Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot
<p>Subfigure (<b>a</b>) displays the BYQ-A1 and its orientation in flight mode. Subfigure (<b>b</b>) displays BYQ-A1’s orientation in land mode. Subfigure (<b>c</b>) displays the ducted coaxial-rotor drive mechanism. Subfigure (<b>d</b>) displays the gyro frame drive mechanism. Subfigure (<b>e</b>) displays the variable-mass-center drive mechanism.</p> "> Figure 2
<p>An inflow model of the ducted coaxial-rotor system with a variable-center slider.</p> "> Figure 3
<p>Subfigure (<b>a</b>) shows the overall appearance of the aerodynamic test platform. Subfigure (<b>b</b>) shows the placement of the ATI sensor when measuring the force/torque of the upper rotor. Subfigure (<b>c</b>) shows the placement of the ATI sensor when measuring the force/torque on the variable-mass-center slider. Subfigure (<b>d</b>) shows the placement of the ATI sensor when measuring the force/torque of the lower rotor. Subfigure (<b>e</b>) shows the placement of the conduction wires. Subfigure (<b>f</b>) shows a pair of flanges connected by nylon screws.</p> "> Figure 4
<p>Subfigure (<b>a</b>) shows the placement of the FLAME 60A 12S Electronic Speed Controller and T-motor F7 flight control board. Subfigure (<b>b</b>) shows the variable-mass-center slider installed on the gyro frame of the BYQ-A1 via two metal rods with scales.</p> "> Figure 5
<p>Graph showing the relationship between lower-rotor lift and eccentricity variation. This study conducted fits for the <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>l</mi> <mi>z</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of sliders, yielding the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>l</mi> <mi>z</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>18.89</mn> <msubsup> <mrow> <mover> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>37.55</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>19.92</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>0.67</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <mn>13.98</mn> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mspace width="3.33333pt"/> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.991</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>l</mi> <mi>z</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>27.44</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>56.72</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>32.21</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>1.14</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>−</mo> <mn>13.88</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.997</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>l</mi> <mi>z</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>6.29</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>6.49</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>8.98</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>2.57</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>−</mo> <mn>13.23</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.994</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>l</mi> <mi>z</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>31.48</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>45.25</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>22.53</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>6.86</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>−</mo> <mn>12.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.973</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Graph showing the relationship between lower-rotor torque and eccentricity variation. This study conducted fits for the <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>y</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of sliders, yielding the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>y</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>3.08</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>7.00</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>4.26</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.11</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <mn>0.07</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.991</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>y</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>3.17</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>6.20</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>3.15</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>0.24</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>−</mo> <mn>0.06</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.990</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>y</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>1.13</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>0.60</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>0.07</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>0.58</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>−</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.995</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>y</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>3.64</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>4.88</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>2.22</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>0.87</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>−</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.997</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Graph depicting the relationship between upper-rotor lift and eccentricity variation. This study conducted fits for the <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>x</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of sliders, yielding the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>z</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>35.6</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>5</mn> </msubsup> <mo>+</mo> <mn>77.23</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>58.11</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>18.19</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>2.21</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mn>14.28</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.989</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>z</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>8.88</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>5</mn> </msubsup> <mo>+</mo> <mn>17.14</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>11.27</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>2.58</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.18</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mn>14.10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.972</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>z</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>8.76</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>12.03</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>3.43</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>0.08</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <mn>13.57</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.970</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>z</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>15.80</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>30.48</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>19.72</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>5.24</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>+</mo> <mn>12.49</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.974</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Relationship curve of the resistance in relation to the eccentricity. This study conducted fits for the <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mi>z</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of slider, yielding the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <mn>4.96</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.974</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.04</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>−</mo> <mn>4.92</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.979</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.26</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>−</mo> <mn>3.53</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.951</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.26</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>−</mo> <mn>1.49</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.956</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Relationship curve of the torque in relation to the eccentricity. This study performed fits for the <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>y</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of slider, resulting in the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.77</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>1.65</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>1.30</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.40</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <mn>0.005</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.996</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.89</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>1.76</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>1.33</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.43</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>−</mo> <mn>0.009</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.991</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.80</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>1.79</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>1.41</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.39</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>−</mo> <mn>0.005</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.985</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mi>z</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.75</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>1.49</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>1.06</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>0.25</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>+</mo> <mn>0.004</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.993</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Relationship curve of the total lift in relation to the eccentricity variation. This study performed fits for the <math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>z</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of sliders, generating the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>z</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>5.51</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>7.51</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>0.80</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>3.33</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mn>18.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.986</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>z</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>9.36</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>15.29</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>4.06</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>2.34</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mn>17.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.957</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>z</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>13.16</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>26.97</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>21.49</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>7.33</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <mn>18.28</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.952</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>z</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>11.64</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>23.86</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>19.36</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>6.59</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>+</mo> <mn>18.30</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.951</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Relationship curve of the total torque in relation to the eccentricity variation. This study performed fits for the <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>y</mi> <mi>i</mi> </mrow> </msub> </semantics></math> variables associated with four types of sliders, generating the following equations and <math display="inline"><semantics> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mn>2</mn> </msup> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>y</mi> <msup> <mn>1</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>4.91</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>9.11</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>1.42</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>4.24</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <mn>0.15</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.997</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>y</mi> <msup> <mn>2</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>13.89</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>25.05</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>10.26</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>2.67</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> <mo>−</mo> <mn>0.22</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.993</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>y</mi> <msup> <mn>3</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>14.73</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>4</mn> </msubsup> <mo>+</mo> <mn>28.60</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>3</mn> </msubsup> <mo>−</mo> <mn>14.17</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>1.63</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>3</mn> </msub> <mo>−</mo> <mn>0.11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.999</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>y</mi> <msup> <mn>4</mn> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <mn>13.04</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>4</mn> </msubsup> <mo>−</mo> <mn>15.40</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>3</mn> </msubsup> <mo>+</mo> <mn>5.53</mn> <msubsup> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> <mn>2</mn> </msubsup> <mo>−</mo> <mn>3.07</mn> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">¯</mo> </mover> <mn>4</mn> </msub> <mo>−</mo> <mn>0.12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.996</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>The curve of the relationship among the experimental data, the fitted mathematical model, and the theoretical mathematical model.</p> ">
Abstract
:1. Introduction
- (1)
- Multi-rotor spherical robots [4] generate thrust through the rotation of their rotors, enabling amphibious movement. These robots are widely studied for their simplicity in design and control, but they often face challenges related to energy efficiency and stability in terrestrial mode due to their reliance on rotor thrust for both aerial and ground locomotion.
- (2)
- Rotor-control surface spherical robots [5] adjust the direction of the rotor wake by controlling the aerodynamic action of the control surface, thereby meeting the requirements of flight attitude adjustment. These robots offer improved maneuverability in flight but often suffer from reduced controllability in terrestrial mode due to the complexity of their control surfaces.
- (3)
- Coaxial-rotor spherical robots [6] achieve heading control by generating unbalanced torque through the differential in collective pitch between the upper and lower rotors. These robots are known for their compact design and high aerodynamic efficiency, but they also exhibit limitations in terrestrial mode, particularly in terms of control accuracy and terrain adaptability.
- (1)
- Demonstrate that the BYQ-A1 robot’s variable-center slider leads to an internal ground effect and ceiling effect.
- (2)
- Show that the internal ground effect and ceiling effect of the BYQ-A1 robot augment the lift of the upper rotor and the lower rotor, while the total lift experiences minimal variation due to air resistance.
- (3)
- Establish that the strength of the internal ground effect and ceiling effect is directly proportional to the cross-sectional area of the slider and is unrelated to the height of the slider.
- (4)
- Investigate the regularity of the eccentricity of the slider on the aerodynamic properties of the BYQ-A1 robot.
- (1)
- This study shows that the slider inside the BYQ-A1 robot induces internal ground and ceiling effects. Specifically, in flight mode, when the slider is positioned midway between the upper and lower rotors, the BYQ-A1 robot generates an internal ground effect on the upper windward side of the slider and an internal ceiling effect on its lower surface. These effects enhance the lift produced by the upper and lower rotors. The increased total lift compensates for the air resistance caused by the slider.
- (2)
- The BYQ-A1 robot features a clever and simple structural design that enables amphibious movement while maintaining a relatively low overall weight. By leveraging the principle of the variable mass center, the BYQ-A1 integrates its variable-mass-center drive mechanism with the ducted coaxial-rotor drive mechanism and the gyro frame drive mechanism to achieve amphibious functionality. This design, which emphasizes component reuse, effectively reduces the overall mass of the robot.
- (3)
- This study introduces a novel aerodynamic modeling method for the BYQ-A1 robot and similar configurations. By combining the Blade Element Momentum theory and the Wall Jet theory, this study establishes a theoretical model, which is further refined using experimental results. This approach ultimately yields a precise aerodynamic model for the system.
2. Comprehensive Design and Aerodynamic Modeling
2.1. Comprehensive Design
2.1.1. The BYQ-A1 Robot Overview
2.1.2. Parameter Design in Flight Mode
2.1.3. Parameter Design in Land Mode
2.2. Aerodynamic Modeling
2.2.1. Single-Rotor Aerodynamic Model
2.2.2. Coaxial-Rotor Aerodynamic Model
2.2.3. Ducted Single-Rotor Aerodynamic Model
2.2.4. Ducted Coaxial-Rotor Aerodynamic Model
- (1)
- Upper rotor aerodynamic model
- (2)
- Lower rotor aerodynamic model
2.2.5. The Aerodynamic Model of BYQ-A1 with a Slider
3. Experimental Investigation of BYQ-A1 Aerodynamic Performance
3.1. Orthogonal Testing Design
3.2. Instrumented Test Platform
3.3. Testing Procedures
4. Results and Discussion
4.1. Aerodynamic Properties of the Lower Rotor
4.2. Aerodynamic Properties of the Upper Rotor
4.3. Aerodynamic Properties of the Variable-Mass-Center Slider
4.4. Overall Aerodynamic Properties of the BYQ-A1
4.5. Optimization of Theoretical Model
5. Conclusions
- (1)
- The slider resulted in the BYQ-A1 robot experiencing internal ground and ceiling effects. The rule of the influence of the slider on the aerodynamic properties of BYQ-A1 was confirmed through experimental measurements. The values of the theoretical aerodynamic models for the upper-rotor lift, lower-rotor lift, resistance on the slider, and total lift were 0.854, 0.871, 0.892, and 0.863, respectively, verifying that the aerodynamic model established based on the BEMT and the Wall Jet Theory was reasonable.
- (2)
- The slider generated internal ground and ceiling effects within the BYQ-A1, which enhanced the lift of the upper and lower rotors when the slider was equipped compared to when it was not. The increased total lift compensated for the additional aerodynamic drag caused by the presence of the slider. With the variety in eccentricity , the total lift varied within a certain range when the variable-mass-center slider was equipped compared to when it was not. This result provides valuable insights and guidance for selecting power batteries in the role of the sliders.
- (3)
- The intensity of the internal ground and ceiling effects present within the BYQ-A1 was directly proportional to the cross-sectional area of the slider and was irrelevant to the height of the slider (within the range of 40 mm–80 mm). With the increase in cross-sectional area of the slider, the lift of both the upper and lower rotors increased; however, there was almost no change in the lift of the upper and lower rotors as the height of the slider increased.
- (4)
- The change in eccentricity of the slider had a certain regularity in its impact on the aerodynamic properties of the BYQ-A1 robot. With the increase in eccentricity, the lift of the lower rotor initially rose and then decreased, as did the torque of the lower rotor. The changes in lift and y-axis torque of the upper rotor were insignificant. The change in resistance experienced by the slider was also insignificant. The torque experienced by the slider initially rose and then dropped. The total lift initially decreased and then rose. The total torque around the y-axis initially dropped and then rose.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, B.; Ruan, J.; Rong, X. Research of Mammal Bionic Quadruped Robots: A Review. In Proceedings of the 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM), Qingdao, China, 17–19 September 2011. [Google Scholar]
- Coleman, C.P. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research; NASA: Washington, DC, USA, 1997.
- Liu, Y.; Wang, Y.; Guan, X.; Wang, Y.; Jin, S.; Hu, T.; Ren, W.; Hao, J.; Zhang, J.; Li, G. Multi-Terrain Velocity Control of the Spherical Robot by Online Obtaining the Uncertainties in the Dynamics. IEEE Robot. Autom. Lett. 2022, 7, 2732–2739. [Google Scholar] [CrossRef]
- Zhou, Q.-L.; Zhang, Y.; Qu, Y.-H.; Rabbath, C.-A. Dead Reckoning and Kalman Filter Design for Trajectory Tracking of a Quadrotor Uav. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, China, 15–17 July 2010. [Google Scholar]
- Bose, S.; Verma, R.; Garuda, K.; Tripathi, A.; Clement, S. Modeling, Analysis and Fabrication of a Thrust Vectoring Spherical Vtol Aerial Vehicle. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014. [Google Scholar]
- Briod, A.; Kornatowski, P.; Zufferey, J.; Floreano, D. A Collision-Resilient Flying Robot. J. Field Robot. 2014, 31, 496–509. [Google Scholar] [CrossRef]
- Tardaguila, B.; Claus, S.; Herrero, M.M.; Wulf, J.D.; Nagels, L.; Verwulgen, S. Ground Effect on a Landing Platform for an Unmanned Aerodynamic System. AHFE Int. 2023, 93, 58–67. [Google Scholar]
- Yin, B.; Yang, G.; Prapamonthon, P. Finite Obstacle Effect on the Aerodynamic Performance of a Hovering Wing. Phys. Fluids 2019, 31, 10. [Google Scholar] [CrossRef]
- Luo, Y.; Ai, T.; He, Y.; Zhao, Z.; Xu, B.; Qian, Y.; Peng, J.; Zhang, Y. Aerodynamic Analysis on Unsteady Characteristics of a Ducted Fan Hovering in Ceiling Effect. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2196327. [Google Scholar] [CrossRef]
- Mi, B.-G. Numerical Investigation on Aerodynamic Performance of a Ducted Fan under Interferences from the Ground, Static Water and Dynamic Waves. Aerosp. Sci. Technol. 2020, 100, 105821. [Google Scholar] [CrossRef]
- Deng, S.; Wang, S.; Zhang, Z. Aerodynamic Performance Assessment of a Ducted Fan Uav for Vtol Applications. Aerosp. Sci. Technol. 2020, 103, 105895. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Y.; Zhou, C.; Chu, S.; Wu, J. Aerodynamic Performance of Hovering Micro Revolving Wings in Ground and Ceiling Effects at Low Reynolds Number. Chin. J. Aeronaut. 2023, 36, 152–165. [Google Scholar] [CrossRef]
- Matus-Vargas, A.; Rodriguez-Gomez, G.; Martinez-Carranza, J. Ground Effect on Rotorcraft Unmanned Aerial Vehicles: A Review. Intell. Serv. Robot. 2021, 14, 99–118. [Google Scholar] [CrossRef]
- Kim, K.; Spieler, P.; Lupu, E.; Ramezani, A.; Chung, S.-J. A Bipedal Walking Robot That Can Fly, Slackline, and Skateboard. Sci. Robot. 2021, 6, eabf8136. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-H.; Liu, S.-A.; Zhang, G.-Y.; Wang, C.-X. Global Optimization for Ducted Coaxial-Rotors Aircraft Based on Kriging Model and Improved Particle Swarm Optimization Algorithm. J. Cent. South Univ. 2015, 22, 1315–1323. [Google Scholar] [CrossRef]
- Lei, Y.; Bai, Y.; Xu, Z.; Gao, Q.; Zhao, C. An Experimental Investigation on Aerodynamic Performance of a Coaxial Rotor System with Different Rotor Spacing and Wind Speed. Exp. Therm. Fluid Sci. 2013, 44, 779–785. [Google Scholar] [CrossRef]
- Sunada, S.; Tanaka, K.; Kawashima, K. Maximization of Thrust-Torque Ratio of a Coaxial Rotor. J. Aircr. 2005, 42, 570–572. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Jia, H. Aerodynamics Optimization of a Ducted Coaxial Rotor in Forward Flight Using Orthogonal Test Design. Shock Vib. 2018, 2018, 2670439. [Google Scholar] [CrossRef]
- Chase, R.; Pandya, A. A Review of Active Mechanical Driving Principles of Spherical Robots. Robotics 2012, 1, 3–23. [Google Scholar] [CrossRef]
- Qin, Z.; Song, J.; Gong, X.; Liu, C. Vwder: A Variable Wheel-Diameter Ellipsoidal Robot. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024. [Google Scholar]
- Yu, T.; Sun, H.; Jia, Q.; Zhao, W. Path Following Control of a Spherical Robot Rolling on an Inclined Plane. Sens. Transducers 2013, 21, 42. [Google Scholar]
- Lee, T.E.; Leishman, J.G.; Rand, O. Design and Testing of a Ducted Coaxial Rotor System for Application to a Micro Aerial Vehicle. In Annual Forum Proceedings–American Helicopter Society; AHS International: Alexandria, VA, USA, 2010. [Google Scholar]
- Leishman, G.J. Principles of Helicopter Aerodynamics with Cd Extra; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Li, H.; Jia, H.-G.; Chen, Z.-B. Analysis and Experiment on Aerodynamic Characteristics of Coaxial Rotor System. Opt. Precis. Eng. 2021, 29, 2140–2148. [Google Scholar] [CrossRef]
- Jiang, Y. Key Technologies Research on Aerodynamic Shape of Ducted Co-axial Robot UAV; University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences): Changchun, China, 2017. [Google Scholar]
- Li, H.; Chen, Z.; Jia, H. Experimental Investigation on Hover Performance of a Ducted Coaxial-Rotor Uav. Sensors 2023, 23, 6413. [Google Scholar] [CrossRef] [PubMed]
- Conyers, S.A. Empirical Evaluation of Ground, Ceiling, and Wall Effect for Small-Scale Rotorcraft; University of Denver: Denver, CO, USA, 2019. [Google Scholar]
- Conyers, S.A.; Rutherford, M.J.; Valavanis, K.P. An Empirical Evaluation of Ground Effect for Small-Scale Rotorcraft. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar]
- Tanabe, Y.; Saito, S.; Ooyama, N.; Hiraoka, K. Study of a Downwash Caused by Hovering Rotor in Ground Effect. 2008. Available online: https://api.semanticscholar.org/CorpusID:59407775 (accessed on 24 February 2025).
- Zhifei, W.; Hua, W. Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines. Chin. J. Aeronaut. 2012, 25, 887–895. [Google Scholar]
Variable | Value |
---|---|
Spherical shell radius | 250 mm |
Rotor model | 406.4 × 165.1 mm |
Paddle radius (R) 1 | 203.2 mm |
Blade-root cut-out | 0.3R mm |
Rotor distance | R mm |
Density of air () | 1.29 kg/m3 |
Rotation rate () | 576.7–756.6 rad/s |
Total weight | <4.0 kg |
>10° |
Type Number | Length/mm | Width/mm | Height/mm | Weight/g | Capacity/mAh |
---|---|---|---|---|---|
165 | 100 | 40 | 1376 | 10,000 | |
165 | 100 | 80 | 2752 | 20,000 | |
136 | 100 | 80 | 1920 | 12,000 | |
72 | 100 | 80 | 1320 | 7800 |
Test Number | ||||
---|---|---|---|---|
1 | Without the slider. | |||
2 | 0 | 0 | 0 | 0 |
3 | 10 | 10 | 10 | 10 |
4 | 20 | 20 | 20 | 20 |
5 | 30 | 30 | 30 | 30 |
6 | 40 | 40 | 40 | 40 |
7 | 50 | 50 | 50 | 50 |
8 | 60 | 60 | 60 | 60 |
9 | 70 | 70 | 70 | 70 |
10 | 80 | 80 | 80 | 80 |
11 | 90 | 90 | 90 | 90 |
12 | × | × | 100 | 100 |
13 | × | × | × | 110 |
14 | × | × | × | 120 |
15 | × | × | × | 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, D.; Sun, H.; Lan, X.; Li, M. Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot. Actuators 2025, 14, 118. https://doi.org/10.3390/act14030118
Huo D, Sun H, Lan X, Li M. Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot. Actuators. 2025; 14(3):118. https://doi.org/10.3390/act14030118
Chicago/Turabian StyleHuo, Dongshuai, Hanxu Sun, Xiaojuan Lan, and Minggang Li. 2025. "Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot" Actuators 14, no. 3: 118. https://doi.org/10.3390/act14030118
APA StyleHuo, D., Sun, H., Lan, X., & Li, M. (2025). Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot. Actuators, 14(3), 118. https://doi.org/10.3390/act14030118