Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs
<p>Required power capacity <span class="html-italic">P</span><sub>hp</sub> of floor-mounted heating panels depending on the floor temperature <span class="html-italic">t</span><sub>f</sub>, heat transfer coefficient <span class="html-italic">k</span><sub>htr,</sub> and age of prenursery pigs.</p> "> Figure 2
<p>Block diagram of local floor-mounted heating installation for prenursery pigs with the application of thermoelectric effect: 1—duct of the cold air circuit; 2—air heat-exchanger at the cold side of Peltier elements; 3—electric fan; 4—Peltier elements; 5—water heat-exchanger at the hot side of Peltier elements; 6—mains venting duct; 7—control module; 8—floor-mounted heating panel; 9—temperature sensor; 10—duct of the hot air circuit; 11—circulation heat pump.</p> "> Figure 3
<p>Diagram for calculating thermal capacity of the heating panel: 1—substrate; 2—heat-carrier; 3—thermal insulation.</p> "> Figure 4
<p>Outlay of the heating panel: 1—floor-mounted heating panel; 2—control panel; 3—air intake; 4—heat-carrier tank; 5—exhaust air pipe.</p> "> Figure 5
<p>Temperature of the heat-carrier <span class="html-italic">t</span><sub>hc_exp</sub> in the input into the panel <span class="html-italic">t</span><sub>in</sub> and in its output <span class="html-italic">t</span><sub>out</sub>.</p> "> Figure 6
<p>Surface temperature <span class="html-italic">t</span><sub>hs_exp</sub> of the floor-mounted heating panel without animals and at 70% charging of the crate with prenursery pigs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Convenience Conditions and Thermal Balance of Animals
2.2. Block Diagram for Floor-Mounted Heating Panel with Thermoelectric Heat Pump
2.3. Calculating Thermal Parameters of the Heating Panel
- -
- in cold seasons, floor temperatures will be higher than water freezing point and dew point,
- -
- the heated panel does not have any effect on the thermal state of the floor where it is mounted,
- -
- floor temperatures are assumed to be lower than their calculated values by 5 °C to 10 °C, in order to ensure system stability.
3. Results and Discussion
Test Results of the Experimental Sample of the Heating Panel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tikhomirov, D.; Izmailov, A.; Lobachevsky, Y.; Tikhomirov, A. Energy Consumption Optimization in Agriculture and Development Perspectives. Int. J. Energy Optim. Eng. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Tikhomirov, D.A. Energy-Efficient Electrical Means and Heat Supply Systems Technological Processes in Livestock Breeding. Bull. VNIIMZ 2016, 4, 15–23. (In Russian) [Google Scholar]
- Kuzmichev, A.V.; Tikhomirov, D.A. Thermal Conditions in the Areas of Piglets Placement. Electr. Technol. Electr. Equip. APK 2019, 3, 17–22. (In Russian) [Google Scholar]
- RD-APK 1.10.02.04-12; Methodological Recommendations on Technological Design of Pig Farms and Complexes. Minselkhoz RF: Moscow, Russia, 2012. (In Russian)
- Trunov, S.S.; Rastimeshin, S.A. Requirements for the Thermal Condition of Livestock Buildings with Young Animals and Prerequisites for the Use of Local Heating. Bull. VIESH 2017, 2, 76–82. (In Russian) [Google Scholar]
- Rastimeshin, S.A.; Katkova, J.B. Local Heating of Piglets. Bull. VNIIMZ 2013, 4, 55–60. (In Russian) [Google Scholar]
- Li, Q.; Yao, C.; Ding, L.; Yu, L.; Ma, W.; Gao, R.; Zheng, W. Numerical Investigation on Effects of Side Curtain Opening Behavior on Indoor Climate of Naturally Ventilated Dairy Buildings. Int. J. Agric. Biol. Eng. 2020, 13, 63–72. [Google Scholar] [CrossRef]
- Zhelykh, V.; Dzeryn, O.; Shapoval, S.; Furdas, Y.; Piznak, B. Study of the Thermal Mode of a Barn for Piglets and a Sow, Created by Combined Heating System. East.-Eur. J. Enterp. Technol. 2017, 5, 45–50. [Google Scholar] [CrossRef]
- Spodyniuk, N.; Zhelykh, V.; Dzeryn, O. Combined Heating Systems of Premises for Breeding of Young Pigs and Poultry. FME Trans. 2018, 46, 651–657. [Google Scholar] [CrossRef]
- Zagorska, V.; Iljins, U. Calculations of Heated Floor Panel for Resting Places of Piglets. Agron. Res. 2011, 9, 237–243. [Google Scholar]
- Zagorska, V.; Iljins, U. Optimization of Parameters of Heating Elements for Floor Panel of Piglets Resting Places. Vide. Technol. Resur.-Environ. Technol. Resour. 2011, 2, 92–99. [Google Scholar] [CrossRef]
- Opderbeck, S.; Keßler, B.; Gordillio, W.; Schrade, H.; Piepho, H.P.; Gallmann, E. Influence of Cooling and Heating Systems on Pen Fouling, Lying Behavior, and Performance of Rearing Piglets. Agriculture 2021, 11, 324. [Google Scholar] [CrossRef]
- Zhang, Q.; Xin, H. Static and Dynamic Temperature Distribution of Heat Mats for Swine Farrowing Creep Heating. Appl. Eng. Agric. 2000, 16, 563–569. [Google Scholar] [CrossRef]
- Khimenko, A.; Tikhomirov, D.; Trunov, S.; Kuzmichev, A.; Bolshev, V.; Shepovalova, O. Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms. Agriculture 2022, 12, 1753. [Google Scholar] [CrossRef]
- Tikhomirov, D.; Vasilyev, A.N.; Budnikov, D.; Vasilyev, A.A. Energy-Saving Automated System for Microclimate in Agricultural Premises with Utilization of Ventilation Air. Wirel. Netw. 2020, 26, 4921–4928. [Google Scholar] [CrossRef]
- Tikhomirov, D.A.; Khimenko, A.V.; Trunov, S.S.; Kuzmichev, A.V. Study of the Regularities of the Influence of Air Heat Curtains on the Energy Balance of Livestock Premises. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1138, p. 012044. [Google Scholar]
- Trunov, S.S.; Tikhomirov, D.A.; Khimenko, A.V.; Kuzmichev, A.V. Energy-Saving Installation for Heating and Cooling Livestock Premises Using Geothermal Energy. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1138, p. 012043. [Google Scholar]
- Tikhomirov, D.A.; Trunov, S.S.; Kuzmichev, A.V.; Rastimeshin, S.A.; Shepovalova, O.V. Energy-Efficient Thermoelectric Unit for Microclimate Control on Cattlebreeding Premises. Energy Rep. 2020, 6, 293–305. [Google Scholar] [CrossRef]
- Ziron, M.; Hoy, S. Effect of a Warm and Flexible Piglet Nest Heating System-The Warm Water Bed-On Piglet Behaviour, Live Weight Management and Skin Lesions. Appl. Anim. Behav. Sci. 2003, 80, 9–18. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, X.; Wei, G.; Luan, D. Design of Large Size Fiberglass Reinforced Plastics for Piglet Electric Heating Panels and Application Effects. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2009, 25, 241–244. [Google Scholar]
- Sarubbi, J.; Rossi, L.A.; De Moura, D.J.; De Oliveira, R.A.; David, E. Electrical Energy Use in Different Heating Systems for Weaned Piglets. Eng. Agric. 2010, 30, 1003–1011. [Google Scholar]
- Da Silva, I.J.O.; Pandorfi, H.; Piedade, S.M.S. Use of Animal Precision Production in the Behavior Evaluation of Lactation Piglets Submitted to Different Heating Systems. Rev. Bras. Zootec. 2005, 34, 220–229. [Google Scholar]
- De Abreu, P.G.; Abreu, V.M.N.; Coldebella, A.; Sabino, L.A.; De Sousa, V.R. Evaluation of Heating Systems Creep Area for Piglets in the Winter. In the Proceedings of ASABE-9th International Livestock Environment Symposium, Valencia, Spain, 8–12 July 2012. ILES12-1015. [Google Scholar]
- Mendes, A.S.; Moura, D.J.; Nääs, I.A.; Bender, J.R. Natural Ventilation and Surface Temperature Distribution of Piglet Crate Heated Floors. Arq. Bras. Med. Vet. Zootec. 2013, 65, 477–484. [Google Scholar] [CrossRef]
- Beshada, E.; Zhang, Q.; Boris, R. Energy Consumption of Heat Pads and Heat Lamps and Aerial Environment in a Commercial Swine Farrowing Facility. Can. Biosyst. Eng. 2014, 56, 5.1–5.6. [Google Scholar]
- Sulzbach, J.J.; Mendes, A.S.; Possenti, M.A.; de Souza, C.; Nunes, I.B. Evaluation of Different Heating Systems for New-Born Swine. Int. J. Biometeorol. 2020, 64, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Y.; Reese, M.; Buchanan, E.; Tallaksen, J.; Johnston, L. Behavior and Performance of Suckling Piglets Provided Three Supplemental Heat Sources. Animals 2020, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ye, Z.; Li, G.; Shen, P.; Zhu, S.; Zhao, S.; Liu, D.; Zhang, J.; Shen, Z.; Gao, W. Effects of Intelligent Carbon Fiber Heater on Pig Behavior, Production Performance, and Energy Consumption. Trans. ASABE 2021, 64, 259–272. [Google Scholar] [CrossRef]
- Zhang, Q.; Xin, H. Modeling Heat Mat Operation for Piglet Creep Heating. Trans. Am. Soc. Agric. Eng. 2000, 43, 1261–1267. [Google Scholar] [CrossRef]
- Fialho, F.B.; Bucklin, R.A.; Zazueta, F.S.; Myer, R.O. Theoretical Model of Heat Balance in Pigs. Anim. Sci. 2004, 79, 121–134. [Google Scholar] [CrossRef]
- Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Prediction of Optimum Supplemental Heat for Piglets. Trans. ASABE 2019, 62, 321–342. [Google Scholar] [CrossRef]
- Smith, B.C.; Ramirez, B.C.; Hoff, S.J. Modeling and Assessing Heat Transfer of Piglet Microclimates. AgriEngineering 2021, 3, 768–782. [Google Scholar] [CrossRef]
- Tikhomirov, D.; Trunov, S.; Kuzmichev, A.; Rastimeshin, S.; Ukhanova, V. Floor-Mounted Heating of Piglets with the Use of Thermoelectricity. In Intelligent Computing and Optimization: Proceedings of the 3rd International Conference on Intelligent Computing and Optimization 2020 (ICO 2020); Vasant, P., Zelinka, I., Weber, G.-W., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1146–1155. [Google Scholar]
- Rastimeshin, S.A. Local Heating of Young Animals (Theory and Technical Means); Agropromizdat: Moscow, Russia, 1991. [Google Scholar]
- Kuzmichev, A.V. Physical Model of Heat Exchange of Piglet with Environment. Electr. Technol. Electr. Equip. APK 2019, 1, 124–132. (In Russian) [Google Scholar]
- Kuzmichev, A.V.; Tikhomirov, D.A. Dependence of Air Temperature, Enclosing Structures and Floor in Livestock Premises. Electr. Technol. Electr. Equip. APK 2020, 67, 50–54. (In Russian) [Google Scholar] [CrossRef]
- Venkatesan, K.; Venkataramanan, M. Experimental and Simulation Studies on Thermoelectric Cooler: A Performance Study Approach. Int. J. Thermophys. 2020, 41, 1–23. [Google Scholar] [CrossRef]
- Patel, V.K.; Gluesenkamp, K.R.; Goodman, D.; Gehl, A. Experimental Evaluation and Thermodynamic System Modeling of Thermoelectric Heat Pump Clothes Dryer. Appl. Energy 2018, 217, 221–232. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G. A Review of Thermoelectric Cooling: Materials, Modeling and Applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Kirsanov, V.V.; Kravchenko, V.N.; Filonov, R.F. Use of Thermoelectric Modules in Pasteurization and Cooling Plants for the Processing of Liquid Products; Monograph; FGBOU VPO MGAU Publishing: Moscow, Russia, 2011. (In Russian) [Google Scholar]
- Isachenko, V.P.; Osipova, V.A.; Sukomel, A.S. Heat Transfer, 3rd ed.; Directmedia; Distribution: Moscow, Russia, 2021. [Google Scholar]
- Tikhomirov, D.A.; Rastimeshin, S.A.; Trunov, S.S.; Ukhanova, V.Y.; Kuzmichev, A.V. Mathematical Modelling and Energy Accounting of Heaters for Growing Stock. Helix 2020, 10, 13–20. [Google Scholar] [CrossRef]
- Starý, Z. Temperature-Thermal Conditions and the Geometry of Peltier Elements. Energy Convers. Manag. 1992, 33, 251–256. [Google Scholar] [CrossRef]
- Yudaev, I.V.; Zhivopistsev, E.N.; Glushkov, A.M. Fundamentals of Electrothermy; Niva: Volgograd, Russia, 2010. (In Russian) [Google Scholar]
Parameter | Designator | Unit | Value |
---|---|---|---|
Air temperature in premises | ta | °C | 18 |
Temperature on the heating panel surface | ths | °C | 30 |
Relative air velocity in premises | va | m/s | 0.2 |
Heating panel length | l | m | 1.0 |
Upper surface area of the heating panel | Fhs | m2 | 0.7 |
Air kinematic viscosity | υ | m2/s | 14.7 × 10−6 |
Air thermal conduction coefficient | λ | W·m−1·K−1 | 2.49 × 10−2 |
Reynolds number | Re | 13,605 | |
Convection heat transfer coefficient | αcon | W·m−2·K−1 | 0.86 |
Convection component of the heat flow from the panel surface | Qcon | W | 6.5 |
Total emissivity of the panel surface | εhs | 0.92 | |
Temperature of the heating panel surface | Ths, | K | 303 |
Temperature of the cladding structure | Tes | K | 283 |
Radiant component of the heat loss | Qrad | W | 73.1 |
Total thermal energy loss from the heating panel surface | Qhs | W | 79.6 |
Substrate thickness | δb | m | 0.003 |
Substrate material thermal conduction coefficient | λb | W·m−1·K−1 | 0.05 |
Heat-carrier temperature | thc | °C | 35.7 |
Insulation material thermal conduction coefficient | λins | W·m−1·K−1 | 0.04 |
Thickness of the thermal insulation layer | δins | m | 0.04 |
Floor temperature | tf | °C | 5 |
Heat loss through the floor | Qfs | W | 21.5 |
Calculated power capacity | Php | W | 101.2 |
Parameter | Unit | Value |
---|---|---|
Peltier element type | - | TEC1-12706 |
Peltier element output power | W | 50 |
Number of Peltier elements | pcs | 2 |
Peltier battery power consumption | W | 98 |
Peltier battery input voltage | U | 12 |
Heat-carrier circulation flow rate | L/h | 36.8 |
Panel weight | kg | 5 |
Dimensions: length × width × thickness | m | 1.0 × 0.7 × 0.05 |
Panel surface area | m2 | 0.7 |
Parameter | Unit | Value | |
---|---|---|---|
Calculated (Initial Requirements) | Experimental (Average) | ||
Installation power consumed from the electric network | W | 100 | 98 |
Heat recuperation | W | 15 | 18 |
Installation supply voltage | U | 220 | 219 |
Heat-carrier circulation flow rate | L/h | 35.0 | 36.8 |
Heating panel surface temperature without animals | °C | 30.0 | 29.0 |
Heating panel surface temperature when filled with animals | °C | - | 35.0 |
Heat-carrier temperature at the panel inlet | °C | 41.7 | 42.0 |
Heat-carrier temperature at the panel outlet | °C | 38.7 | 39.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhomirov, D.; Khimenko, A.; Kuzmichev, A.; Bolshev, V.; Samarin, G.; Ignatkin, I. Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs. Agriculture 2023, 13, 948. https://doi.org/10.3390/agriculture13050948
Tikhomirov D, Khimenko A, Kuzmichev A, Bolshev V, Samarin G, Ignatkin I. Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs. Agriculture. 2023; 13(5):948. https://doi.org/10.3390/agriculture13050948
Chicago/Turabian StyleTikhomirov, Dmitry, Aleksei Khimenko, Aleksey Kuzmichev, Vadim Bolshev, Gennady Samarin, and Ivan Ignatkin. 2023. "Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs" Agriculture 13, no. 5: 948. https://doi.org/10.3390/agriculture13050948
APA StyleTikhomirov, D., Khimenko, A., Kuzmichev, A., Bolshev, V., Samarin, G., & Ignatkin, I. (2023). Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs. Agriculture, 13(5), 948. https://doi.org/10.3390/agriculture13050948