv. 2 | cv. 1 | cv. 2 | |
Optimal Conditions (a) | ||||||||
Control | 23.8 e | 26.2 d | 65.9 e | 82.4 d | 1.91 f | 2.83 d | 0.20 g | 0.27 d |
Hydropriming (H2O) | 24.3 e | 30.3 c | 67.5 e | 112 c | 2.49 e | 3.48 c | 0.24 e | 0.32 c |
Osmopriming (CaCl2) | 24.6 e | 35.4 a | 67.2 e | 129 a | 2.46 e | 4.37 a | 0.23 f | 0.38 a |
Hormopriming (SA) | 24.2 e | 34.1 b | 67.7 e | 122 b | 2.46 e | 3.77 b | 0.23 ef | 0.37 b |
Average | 24.0 B | 31.5 A | 66.6 B | 111 A | 2.33 B | 3.61 A | 0.22 B | 0.33 A |
Heat Stress (b) | ||||||||
Control | 10.6 e | 13.6 d | 41.2 d | 62.6 c | 1.13 f | 1.62 d | 0.13 g | 0.20 d |
Hydropriming (H2O) | 12.4 d | 20.8 c | 42.4 d | 97.7 b | 1.22 e | 2.25 c | 0.14 fg | 0.24 c |
Osmopriming (CaCl2) | 13.5 d | 26.5 a | 45.0 d | 110 a | 1.23 e | 2.45 b | 0.15 e | 0.30 a |
Hormopriming (SA) | 14.1 d | 22.5 b | 43.3 d | 101 b | 1.26 e | 3.00 a | 0.14 f | 0.28 b |
Average | 12.6 B | 20.9 A | 43.0 B | 92.9 A | 1.21 B | 2.33 A | 0.14 B | 0.26 A |
Treatments | Traits | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SER | RER | RWC (%) | Chl (mg g−1 FW) | MSI | ||||||
cv.1 | cv.2 | cv.1 | cv.2 | cv.1 | cv.2 | cv.1 | cv.2 | cv.1 | cv.2 | |
Optimal Conditions (a) | ||||||||||
Control | 5.60 d | 6.27 c | 10.3 f | 15.7 d | 79.5 e | 81.6 cd | 0.84 d | 1.04 c | 78.4 d | 78.8 cd |
Hydropriming (H2O) | 5.72 d | 6.74 b | 11.1 f | 18.7 c | 80.6 d | 83.2 b | 1.16 abc | 1.10 bc | 79.4 bcd | 80.1 bc |
Osmopriming (CaCl2) | 6.27 c | 7.35 a | 14.2 e | 21.3 a | 81.8 c | 84.5 a | 1.19 abc | 1.13 abc | 80.2 bcd | 81.1 ab |
Hormopriming (SA) | 6.99 ab | 7.01 ab | 16.2 d | 19.9 b | 82.4 bc | 83.4 b | 1.26 a | 1.24 ab | 80.5 ab | 82.0 a |
Average | 6.14 B | 6.84 A | 13.0 B | 18.9 A | 81.1 B | 83.2 A | 1.11 A | 1.13 A | 79.6 B | 80.5 A |
Heat Stress (b) | ||||||||||
Control | 2.79 e | 2.79 e | 6.89 g | 11.6 d | 68.5 d | 63.4 e | 0.74 d | 0.83 c | 70.6 de | 69.1 f |
Hydropriming (H2O) | 3.39 d | 3.79 c | 6.57 fg | 15.6 c | 71.3 c | 74.8 b | 0.84 c | 0.93 b | 70.4 def | 69.6 ef |
Osmopriming (CaCl2) | 3.53 cd | 5.37 a | 8.14 e | 17.5 a | 71.4 c | 74.3 b | 0.97 b | 0.97 b | 71.3 cd | 74.7 a |
Hormopriming (SA) | 3.71 cd | 4.58 b | 7.56 ef | 16.6 b | 75.2 b | 76.5 a | 1.11 a | 1.05 a | 72.5 bc | 73.3 b |
Average | 3.36 B | 4.13 A | 7.29 B | 15.3 A | 71.6 B | 72.3 A | 0.91 A | 0.94 A | 71.2 A | 71.7 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamindžić, G.; Ignjatov, M.; Miljaković, D.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vasiljević, S. Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.). Agriculture 2023, 13, 439. https://doi.org/10.3390/agriculture13020439
Tamindžić G, Ignjatov M, Miljaković D, Červenski J, Milošević D, Nikolić Z, Vasiljević S. Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.). Agriculture. 2023; 13(2):439. https://doi.org/10.3390/agriculture13020439
Chicago/Turabian StyleTamindžić, Gordana, Maja Ignjatov, Dragana Miljaković, Janko Červenski, Dragana Milošević, Zorica Nikolić, and Sanja Vasiljević. 2023. "Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.)" Agriculture 13, no. 2: 439. https://doi.org/10.3390/agriculture13020439
APA StyleTamindžić, G., Ignjatov, M., Miljaković, D., Červenski, J., Milošević, D., Nikolić, Z., & Vasiljević, S. (2023). Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.). Agriculture, 13(2), 439. https://doi.org/10.3390/agriculture13020439