Bayesian Identification of High-Performance Aircraft Aerodynamic Behaviour
"> Figure 1
<p>Research Framework.</p> "> Figure 2
<p>Top Level Simulink Model of Aircraft Flight Dynamic Model (MATLAB-2021b).</p> "> Figure 3
<p>F-16 6-DOF Dynamics [<a href="#B39-aerospace-11-00960" class="html-bibr">39</a>].</p> "> Figure 4
<p>Optimal Input Design Flowchart.</p> "> Figure 5
<p>Bayesian Implementation Flowchart.</p> "> Figure 6
<p>F-16 Kinematics Variables [<a href="#B39-aerospace-11-00960" class="html-bibr">39</a>].</p> "> Figure 7
<p>Non-Parametric (FIR) Model of Aircraft.</p> "> Figure 8
<p>Bode Plot Aircraft Lateral Dynamics.</p> "> Figure 9
<p>Simulated Time-Skewed 2-1-1 Doublet Inputs—Aileron (δa) and Rudder (δr).</p> "> Figure 10
<p>Roll and Yaw Rate Time histories in repose to 2-1-1 Doublet Inputs.</p> "> Figure 11
<p>Roll and Pitch Angle time histories to 2-1-1 Doublet Inputs.</p> "> Figure 12
<p>Aircraft Parameter Refinement Flow chart.</p> "> Figure 13
<p>(<b>a</b>) Initial OE Model; (<b>b</b>) Reduced Order OE Model; (<b>c</b>) Initial BJ Model; (<b>d</b>) Optimized BJ Model; (<b>e</b>) Residual Correlation; (<b>f</b>) pdf of Model Parameters; (<b>g</b>) Posterior Sensitivity Analysis (K-L Divergence)—Straight and Level Flight.</p> "> Figure 13 Cont.
<p>(<b>a</b>) Initial OE Model; (<b>b</b>) Reduced Order OE Model; (<b>c</b>) Initial BJ Model; (<b>d</b>) Optimized BJ Model; (<b>e</b>) Residual Correlation; (<b>f</b>) pdf of Model Parameters; (<b>g</b>) Posterior Sensitivity Analysis (K-L Divergence)—Straight and Level Flight.</p> "> Figure 14
<p>(<b>a</b>) Initial OE Model; (<b>b</b>) Reduced Order OE Model; (<b>c</b>) Initial BJ Model; (<b>d</b>) Optimized BJ Model; (<b>e</b>) Residual Correlation; (<b>f</b>) pdf of Model Parameters; (<b>g</b>) Posterior Sensitivity Analysis (K-L Divergence)—Coordinated Turn Flight.</p> ">
Abstract
:1. Introduction
1.1. Related Works
1.2. Research Motivation
1.3. Research Contribution
2. Aircraft Modelling
2.1. Mathematical Formulations
2.2. Development of FDM
2.3. Analysis of Aircraft Lateral-Directional Model
2.3.1. Step 1: Numerical Linearization to Obtain Trim Points
Algorithm 1: Aircraft Steady State Points |
Input: 1. Specify inputs and states (); inputs States Iterations: 2. Set tolerance value = 1 × 10−8 2.1. Compute (state derivatives) from inputs and states . 2.2. Compute cost function: J = a1∗, a2∗… an∗. 2.3. Apply minimization algorithm (Nelder Mead Algorithm) on cost function. 2.4. Stopping criteria: Tolerance value achieved—terminate the iterations. Output: 3. Display Trim data: Vt, . |
2.3.2. Step 2: Non-Parametric (FIR) Modelling
3. Methodology
3.1. Input Design
Algorithm 2: Determine BJ Structure |
Input:
Iterations:
Output:
|
3.2. Model Postulation—OE and BJ Structures
3.3. Reduced Order Model—(AIC)
3.4. Error Minimization—L-M Algorithm
3.5. Model Optimization—Bayesian Approach
Algorithm 3: L-M Algorithm |
Input: 1. Initial parameters obtained from Nonlinear Least square estimation of BJ structure. 2. Set regularization value to 0.001. Iterations: 3. Set tolerance value. 4. Initial hessian matrix (∇2) using Newton-Raphson Technique: xn + 1 = xn − (xn)/f’(xn) 5. Compute Jacobean matrix 6. Compute Modified Hessian Matrix 7. Compute cost function: < 0.001 8. Update vector. 9. Stopping criteria: Tolerance value achieved Output: 10. Optimized parameters |
Algorithm 4: Bayesian Estimation |
Input: 1. Initial guess of parameters obtained from BJ model Iterations: 2. Set Convergence criteria: ϵ = 1 × 10−5 3. Iterate for 4. Compute and 5. Compute 6. Compute as the solution of 7. Stopping criteria: until or Output: 8. Estimated parameters |
Bayesian Sensitivity Analysis
4. Results and Discussion
4.1. Aircraft FDM
4.2. Aircraft Trim Conditions
4.3. Optimum Input Design
4.4. Model Identification and Parameter Refinement
C(z) = 1 − 0.9291 z−1
D(z) = 1 − 1.138 z−1 + 0.2772 z−2 + 0.2227 z−3 − 0.4422 z−4
F(z) = 1 + 0.4055 z−1 − 1.211 z−2 − 0.3027 z−3 + 0.3932 z−4 − 0.009715 z−5
C(z) = 1 − 0.9973 z−1 + 0.134 z−2 + 0.1181 z−3 − 1.096 z−4 + 0.8415 z−5
D(z) = 1 − 1.626 z−1 + 0.6488 z−2 + 0.1839 z−3 − 0.3126 z−4 + 0.1056 z−5
F(z) = 1 − 0.6974 z−1 + 0.1451 z−2 + 0.07067 z−3 − 0.2726 z−4 + 0.2265 z−5
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Roman
Greek
|
Superscripts
|
References
- Tangirala, A.K. Principles of System Identification Theory and Practice; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Klein, V.; Morelli, E. Aircraft System Identification Theory and Practice; American Institute of Aeronautics & Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Tulleken, H.J.A.F. Grey-box Modelling and Identification Using Physical Knowledge and Bayesian Techniques. Automatica 1993, 29, 285–308. [Google Scholar] [CrossRef]
- Morelli, E.A.; Grauer, J.A. Advances in Aircraft System Identification at NASA Langley Research Center. J. Aircr. 2023, 60, 1354–1370. [Google Scholar] [CrossRef]
- Morelli, E.A.; Grauer, J.A. Practical Aspects of Frequency-Domain Approaches for Aircraft System Identification. J. Aircr. 2020, 57, 268–291. [Google Scholar] [CrossRef]
- Oznurlu, C. Data-Driven Model Discovery and Control of Lateral-Directional Fighter Aircraft Dynamics. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2022. [Google Scholar]
- Belge, E.; Kaba, H.K.; Parlak, A.; Altan, A.; Hacioğlu, R. Estimation of small unmanned aerial vehicle lateral dynamic model with system identification approaches. Balk. J. Electr. Comput. Eng. 2020, 8, 121–126. [Google Scholar] [CrossRef]
- Bnhamdoon, O.A.A.; Hanif, N.H.H.M.; Akmeliawati, R. Identification of a quadcopter autopilot system via Box–Jenkins structure. Int. J. Dyn. Control 2020, 8, 835–850. [Google Scholar] [CrossRef]
- Pillonetto, G.; Dinuzzo, B.F.; Chenc, T.; Nicolao, G.D.; Ljung, L. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica 2014, 50, 657–682. [Google Scholar] [CrossRef]
- Kwad, A.M.; Hanafi, D.; Omar, R.; Rahman, H.A. Development of system identification from traditional concepts to real-time soft computing based. IOP Conf. Ser. Mater. Sci. Eng. 2020, 767, 012050. [Google Scholar] [CrossRef]
- Ji, Y.; Jiang, X.K.; Wan, L.J. Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. J. Frankl. Inst. 2020, 357, 5019–5032. [Google Scholar] [CrossRef]
- Millidere, M. Optimal Input Design and System Identification for an Agile Aircraft. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2021. [Google Scholar]
- Morelli, E.A. Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Keystone, CO, USA, 21–24 August 2006. [Google Scholar]
- Roeser, M.S.; Fezans, N. Method for designing multi-input system identification signals using a compact time-frequency representation. CEAS Aeronaut. J. 2021, 12, 291–306. [Google Scholar] [CrossRef]
- Lopez, M.J.S.; Ruckel, P.; Berrigan, C.S. Bell V-280 System Identification and Model Validation with Flight Test Data Using the Joint Input-Output Method. In Proceedings of the Vertical Flight Society’s 76th Annual Forum & Technology Display, Virginia Beach, VA, USA, 5–8 October 2020. [Google Scholar]
- Simmons, B.M.; McClelland, H.G.; Woolsey, C.A. Nonlinear Model Identification Methodology for Small, Fixed-Wing, Unmanned Aircraft. J. Aircr. 2019, 56, 1056–1067. [Google Scholar] [CrossRef]
- Dutra, D.A.A. Collocation-Based Output-Error Method for Aircraft System Identification. In Proceedings of the AIAA Aviation Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Mukhopadhaya, J.; Whitehead, B.T.; Quindlen, J.F.; Alonso, J.J. Multi-fidelity modeling of probabilistic aerodynamic databases for use in aerospace engineering. Int. J. Uncertain. Quantif. 2020, 10, 425–447. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, F.; Qian, W.; Ding, D. A practical filter error method for aerodynamic parameter estimation of aircraft in turbulence. Chin. J. Aeronaut. 2022, 36, 17–28. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, A.; Ghosh, A.K. Determination of Parameters during Quasi-Steady Stall Maneuver Using Genetic Algorithm. Int. J. Aviat. Aeronaut. Space 2019, 6, 4. [Google Scholar]
- Zainuddin, F.A.; Samad, M.F.A. Crossover of genetic algorithm for linear and nonlinear system identification. In Proceedings of the Innovative Research and Industrial Dialogue, Melaka, Malaysia, 17 December 2020. [Google Scholar]
- Ordóñez, C.; Lasheras, F.S.; Roca-Pardiñas, J.; Juez, F.J.d.C. A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines. J. Comput. Appl. Math. 2019, 346, 184–191. [Google Scholar] [CrossRef]
- Gen, M.; Cheng, R. Genetic Algorithm and Engineering Optimization; Institute of Technology: Ashikaga, Japan, 2000. [Google Scholar]
- Fatima, S.K.; Abbas, S.M.; Mir, I.; Gul, F.; Forestiero, A. Flight Dynamics Modeling with Multi-Model Estimation Techniques: A Consolidated Framework. J. Electr. Eng. Technol. 2023, 18, 2371–2381. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A. Flight dynamics modeling of elastic aircraft using signal decomposition methods. J. Aerosp. Eng. 2019, 233, 4380–4395. [Google Scholar] [CrossRef]
- Alessandrini, M.; Falaschetti, L.; Biagetti, G.; Crippa, P.; Turchetti, C. Nonlinear Dynamic System Identification in the Spectral Domain Using Particle-Bernstein Polynomials. Electronics 2022, 11, 3100. [Google Scholar] [CrossRef]
- Ram, P.R.M.; Römer, U.; Semaan, R. Bayesian Dynamical System Identification with Unified Sparsity Priors And Model Uncertainty. arXiv 2021, arXiv:2103.05090. [Google Scholar]
- Piga, D.; Breschi, V.; Bemporad, A. Estimation of Jump Box–Junction Models. Automatica 2020, 120, 109126. [Google Scholar] [CrossRef]
- Carr, J. 2014. An Introduction to Genetic Algorithms [Online]. Available online: https://www.whitman.edu.USA (accessed on 25 May 2024).
- Hamilton, J.; Wall, D.G.; Saddington, A.J.; Economou, J.T. Hypersurface normalised gain-scheduled controller for a non-linear 6-DOF fast jet. Aerosp. Sci. Technol. 2020, 106, 106155. [Google Scholar] [CrossRef]
- Rémy, P.; Hugo, G.; Ian, C.; Stephane, D.; Youssef, D.; Nathalie, B. An efficient application of Bayesian optimization to an industrial MDO framework for aircraft design. In Proceedings of the AIAA Aviation Forum, Virtual, 15–19 June 2020. [Google Scholar]
- Botero, E.M. Generative Bayesian Networks for Conceptual Aircraft Design. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2019. [Google Scholar]
- Kim, D.; Oh, H.S.; Moon, I.C. Black-box Modeling for Aircraft Maneuver Control with Bayesian Optimization. Int. J. Control Autom. Syst. 2019, 17, 1558–1568. [Google Scholar] [CrossRef]
- Saves, P.; Bartoli, N.; Diouane, Y.; Lefebvre, T.; Morlier, J. Constrained Bayesian Optimization over Mixed Categorical Variables, with Application to Aircraft Design. In Proceedings of the AeroBest, Lisbonne, Portugal, 21–23 July 2021. [Google Scholar]
- Scoggins, J.B.; Wignall, T.J.; Nakamura-Zimmerer, T.; Bibb, K. Multihierarchy Gaussian Process Models for Probabilistic Aerodynamic Databases using Uncertain Nominal and Off-Nominal Configuration Data. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; NASA Langley Research Centre: Hampton, VA, USA, 2023. [Google Scholar]
- Napolitano, M.R. Aircraft Dynamics: From Modelling to Simulation; Scitus Academics LLC: Wilmington, DE, USA, 2012. [Google Scholar]
- Nguyen, L.T.E.A. Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane with Relaxed Longitudinal Static Stability [F16]; NASA: Washington, DC, USA, 1979.
- F 16 Jet Design, Collimator. 2024. Designing an F 16 Fighter Jet [Online]. Available online: https://www.collimator.ai/tutorials/simulating-a-nonlinear-f16-model (accessed on 25 May 2024).
- Mohajerani, M.H. Frequency-Domain System Identification for Unmanned Helicopters from Flight Data. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2014. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Muhammad, W.; Ahsan, A. Airship aerodynamic model estimation using unscented Kalman filter. J. Syst. Eng. Electron. 2020, 31, 1318–1329. [Google Scholar] [CrossRef]
- Rundel, M.C.M.Ç.-R.C.; Banks, D.; Chai, C.; Huang, L. An Introduction to Bayesian Thinking. A Companion to the Statistics with R Course; Taylor and Francis: Abingdon, UK, 2020. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Grauer, J.; Morelli, E. Method for real-time frequency response and uncertainty estimation. J. Guid. Control Dyn. 2014, 37, 336–344. [Google Scholar] [CrossRef]
Ref. | Bayesian Methodology | Application |
---|---|---|
Herbert et al. [4] | Bayesian framework to estimate aerodynamic model parameters | Aircraft parameter estimation |
Mukhopadhaya et al. [19] | Gaussian Process Regression, close to Bayesian estimation, for improvement of uncertainty of aerodynamic database | Aerodynamic Modelling using database |
Rémy Priem et al. [32] | Using Bayesian approach for optimization in Aircraft design configurations | Aircraft Design Configurations |
Emilio M. Botero [33] | Using Generative Bayesian Network for conceptual design of aircraft | Aircraft Design |
Kim et al. [34] | Bayesian network optimization for data-driven controller of the aircraft using black box modelling | Data-driven controller design for aircraft maneuver |
Paul Saves et al. [35] | Aircraft design optimization using Bayesian approach and Gaussian Process. | Aircraft Design |
James et al. [36] | Mathematical framework for modelling probabilistic aerodynamic datasets using conditional coupled with Gaussian Processes | Aerodynamic Modelling |
] | |
---|---|
1 to 3 | Not worth a bare mention |
3 to 20 | Positive |
20 to 150 | Strong |
>150 | Very strong |
Symbol | Value | Unit |
---|---|---|
b | 30 | ft |
11.32 | ft | |
S | 300 | |
W | 20,500 | Lbs |
gd | 32.17 | |
Vt | 502 | ft/s |
h | 30 | ft |
300 | psf | |
Xcg | ft | |
Ixx | 9496 | |
Iyy | 55,814 | |
Izz | 63,100 | |
Ixz | 982 |
Symbol | Steady Straight and Level Flight | Coordinated Turn Flight | Unit |
---|---|---|---|
Vt | 502 | 502 | ft/s |
h | 30 | 30 | ft |
300 | 300 | psf | |
Xcg | ft | ||
0.03 | 0.24 | rad | |
0 | 0 | rad | |
φ | 0 | 1.3 | rad |
0.15 | 0.05 | rad | |
P | 0 | −0.01 | rad/s |
Q | 0 | 0.29 | rad/s |
R | 0 | 0.06 | rad/s |
0 | 0.15 | rad/s |
Poles | Damping | Frequency (rad/s) | Time Constant (s) |
---|---|---|---|
−4.78 × 10−3 | 1.00 | 4.78 × 10−3 | 2.09 × 102 |
−2.22 | 1.00 | 2.22 | 4.50 × 10−1 |
−9.24 × 10−1 + 4.67i | 1.94 × 10−1 | 4.76 | 1.08 |
−9.24 × 10−1 − 4.67i | 1.94 × 10−1 | 4.76 | 1.08 |
Parameter Estimates and Errors | |||
---|---|---|---|
Parameters | NLS MSE: 9.3 × 10−2 % fit—87.99% | MLE MSE: 5.2 × 10−3 % fit—95.75% | Bayesian MSE: 3.9 × 10−3 % fit—96.25% |
b1 | 1.2319 ± 0.5224 | 1.1129 ± 0.0113 | 1.1036 ± 0.0690 |
b2 | −1.5237 ± 1.4569 | −0.6976 ± 0.2309 | −0.9870 ± 0.6327 |
b3 | 0.6885 ± 0.2685 | 0.5832 ± 0.4312 | 0.6799 ± 0.5177 |
b4 | −1.2097 ± 0.2557 | −1.1414 ± 0.6314 | −1.1567 ± 0.4477 |
c1 | −0.5983 ± 0.3882 | −0.2188 ± 0.2424 | −0.3291 ± 0.3066 |
d1 | 1.1822 ± 0.2840 | 0.5998 ± 0.32984 | 0.7939 ± 0.2365 |
d2 | −0.3579 ± 0.2333 | −0.4501 ± 0.2069 | −0.3026 ± 0.1699 |
d3 | 0.0206 ± 0.0841 | 0.0566 ± 0.0988 | 0.0716 ± 0.1455 |
d4 | −0.7206 ± 0.1603 | −0.0619 ± 0.1422 | −0.0752 ± 0.1399 |
f1 | −2.3801 ± 0.2184 | −1.444 ± 0.1977 | −1.3332 ± 0.2503 |
f2 | 1.6348 ± 0.1954 | 1.5924 ± 0.3166 | 1.7412 ± 0.3417 |
f3 | 0.2456 ± 0.1134 | 1.1868 ± 0.2959 | 1.1912 ± 0.2789 |
f4 | −0.7353 ± 0.1399 | −0.8423 ± 0.0978 | −0.7926 ± 0.1255 |
f5 | 0.2426 ± 0.2953 | −0.3576 ± 0.0463 | −0.3525 ± 0.0132 |
Parameter Estimates and Errors | |||
---|---|---|---|
Parameters | NLS MSE: 0.2838 % fit—77.51% | MLE MSE: 0.1549 % fit—72.27% | Bayesian MSE: 0.1076 % fit—80.07% |
b1 | −2.7703 ± 0.5224 | −2.6948 ± 0.6282 | −2.8416 ± 0.3352 |
b2 | 2.0599 ± 1.4569 | 1.8639 ± 1.0505 | 1.2786 ± 0.8046 |
c1 | −0.2802 ± 0.2685 | 0.0832 ± 0.4141 | 0.0058 ± 0.9224 |
c2 | 0.1900 ± 0.2557 | 0.6910 ± 0.2599 | 0.7222 ± 0.2309 |
c3 | −0.0267 ± 0.3882 | 0.7470 ± 0.3367 | 0.8252 ± 0.2990 |
c4 | −0.8072 ± 0.2840 | −0.6734 ± 0.3529 | −0.6921 ± 0.2244 |
c5 | 0.7626 ± 0.2333 | 0.7639 ± 0.1813 | 0.4692 ± 0.9028 |
d1 | −1.3011 ± 0.0841 | −0.5260 ± 0.1892 | −0.7591 ± 0.8219 |
d2 | 1.3436 ± 0.1603 | 1.3588 ± 0.2941 | 1.0851 ± 0.9780 |
d3 | −1.0987 ± 0.2184 | −1.0939 ± 0.2717 | −0.9738 ± 0.4596 |
d4 | 0.7316 ± 0.1954 | 0.8825 ± 0.2487 | 0.6657 ± 0.4727 |
d5 | −0.1844 ± 0.1134 | −0.4063 ± 0.1648 | −0.0999 ± 0.2929 |
f1 | 0.4115 ± 0.1399 | −1.1599 ± 0.3476 | −1.5465 ± 0.2038 |
f2 | −1.8137 ± 0.2953 | 0.5206 ± 0.1862 | 0.4772 ± 0.1453 |
f3 | 0.0845 ± 0.1730 | 0.0990 ± 0.0824 | 0.6454 ± 0.0428 |
f4 | −0.2993 ± 0.0574 | −0.3032 ± 0.0737 | −0.2414 ± 0.0276 |
f5 | 0.2120 ± 0.0577 | 0.2268 ± 0.0962 | 0.4398 ± 0.0652 |
Parameter Estimates and Errors | |||
---|---|---|---|
Parameters | NLS MSE: 6.8 × 10−1 % fit—78.66% | MLE MSE: 1.3 × 10−1 % fit—80.75% | Bayesian MSE: 1.4 × 10−2 % fit—95.49% |
b1 | −0.0399 ± 0.2376 | −0.2424 ± 0.2980 | −0.3906 ± 0.0531 |
b2 | 0.3101 ± 0.1375 | 0.3612 ± 0.1519 | 0.1206 ± 0.2529 |
c1 | −1.9760 ± 1.0797 | −1.9883 ± 0.7384 | −0.6182 ± 0.854 |
c2 | 0.9760 ± 0.9234 | 0.9895 ± 1.2943 | 0.8582 ± 0.7253 |
d1 | −0.8397 ± 0.2274 | −0.9174 ± 0.2912 | −2.5870 ± 1.212 |
d2 | −0.4616 ± 0.5261 | −0.6852 ± 0.4727 | 2.3138 ± 2.3003 |
d3 | 0.5737 ± 0.5613 | 0.8832 ± 0.3967 | −0.6969 ± 1.215 |
f1 | −0.6638 ± 0.5958 | −1.5629 ± 0.3434 | −1.4591 ± 0.728 |
f2 | −0.7063 ± 0.6085 | 0.3123 ± 0.9005 | 0.4699 ± 0.7319 |
f3 | 0.4186 ± 0.4558 | 1.2015 ± 0.9578 | 1.1084 ± 0.1574 |
f4 | 0.0585 ± 0.3124 | 0.1958 ± 0.8334 | 0.0446 ± 0.1438 |
f5 | 0.2305 ± 0.3142 | 0.4038 ± 0.3982 | 0.0814 ± 0.1458 |
Parameter Estimates and Errors | |||
---|---|---|---|
Parameters | NLS MSE: 4.4 × 10−2 % fit—82.93% | MLE MSE: 4.3 × 10−2 % fit—83.75% | Bayesian MSE: 3.9 × 10−2 % fit—85.49% |
b1 | 0.6851 ± 0.0904 | −0.3410 ± 0.0980 | −0.3465 ± 0.0987 |
b2 | −2.6887 ± 0.4530 | 0.3602 ± 0.1286 | 0.3642 ± 0.1184 |
c1 | 2.4674 ± 0.6864 | −0.4502 ± 0.7700 | −0.6261 ± 0.863 |
c2 | −0.7786 ± 0.2789 | 0.2385 ± 0.7396 | 0.3914 ± 0.8208 |
d1 | −2.2853 ± 0.1387 | −1.6688 ± 0.6378 | −1.6878 ± 0.614 |
d2 | 2.3718 ± 0.2871 | 1.4156 ± 1.0789 | 1.4251 ± 1.0266 |
d3 | −1.3191 ± 0.2246 | −0.7082 ± 0.6029 | −0.7017 ± 0.5427 |
f1 | 0.3695 ± 0.0686 | −1.9609 ± 0.3877 | −1.9085 ± 0.360 |
f2 | −2.1439 ± 0.1189 | 1.2114 ± 0.5484 | 1.1118 ± 0.5213 |
f3 | 2.1391 ± 0.2527 | −0.1710 ± 0.4755 | −0.1088 ± 0.484 |
f4 | −1.0981 ± 0.2341 | 0.0248 ± 0.4961 | 0.0107 ± 0.502 |
f5 | 0.1920 ± 0.1106 | −0.0220 ± 0.3423 | −0.0126 ± 0.344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazhar, M.F.; Abbas, S.M.; Wasim, M.; Khan, Z.H. Bayesian Identification of High-Performance Aircraft Aerodynamic Behaviour. Aerospace 2024, 11, 960. https://doi.org/10.3390/aerospace11120960
Mazhar MF, Abbas SM, Wasim M, Khan ZH. Bayesian Identification of High-Performance Aircraft Aerodynamic Behaviour. Aerospace. 2024; 11(12):960. https://doi.org/10.3390/aerospace11120960
Chicago/Turabian StyleMazhar, Muhammad Fawad, Syed Manzar Abbas, Muhammad Wasim, and Zeashan Hameed Khan. 2024. "Bayesian Identification of High-Performance Aircraft Aerodynamic Behaviour" Aerospace 11, no. 12: 960. https://doi.org/10.3390/aerospace11120960
APA StyleMazhar, M. F., Abbas, S. M., Wasim, M., & Khan, Z. H. (2024). Bayesian Identification of High-Performance Aircraft Aerodynamic Behaviour. Aerospace, 11(12), 960. https://doi.org/10.3390/aerospace11120960