Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions
<p>Germination of castor seeds, photographed on the fourth day from the recorded start of germination using an iPhone X smartphone.</p> "> Figure 2
<p>Cumulative germination time courses (solid curves) at different temperatures in 8 genotypes of castor. Symbols represent the observed daily percentages at 12, 16, 25, 32, and 40 °C vs. time.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material
2.2. Germination Tests
2.3. Radicle Length Measurements
2.4. Calculations and Data Analysis
3. Results
3.1. The 100-Seed Weight
3.2. Cumulative Germination Time Course
3.3. Seed Germination under Controlled Temperatures
3.4. Mean Germination Time under Controlled Temperatures
3.5. Synchrony of Germination
3.6. Base Temperature and Thermal Time
3.7. Radicle Length
3.8. Vigour Index (VI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bewley, J.D.; Black, M. Seeds Physiology of Development and Germination, 3rd ed.; Press, P., Ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Bewley, J.D. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Koger, C.H.; Reddy, K.N.; Poston, D.H. Factors Affecting Seed Germination, Seedling Emergence, and Survival of Texasweed (Caperonia palustris). Weed Sci. 2004, 52, 989–995. [Google Scholar] [CrossRef]
- Vasco Leal, J.F.; Cuellar-Nuñez, L.; Vivanco-Vargas, M.; Solís-Lozano, J.A.; Díaz-Calzada, M.E.; Méndez-Gallegos, S.d.J. Agribusiness Potential of Castor Oil Plant (Ricinus communis L.) in Mexico. Agro Product. 2022, 143–152. [Google Scholar] [CrossRef]
- Cameron, R.W.F. Plants and the environment|Amenity Horticulture. Encycl. Appl. Plant Sci. 2003, 735–741. [Google Scholar] [CrossRef]
- Chan, A.P.; Crabtree, J.; Zhao, Q.; Lorenzi, H.; Orvis, J.; Puiu, D.; Melake-Berhan, A.; Jones, K.M.; Redman, J.; Chen, G.; et al. Draft Genome Sequence of the Oilseed Species Ricinus Communis. Nat. Biotechnol. 2010, 28, 951–956. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Anjani, K. Assessment of Variation in Castor Genetic Resources for Oil Characteristics. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 611–617. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L.; Baldanzi, M.; Cândido, M.J.D.; Chen, G.; Crosby, W.; Tan, D.; He, X.; Lakshmamma, P.; Lavanya, C.; et al. A Review on the Challenges for Increased Production of Castor. Agron. J. 2012, 104, 853–880. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Baskin, C.C.; Cui, X.L.; Du, G.Z. Effect of Phylogeny, Life History and Habitat Correlates on Seed Germination of 69 Arid and Semi-Arid Zone Species from Northwest China. Evol. Ecol. 2009, 23, 827–846. [Google Scholar] [CrossRef]
- Organizzazione delle Nazioni Unite. Trasformare Il Nostro Mondo: L’Agenda 2030 per Lo Sviluppo Sostenibile (Agenda2030). Risoluzione Adottata dall’Assemblea Gen. 25 settembre. Gen. Assem. 2015, 2015, 1–35. Available online: https://unric.org/it/wp-content/uploads/sites/3/2019/11/Agenda-2030-Onu-italia.pdf (accessed on 10 June 2023).
- Cheema, N.M.; Azim Malik, M.; Qadir, G.; Zubair Rafique, M.; Nawaz, N. Influence of Temperature and Osmotic Stress on Germination Induction of Different Castor Bean Cultivars. Pakistan J. Bot. 2010, 42, 4035–4041. [Google Scholar]
- Sortino, O.; Cosentino, L.; Sidella, S. Ricino (Ricinus communis L.). Lo Sviluppo delle Colture Energetiche in Italia. 2011. Available online: http://www.gruppo-panacea.it/biomasse/images/Sviluppodellecoltureenergeticheinitalia.pdf (accessed on 10 June 2023).
- ISTA. ISTA International Rules for Seed Testing. Seed Sci. Technol. 1996, 24, 336. [Google Scholar]
- Rasband, W.S. ImageJ; National Institutes of Health: Bethesda, MD, USA, 2007. Available online: http://imagej.nih.gov/ij (accessed on 10 June 2023).
- Refka, Z.; Mustapha, K.; Ali, F. Seed Germination Characteristics of Rhus Tripartitum (Ucria) Grande and Ziziphus lotus (L.): Effects of Water Stress. Int. J. Ecol. 2013, 2013, 819810. [Google Scholar] [CrossRef] [Green Version]
- Caser, M.; Demasi, S.; Mozzanini, E.; Chiavazza, P.M.; Scariot, V. Germination Performances of 14 Wildflowers Screened for Shaping Urban Landscapes in Mountain Areas. Sustainability 2022, 14, 2641. [Google Scholar] [CrossRef]
- Tizazu, Y.; Ayalew, D.; Terefe, G.; Assefa, F. Evaluation of Seed Priming and Coating on Germination and Early Seedling Growth of Sesame (Sesamum indicum L.) under Laboratory Condition at Gondar, Ethiopia. Cogent Food Agric. 2019, 5, 1609252. [Google Scholar] [CrossRef]
- Ranal, M.A.; De Santana, D.G. How and Why to Measure the Germination Process? Rev. Bras. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Patanè, C.; Avola, G. A Seed Respiration-Based Index of Cold-Sensitivity during Imbibition in Four Macrothermal Species. Acta Physiol. Plant. 2013, 35, 911–918. [Google Scholar] [CrossRef]
- Patanè, C.; Saita, A.; Tubeileh, A.; Cosentino, S.L.; Cavallaro, V. Modeling Seed Germination of Unprimed and Primed Seeds of Sweet Sorghum under PEG-Induced Water Stress through the Hydrotime Analysis. Acta Physiol. Plant. 2016, 38, 115. [Google Scholar] [CrossRef]
- Patanè, C.; Cosentino, S.L.; Cavallaro, V.; Saita, A. Screening for Cold Tolerance during Germination within Sweet and Fiber Sorghums [Sorghum bicolor (L.) Moench] for Energy Biomass. Agronomy 2021, 11, 620. [Google Scholar] [CrossRef]
- Wang, M.L.; Morris, J.B.; Pinnow, D.L.; Davis, J.; Raymer, P.; Pederson, G.A. A Survey of the Castor Oil Content, Seed Weight and Seed-Coat Colour on the United States Department of Agriculture Germplasm Collection. Plant Genet. Resour. Characterisation Util. 2010, 8, 229–231. [Google Scholar] [CrossRef] [Green Version]
- De Santiago, V.; Buga, G. De Germination Analysis of Castor Bean Seeds (Ricinus communis) under Two Temperature and Relative Humidity Conditions. Agro Product. 2023, 81–90. [Google Scholar] [CrossRef]
- Zhu, G.; An, L.; Jiao, X.; Chen, X.; Zhou, G.; McLaughlin, N. Effects of Gibberellic Acid on Water Uptake and Germination of Sweet Sorghum Seeds under Salinity Stress. Chil. J. Agric. Res. 2019, 79, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Gorim, L.; Asch, F. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds. Biology 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Filho, J. Seed Vigor Testing: An Overview of the Past, Present and Future Perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Amorim Neto, M.; Beltrão, N.; Silva, L.; Azevedo, D.M. Clima e Solo; Azevedo, D.M., Lima, E.F., Eds.; Embrapa SPI: Brasília, Brazil, 2001. [Google Scholar]
- Falasca, S.L.; Ulberich, A.C.; Ulberich, E. Developing an Agro-Climatic Zoning Model to Determine Potential Production Areas for Castor Bean (Ricinus communis L.). Ind. Crops Prod. 2012, 40, 185–191. [Google Scholar] [CrossRef]
- Moosavi, S.A.; Siadat, S.A.; Koochekzadeh, A.; Parmoon, G.; Kiani, S. Effect of Seed Color and Size on Cardinal Temperatures of Castor Bean (Ricinus communis L.) Seed Germination. Agrotech. Ind. Crop. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Papakosta, D.K.; Doitsinis, A. Adaptation and Yielding Ability of Castor Plant (Ricinus communis L.) Genotypes in a Mediterranean Climate. Eur. J. Agron. 1999, 11, 227–237. [Google Scholar] [CrossRef]
- Kittock, D.L.; Williams, J.H. Castorbean Production as Related to Length of Growing Season. I. Date of Planting Tests. Agron. J. 1967, 59, 438–440. [Google Scholar] [CrossRef]
- Weiss, E.A. Castor in Oil Seed Crops, 2nd ed.; Blackwell Sci. Ltd.: Oxford, UK, 2000; pp. 13–52. [Google Scholar]
- Windauer, L.B.; Martinez, J.; Rapoport, D.; Wassner, D.; Benech-Arnold, R. Germination Responses to Temperature and Water Potential in Jatropha Curcas Seeds: A Hydrotime Model Explains the Difference between Dormancy Expression and Dormancy Induction at Different Incubation Temperatures. Ann. Bot. 2012, 109, 265–273. [Google Scholar] [CrossRef]
- Patanè, C.; Cavallaro, V.; Cosentino, S.L. Germination and Radicle Growth in Unprimed and Primed Seeds of Sweet Sorghum as Affected by Reduced Water Potential in NaCl at Different Temperatures. Ind. Crops Prod. 2009, 30, 1–8. [Google Scholar] [CrossRef]
- Wolny, E.; Betekhtin, A.; Rojek, M.; Braszewska-Zalewska, A.; Lusinska, J.; Hasterok, R. Germination and the Early Stages of Seedling Development in Brachypodium Distachyon. Int. J. Mol. Sci. 2018, 19, 2916. [Google Scholar] [CrossRef] [Green Version]
- Haj Sghaier, A.; Tarnawa, Á.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef]
- Troyjack, C.; Pimentel, J.R.; Padilha, Í.T.D.; Veliz Escalera, R.A.; Acosta Jaques, L.B.; Koch, F.; Monteiro, M.A.; Demari, G.H.; Szareski, V.J.; Carvalho, I.R.; et al. Nitrogen Fertilization on Maize Sowing: Plant Growth and Seed Vigor. Am. J. Plant Sci. 2018, 9, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, V.; Tanwar, H.; Mor, V.S.; Kumar, M.; Punia, R.C.; Dalal, M.S.; Khan, M.; Sangwan, S.; Bhuker, A.; et al. Impact of High Temperature on Germination, Seedling Growth and Enzymatic Activity of Wheat. Agriculture 2022, 12, 1500. [Google Scholar] [CrossRef]
Parameters | Symbol | Unit | Formula | Explanation | References |
---|---|---|---|---|---|
Final germination percentage | FGP | % | FGP = GN/SN × 100 | GN = total number of seeds germinated; SN = total number of seeds tested | [15,16] |
Mean germination time | MGT | Day | MGT = ∑ | ni = number of seeds germinated on day i; d is the incubation period in days; n the total number of germinated seeds. | [15] |
Vigour index | VI | - | VI = FGP × radicle length | - | [17] |
Synchrony of germination | Z | - | /N | Cni; 2 = ni(ni − 1)/2 and N = ∑ (∑ − 1)/2, where Cni; 2 is the combination of seeds germinated at the ith time, two together, and ni is the number of seeds germinated at time i. | [18,19] |
Genotype | 100-Seed Weight (g) |
---|---|
Local | 33.88 ± 0.99 de |
857 | 35.60 ± 0.37 bd |
1008 | 29.88 ± 0.15 fh |
1012 | 37.02 ± 0.07 b |
1013 | 52.05 ± 0.07 a |
1018 | 35.90 ± 1.20 cd |
1019 | 35.78 ± 0.03 bc |
1020 | 36.01 ± 0.07 bd |
Average | 37.01 ± 2.92 |
Genotype | T (°C) | a | R2 |
---|---|---|---|
Local | 12 | 19.20 | 0.98 |
16 | 32.20 | 0.99 | |
25 | 75.80 | 0.99 | |
32 | 75.00 | 0.98 | |
40 | 11.00 | 1.00 | |
C857 | 12 | 11.00 | 1.00 |
16 | 48.70 | 0.99 | |
25 | 88.00 | 0.98 | |
32 | 82.60 | 0.98 | |
40 | 20.00 | 0.95 | |
C1008 | 12 | 6.60 | 1.00 |
16 | 13.80 | 0.99 | |
25 | 89.80 | 0.99 | |
32 | 76.70 | 0.98 | |
40 | 20.30 | 0.97 | |
C1012 | 12 | 6.66 | 1.00 |
16 | 14.9 | 0.99 | |
25 | 84.50 | 0.99 | |
32 | 77.20 | 0.99 | |
40 | 1.68 | 0.93 | |
C1013 | 12 | 3.33 | 1.00 |
16 | 49.80 | 0.99 | |
25 | 64.40 | 0.98 | |
32 | 80.70 | 0.99 | |
40 | 15.00 | 0.98 | |
C1018 | 12 | 3.59 | 1.00 |
16 | 59.30 | 0.99 | |
25 | 81.20 | 0.99 | |
32 | 68.10 | 0.97 | |
40 | 41.10 | 0.99 | |
C1019 | 12 | 3.33 | 1.00 |
16 | 67.60 | 0.99 | |
25 | 74.70 | 0.98 | |
32 | 85.10 | 0.99 | |
40 | 49.00 | 0.99 | |
C1020 | 12 | 3.59 | 1.00 |
16 | 48.80 | 0.99 | |
25 | 92.20 | 0.99 | |
32 | 87.00 | 0.99 | |
40 | 3.33 | 1.00 |
FGP (%) | MGT (day) | Synchrony of Germination (Z) | Radicle Length (cm) | VI | |
---|---|---|---|---|---|
Temperature (T) | |||||
12 °C | 8.75 ± 1.67 d | 23.33 ± 2.21 a | - | 0.60 ± 0.12 d | 10.98 ± 2.68 d |
16 °C | 63.72 ± 3.77 b | 12.05 ± 05.57 b | 0.12 ± 0.03 c | 1.50 ± 0.11 c | 90.85 ± 8.20 c |
25 °C | 87.97 ± 2.31 a | 4.65 ± 0.27 c | 0.32 ± 0.03 a | 1.96 ± 0.15 b | 177.39 ± 14.92 b |
32 °C | 82.81 ± 1.50 a | 3.14 ± 0.17 d | 0.25 ± 0.02 b | 4.54 ± 0.27 a | 381. 21 ± 26.75 a |
40 °C | 21.25 ± 2.60 c | 4.76 ± 0.31 cd | - | 0.83 ± 0.04 d | 16.47 ± 1.85 d |
Genotype (G) | |||||
C857 | 52.00 ± 7.73 ac | 8.88 ± 1.61 bc | 0.20 ± 0.03 b | 1.77 ± 0.18 c | 108.92 ± 22.84 ce |
C1008 | 53.25 ± 7.56 ac | 11.06 ± 2.31 a | 0.15 ± 0.02 b | 1.77 ± 0.33 c | 125.24 ± 31.61 bd |
C1012 | 48.00 ± 7.66 bc | 8.25 ± 1.11 c | 0.23 ± 0.05 b | 2.36 ± 0.38 ab | 159.33 ± 36.01 ac |
C1013 | 43.25 ± 6.69 c | 11.78 ± 1.50 a | 0.19 ± 0.03 b | 1.13 ± 0.24 d | 71.30 ± 21.27 e |
C1018 | 50.75 ± 6.74 ac | 10.34 ± 1.31 ab | 0.14 ± 0.02 b | 1.22 ± 0.18 d | 81.73 ± 15.70 de |
C1019 | 64.75 ± 8.01 a | 9.20 ± 1.25 bc | 0.19 ± 0.02 b | 1.88 ± 0.40 bc | 162.33 ± 36.30 ab |
C1020 | 51.95 ± 9.60 ac | 11.20 ± 1.81 ab | 0.47 ± 0.06 a | 2.61 ± 0.51 a | 207.10 ± 55.49 a |
Local | 59.25 ± 7.48 ab | 5.99 ± 0.85 d | 0.29 ± 0.02 ab | 2.37 ± 0.37 ab | 167.07 ± 37.01 ab |
Significance | |||||
T | *** | *** | *** | *** | *** |
G | ** | *** | *** | *** | *** |
T x G | * | *** | ns | *** | *** |
Temperature | Genotype | |||||||
---|---|---|---|---|---|---|---|---|
(T) | C857 | C1008 | C1012 | C1013 | C1018 | C1019 | C1020 | Local |
12 °C | 10.00 c B | 10.00 b B | 5.00 c B | 3.75 c B | 3.75 c B | 3.75 c B | 3.75 b B | 30.00 b A |
16 °C | 53.75 ab | 62.50 a | 50.00 ab | 46.25 b | 56.25 ab | 90.00 a | 67.25 a | 83.75 a |
25 °C | 90.00 a | 90.00 a | 86.25 a | 66.25 a | 83.75 a | 97.50 a | 97.50 a | 92.50 a |
32 °C | 86.25 a | 83.75 a | 80.00 a | 83.75 a | 73.75 ab | 85.00 a | 90.00 a | 80.00 a |
40 °C | 20.00 bc A–C | 20.00 b A–C | 18.75 bc BC | 16.25 c BC | 36.25 bc AB | 47.50 b A | 1.25 b C | 10.00 c BC |
Temperature | Genotype | |||||||
---|---|---|---|---|---|---|---|---|
(T) | C857 | C1008 | C1012 | C1013 | C1018 | C1019 | C1020 | Local |
12 °C | 23.00 a B | 30.67 a A | 16.00 a C | 28.00 a AB | 28.00 a AB | 23.00 a B | 28.00 a AB | 10.00 a C |
16 °C | 7.97 b C | 11.79 b A–C | 13.37 a A–C | 15.03 b AB | 9.93 b BC | 11.57 b A–C | 16.93 b A | 9.90 a BC |
25 °C | 3.97 c CD | 5.46 c BC | 3.30 b D | 7.34 c A | 5.60 c B | 5.43 c BC | 3.37 c D | 2.77 b D |
32 °C | 4.75 c A | 3.53 c AB | 3.10 b AB | 3.20 d AB | 3.60 c AB | 2.47 c B | 2.70 c B | 1.77 b B |
40 °C | 4.75 c | 3.83 c | 5.50 b | 5.33 cd | 4.60 c | 3.53 c | 5.00 c | 5.53 b |
Temperature | Genotype | |||||||
---|---|---|---|---|---|---|---|---|
(T) | C857 | C1008 | C1012 | C1013 | C1018 | C1019 | C1020 | Local |
16 °C | 0.07 b B | 0.07 B | 0.03 b B | 0.03 a B | 0.03 b B | 0.10 a AB | 0.53 a A | 0.17 c AB |
25 °C | 0.33 a AB | 0.13 B | 0.50 a AB | 0.27 a AB | 0.13 ab AB | 0.20 a AB | 0.63 a A | 0.40 a AB |
32 °C | 0.20 ab | 0.27 | 0.17 ab | 0.27 a | 0.27 a | 0.27 a | 0.27 a | 0.30 b |
Genotype | Tb (°C) | θT (°Cd) (From Model) | θT (°Cd) (1/b) |
---|---|---|---|
Local | 12.1 | 33.9 ± 2.49 | 32.8 |
C857 | 12.6 | 46.3 ± 1.98 | 46.7 |
C1008 | 12.8 | 58.8 ± 6.44 | 59.5 |
C1012 | - | - | - |
C1013 | 12.7 | 77.3 ± 2.88 | 76.3 |
C1018 | 12.3 | 52.4 ± 5.47 | 57.4 |
C1019 | 12.4 | 46.6 ± 6.95 | 47.3 |
C1020 | - | - | - |
Average (±σ) | 12.5 ± 1.0 | 52.6 ± 4.3 | 53.4 ± 4.3 |
Temperature | Genotype | |||||||
---|---|---|---|---|---|---|---|---|
(T) | C857 | C1008 | C1012 | C1013 | C1018 | C1019 | C1020 | Local |
12 °C | 1.40 A | 0.67 b A–C | 0.40 d BC | 0.17 d C | 0.23 c BC | 0.13 d C | 0.33 d BC | 1.53 bc AB |
16 °C | 1.80 | 1.27 b | 2.13 bc | 0.63 c | 0.97 b | 1.77 bc | 1.87 bc | 1.60 bc |
25 °C | 2.43 AB | 1.63 b AB | 3.07 b A | 0.67 bc B | 1.47 b AB | 1.97 b AB | 2.67 b A | 1.83 b AB |
32 °C | 2.43 D | 4.60 a C | 5.20 a BC | 3.20 a D | 2.60 a D | 5.10 a BC | 7.30 a A | 5.90 a B |
40 °C | 0.80 AB | 0.70 b AB | 1.00 cd A | 1.00 b A | 0.87 bc AB | 0.43 cd B | 0.90 cd AB | 1.00 c A |
Temperature | Genotype | |||||||
---|---|---|---|---|---|---|---|---|
(T) | C857 | C1008 | C1012 | C1013 | C1018 | C1019 | C1020 | Local |
12 °C | 18.07 b B | 6.90 c B | 7.93 c B | 1.67 d B | 2.33 c B | 1.47 d B | 3.33 c B | 46.10 c A |
16 °C | 68.97 ab A–C | 76.99 bc A–C | 88.13 c A–C | 28.90 bc C | 59.73 bc BC | 160.18 bc A | 111.69 bc A–C | 132.20 b AB |
25 °C | 212.03 a AB | 148.78 b AB | 267.57 b A | 43.70 b B | 122.04 b AB | 191.66 b AB | 259.76 b A | 173.60 b AB |
32 °C | 226.37 a DE | 379.42 a B–E | 417.20 a B–D | 266.41 a C-–E | 192.50 a E | 439.40 a BC | 654.75 a A | 473.60 a AB |
40 °C | 19.17 b | 14.10 c | 15.83 c | 15.83 cd | 32.07 c | 18.93 cd | 5.95 c | 9.87 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions. Agriculture 2023, 13, 1569. https://doi.org/10.3390/agriculture13081569
Cafaro V, Alexopoulou E, Cosentino SL, Patanè C. Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions. Agriculture. 2023; 13(8):1569. https://doi.org/10.3390/agriculture13081569
Chicago/Turabian StyleCafaro, Valeria, Efthymia Alexopoulou, Salvatore Luciano Cosentino, and Cristina Patanè. 2023. "Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions" Agriculture 13, no. 8: 1569. https://doi.org/10.3390/agriculture13081569
APA StyleCafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions. Agriculture, 13(8), 1569. https://doi.org/10.3390/agriculture13081569