The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets
<p>Effects of coffee cherry pulp extract on lipid profile. CON: control group with basal diet; AGPs: antibiotic growth promoter (AGP) group; CCPE 0.5: coffee cherry pulp extract at 0.5 g/kg diet; CCPE 1.0: coffee cherry pulp extract at 1.0 g/kg diet; CCPE 2.0: coffee cherry pulp extract at 2.0 g/kg diet; HDL: high-density lipoprotein; LDL: low-density lipoprotein. <sup>a, b, c, d</sup> Means with different superscripts are significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 2
<p>Histological representations of the H&E-stained duodenum, jejunum, and ileum sections of broiler chickens. CON: control group with basal diet; AGP: antibiotic growth promoter (AGP) group; CCPE 0.5: coffee cherry pulp extract at 0.5 g/kg diet; CCPE 1.0: coffee cherry pulp extract at 1.0 g/kg diet; CCPE 2.0: coffee cherry pulp extract at 2.0 g/kg diet. Magnification was 10× the objective lens. Scale bars represent 200 µm.</p> "> Figure 3
<p>Cecum microbial count of broiler chickens impacted by dietary supplements with different levels of coffee cherry pulp extract. CON: control group with basal diet; AGP: antibiotic growth promoter group; CCPE 0.5: coffee cherry pulp extract at 0.5 g/kg diet; CCPE 1.0: coffee cherry pulp extract at 1.0 g/kg diet; CCPE 2.0: coffee cherry pulp extract at 2.0 g/kg diet.</p> "> Figure 4
<p>Expressions of antioxidant- and immune-related genes in the liver of broilers fed with coffee cherry pulp extract. Three replicates. IL-1β: interleukin 1 beta; IL6: interleukin 6; TNF-α: tumor necrosis factor alpha; MnSOD: manganese-containing superoxide dismutase; CAT: catalase; GSH-Px1: glutathione peroxidase 1. <sup>a, b, c, d, e</sup> Means with different superscripts are significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Expressions of antioxidant- and immune-related genes in the ileum of broilers fed with coffee cherry pulp extract. Three replicates. IL-1β: interleukin 1 beta; IL6: interleukin 6; TNF-α: tumor necrosis factor alpha; MnSOD: manganese-containing superoxide dismutase; CAT: catalase; GSH-Px1: glutathione peroxidase 1. <sup>a, b, c, d, e</sup> Means with different superscripts are significantly different at <span class="html-italic">p</span> < 0.05.</p> ">
1. Introduction
2. Materials and Methods
2.1. Coffee Cherry Pulp Preparation and Extraction
2.2. Chicks, Diets, and Experimental Design
2.3. Growth Performance Determination and Economic Evaluation
2.4. Serum Biochemistry and Lipid Profiles
2.5. Characterization of Carcass and Meat Quality
2.6. Measurement of Intestinal Histomorphology
2.7. Composition of Microflora in Cecal Contents
2.8. Assessment of Gene Expressions Related to Immune Response and Antioxidant Activity
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemistry and Lipid Profiles
3.3. Carcass Characteristics
3.4. Meat Quality
3.5. Intestinal Morphology
3.6. Ceacal Microbiota Activity
3.7. Immune Response and Antioxidant-Related Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thaiphanit, S.; Wedprasert, W.; Srabua, A. Conventional and microwave-assisted extraction for bioactive compounds from dried coffee cherry peel by-products and antioxidant activity of the aqueous extracts. Sci. Asia 2020, 46, 12–18. [Google Scholar] [CrossRef]
- Chamyuang, S.; Owatworakit, A.; Intatha, U.; Duangphet, S. Coffee pectin production: An alternative way for agricultural waste management in coffee farms. Sci. Asia 2021, 47, 90–95. [Google Scholar] [CrossRef]
- Oropeza-Mariano, E.; Ortega-Cerrilla, M.E.; Herrera-Haro, J.G.; Ramírez-Bribiesca, E.J.; Salinas-Ríos, T. Use of pulp and husk of coffee in animal feed. Agro Product. 2022, 15, 149–158. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Carmen, M.-T.; Lorena, Z.-C.; Alexander, V.-A.; Amandio, V.; Raúl, S. Coffee pulp: An industrial by-product with uses in agriculture, nutrition and biotechnology. Rev. Agric. Sci. 2020, 8, 323–342. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Abshiru, N. Quantification of major bioactive constituents, antioxidant activity, and enzyme inhibitory effects of whole coffee cherries (Coffea arabica) and their extracts. Molecules 2021, 26, 4306. [Google Scholar] [CrossRef]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.; Oliveira, M.B.P.; Ferreira, H.; Alves, R.C. Bioactive potential and chemical composition of coffee by-products: From pulp to silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef]
- Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2017, 221, 969–975. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, P.; Lv, X.; Zhou, Y.; Li, X.; Ma, S.; Zhao, J. Effects of chlorogenic acid on performance, anticoccidial indicators, immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers. Animals 2022, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zha, P.; Guo, L.; Chen, Y.; Zhou, Y. Effects of different levels of dietary chlorogenic acid supplementation on growth performance, intestinal integrity, and antioxidant status of broiler chickens at an early age. Anim. Feed Sci. Technol. 2023, 297, 115570. [Google Scholar] [CrossRef]
- Zha, P.; Wei, L.; Liu, W.; Chen, Y.; Zhou, Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult. Sci. 2023, 102, 102479. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, D.; Yu, B.; Zheng, P.; Mao, X.; Luo, Y.; Li, Y.; He, J. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct. 2018, 9, 4968–4978. [Google Scholar] [CrossRef] [PubMed]
- Kamely, M.; Karimi Torshizi, M.A.; West, J.; Niewold, T. Impacts of caffeine on resistant chicken’s performance and cardiovascular gene expression. J. Anim. Physiol. Anim. Nutr. (Berl.) 2022, 106, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT-Food Sci. Technol. 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Donkoh, A.; Atuahene, C.; Kese, A.; Mensah-Asante, B. The nutritional value of dried coffee pulp (DCP) in broiler chickens’ diets. Anim. Feed Sci. Technol. 1988, 22, 139–146. [Google Scholar] [CrossRef]
- Antúnez, S.; Fuentes, N.; Gutierrez, M.; Carcelén, F.; Trillo, F.; López, S.; Bezada, S.; Rivadeneira, V.; Pizarro, S.; Nuñez, J. Effect of different levels of extruded coffee (Coffea arabica) pulp flour on the productive performance and intestinal morphometry of Cobb 500 broiler chickens. Animals 2024, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Matei, I.A.; Filip, G.A.; Vlase, L.; Crișan, G. The effect of extraction methods on phytochemicals and biological activities of green coffee beans extracts. Plants 2023, 12, 712. [Google Scholar] [CrossRef]
- Kusuma, S.; Wulandari, S.; Nurfitriani, R.; Awaludin, A. The potential solvent for tannin extraction as a feed additive made of coffee husk (Coffea canephora) using Soxhlet Method. IOP Conf. Ser. Earth Environ. Sci. 2022, 980, 012024. [Google Scholar] [CrossRef]
- Vijayalaxmi, S.; Jayalakshmi, S.; Sreeramulu, K. Polyphenols from different agricultural residues: Extraction, identification and their antioxidant properties. J. Food Sci. Technol. 2015, 52, 2761–2769. [Google Scholar] [CrossRef]
- Srinual, O.; Kanmanee, C.; Srinual, P.; Chaiyaso, T.; Yachai, M.; Tapingkae, T.; Tapingkae, W. Innovation and Utilization of Functional Feed Additives from Maize By-Products in Broiler Chickens. Animals 2024, 14, 3198. [Google Scholar] [CrossRef]
- AOAC International. AOAC International Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Son, J.; Lee, W.-D.; Kim, C.-H.; Kim, H.; Hong, E.-C.; Kim, H.-J. Effect of dietary crude protein reduction levels on performance, nutrient digestibility, nitrogen utilization, blood parameters, meat quality, and welfare index of broilers in welfare-friendly environments. Animals 2024, 14, 3131. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yuan, C.; Huang, Y.; Jiang, L.; Qian, L. Effects of phytosterol supplementation on growth performance, serum lipid, proinflammatory cytokines, intestinal morphology, and meat quality of white feather broilers. Poult. Sci. 2021, 100, 101096. [Google Scholar] [CrossRef] [PubMed]
- Ashour, E.A.; El-Hack, M.E.A.; Shafi, M.E.; Alghamdi, W.Y.; Taha, A.E.; Swelum, A.A.; Tufarelli, V.; Mulla, Z.S.; El-Ghareeb, W.R.; El-Saadony, M.T. Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers. Agriculture 2020, 10, 457. [Google Scholar] [CrossRef]
- Zhang, W.; Marwan, A.-H.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Breast meat quality of broiler chickens can be affected by managing the level of nitric oxide. Poult. Sci. 2013, 92, 3044–3049. [Google Scholar] [CrossRef]
- Qu, Z.; Tang, J.; Sablani, S.S.; Ross, C.F.; Sankaran, S.; Shah, D.H. Quality changes in chicken livers during cooking. Poult. Sci. 2021, 100, 13. [Google Scholar] [CrossRef]
- Srinual, O.; Punyatong, M.; Moonmanee, T.; Intawicha, P.; Yachai, M.; Tapingkae, W. Replacement of fish meal with suckermouth armored catfish and its effect on performance and intestinal morphology of indigenous Thai chicken. J. Anim. Plant Sci. 2020, 30, 803. [Google Scholar]
- Lefter, N.A.; Gheorghe, A.; Habeanu, M.; Ciurescu, G.; Dumitru, M.; Untea, A.E.; Vlaicu, P.A. Assessing the effects of microencapsulated Lactobacillus salivarius and cowpea seed supplementation on broiler chicken growth and health status. Front. Vet. Sci. 2023, 10, 1279819. [Google Scholar] [CrossRef]
- Van der Poel, A.; Abdollahi, M.; Cheng, H.; Colovic, R.; Den Hartog, L.; Miladinovic, D.; Page, G.; Sijssens, K.; Smillie, J.; Thomas, M. Future directions of animal feed technology research to meet the challenges of a changing world. Anim. Feed Sci. Technol. 2020, 270, 114692. [Google Scholar] [CrossRef]
- Widjastuti, T.; Wiradimadja, R.; Setiyatwan, H.; Rusmana, D. The effect of ration containing mangosteen peel meal (Garcinia mangostana) on final body weight, carcass composition and cholesterol content of Sentul chicken. In Proceedings of the 3rd International Conference of Integrated Intellectual Community (ICONIC), Hanover, Germany, 28–29 April 2018. [Google Scholar]
- Yang, C.; Yang, I.; Oh, D.; Bae, I.; Cho, S.G.; Kong, I.; Uuganbayar, D.; Nou, I.; Choi, K. Effect of green tea by-product on performance and body composition in broiler chicks. AJAS 2003, 16, 867–872. [Google Scholar] [CrossRef]
- Geremu, M.; Tola, Y.B.; Sualeh, A. Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chem. Biol. Technol. Agric. 2016, 3, 25. [Google Scholar] [CrossRef]
- Kamely, M.; Torshizi, M.A.K.; Rahimi, S. Blood biochemistry, thyroid hormones, and performance in broilers with ascites caused by caffeine. Poult. Sci. 2016, 95, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, N.S.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Brown, L.; Panchal, S.K. Coffee pulp, a by-product of coffee production, modulates gut microbiota and improves metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Pathogens 2021, 10, 1369. [Google Scholar] [CrossRef]
- Hashem, M.A.; Hassan, A.E.; Abou-Elnaga, H.M.; Abdo, W.; Dahran, N.; Alghamdi, A.H.; Elmahallawy, E.K. Modulatory effect of dietary probiotic and prebiotic supplementation on growth, immuno-biochemical alterations, DNA damage, and pathological changes in E. coli-infected broiler chicks. Front. Vet. Sci. 2022, 9, 964738. [Google Scholar] [CrossRef]
- Sonwane, S.; Ingole, R.; Hedau, M.; Rathod, P.; Hajare, S.; Ingawale, M. Ameliorative effect of Andrographis paniculata on hematobiochemical parameters in Escherichia coli induced broilers. J. Pharmacogn. Phytochem. 2017, 6, 1284–1288. [Google Scholar]
- Lipiński, K.; Mazur, M.; Antoszkiewicz, Z.; Purwin, C. Polyphenols in monogastric nutrition—A review. Ann. Anim. Sci. 2017, 17, 41–58. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Alqhtani, A.H.; Al-Abdullatif, A.A.; Suliman, G.M.; Alharthi, A.S.; Alhotan, R.A. Effect of Rumex nervosus leaves as a dietary supplement in broiler diets on the breast quality characteristics of broiler chickens. Cogent Food Agric. 2024, 10, 2381610. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, M.; Wang, T.; Wang, D.; Sun, C.; Bian, H.; Li, P.; Zou, Y.; Xu, W. Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poult. Sci. 2020, 99, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.C.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.; Muchenje, V.; De Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.; Simoncini, N.; Spezzano, V.M.; Ferri, M.; Tassoni, A. Antioxidant and sensory properties of raw and cooked pork meat burgers formulated with extract from non-compliant green coffee beans. Foods 2023, 12, 1264. [Google Scholar] [CrossRef]
- Zha, P.; Chen, Y.; Zhou, Y. Effects of dietary supplementation with different levels of palygorskite-based composite on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2023, 102, 102651. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Salameh, M.; Phetsomphou, S.; Yang, H.; Seo, C. Application of caffeine, 1, 3, 7-trimethylxanthine, to control Escherichia coli O157: H7. Food Chem. 2006, 99, 645–650. [Google Scholar] [CrossRef]
- Kabir, F.; Katayama, S.; Tanji, N.; Nakamura, S. Antimicrobial effects of chlorogenic acid and related compounds. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 359–365. [Google Scholar] [CrossRef]
- Elsayed, M.S.A.E.; Shehata, A.A.; Ammar, A.M.; Allam, T.S.; Ali, A.S.; Ahmed, R.H.; Mohammed, A.A.; Tarabees, R. The beneficial effects of a multistrain potential probiotic, formic, and lactic acids with different vaccination regimens on broiler chickens challenged with multidrug-resistant Escherichia coli and Salmonella. Saudi J. Biol. Sci. 2021, 28, 2850–2857. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Shi, S.; Zhou, Y.; Zhang, K.; Wang, Y.; Zhao, J. Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poult. Sci. 2022, 101, 102036. [Google Scholar] [CrossRef]
- Qosimah, D.; Rosyidi, D.; Radiati, L.E.; Amri, I.A.; Prasetyo, D.; Permata, F.S.; Beltran, M.A.G.; Aulanni’am, A.; Annisa, A. Immunomodulator effect of Robusta Lampung coffee extract (Coffee Canephora Var Robusta) in layer chicken infected with Salmonella enteritidis bacteria. J. Ilmu-Ilmu Peternak 2020, 30, 69–79. [Google Scholar] [CrossRef]
- Roberto, M.; Carconi, C.; Cerreti, M.; Schipilliti, F.M.; Botticelli, A.; Mazzuca, F.; Marchetti, P. The challenge of ICIs resistance in solid tumours: Could microbiota and its diversity be our secret weapon? Front. Immunol. 2021, 12, 704942. [Google Scholar] [CrossRef] [PubMed]
- Sweitzer, S.; Deleo, J.; Martin, D. Intrathecal interleukin-1 receptor antagonist and tumor necrosis factor binding protein exhibit an antiallodynic effect in a rat model of neuropathic pain. Soc. Neurosci. Abstr. 1999, 25, 579. [Google Scholar]
- Yan, H.Q.; Banos, M.A.; Herregodts, P.; Hooghe, R.; Hooghe-Peters, E.L. Expression of interleukin (IL)-1β, IL-6 and their respective receptors in the normal rat brain and after injury. Eur. J. Immunol. 1992, 22, 2963–2971. [Google Scholar] [CrossRef]
- Ferreira, C.A.; Ni, D.; Rosenkrans, Z.T.; Cai, W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, 11, 4955–4984. [Google Scholar] [CrossRef]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
CCPE | |
---|---|
Total phenolic compounds | 378.33 ± 17.62 |
Chlorogenic acid | 1015.61 ± 1.69 |
Gallic acid | 91.22 ± 6.06 |
Caffeine | 254.65 ± 2.09 |
Starter (1–14 d) | Finisher (15–35 d) | |
---|---|---|
Ingredients (%) | ||
Yellow corn | 57.17 | 59.58 |
Raw rice bran | 5.00 | 5.00 |
Soybean meal (48% CP) | 28.62 | 20.74 |
Rapeseed meal (38% CP) | 3.20 | 6.00 |
Pork meal (50% CP) | 3.00 | 4.00 |
Soybean oil | - | 2.94 |
Salt | 0.26 | 0.14 |
L-lysine | 0.10 | 0.08 |
DL-methionine | 0.25 | 0.15 |
Biofoss (21% P) 1 | 0.70 | 0.02 |
Calcium carbonate | 1.07 | 0.64 |
Premixes 2 | 0.63 | 0.71 |
Cornstarch | 0.10 | 0.10 |
Calculated composition | ||
Metabolizable energy (kcal/kg) | 2987.89 | 3095.98 |
Calcium (%) | 0.61 | 0.41 |
Available phosphorus (%) | 0.59 | 0.39 |
Sodium (%) | 0.20 | 0.18 |
Chlorine (%) | 0.27 | 0.23 |
Digestible lysine (%) | 1.20 | 1.12 |
Digestible Met (%) | 0.57 | 0.48 |
Digestible Met + Cys (%) | 0.92 | 0.80 |
Digestible tryptophan (%) | 0.26 | 0.25 |
Digestible linoleic (%) | 1.56 | 1.64 |
Choline (mg/kg) | 956.90 | 927.80 |
Target Gene | Primer Sequences | Accession Number | Product Size (bp) |
---|---|---|---|
β-actin | F: GAGAAATTGTGCGTGACATCA | L08165 | 152 |
R: CCTGAACCTCTCATTGCCA | |||
IL-1β | F: TGGGCATCAAGGGCTACA | Y15006 | 244 |
R: TCGGGTTGGTTGGTGATG | |||
IL-6 | F: CAAGGTGACGGAGGAGGAC | AJ309540 | 254 |
R: TGGCGAGGAGGGATTTCT | |||
TNF-α | F: TGTGTATGTGCAGCAACCCGTAGT | NM204267 | 229 |
R: GGCATTGCAATTTGGACAGAAGT | |||
MnSOD | F: CACTCTTCCTGACCTGCCTTACG | NM204211 | 146 |
R: TTGCCAGCGCCTCTTTGTATT | |||
CAT | F: CTGTTGCTGGAGAATCTGGGTC | NM001031215 | 160 |
R: TGGCTATGGATGAAGGATGGAA | |||
GSH-Px1 | F: GCGACTTCCTGCAGCTCAACGA | GQ502186.2 | 99 |
R: CGTTCTCCTGGTGCCCGAAT |
Parameter | CON | AGPs, g/kg | Coffee Cherry Pulp Extract, g/kg | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 2.0 | ||||
1–14 days | |||||||
Initial weight (g) | 46.40 | 46.40 | 46.20 | 46.80 | 46.40 | 0.337 | 0.990 |
Final weight (g) | 551.20 b | 536.40 b | 650.50 a | 658.60 a | 653.20 a | 13.223 | 0.001 |
ADG (g/d) | 36.86 b | 35.00 b | 43.16 a | 43.70 a | 43.34 a | 1.040 | 0.003 |
ADFI (g/d) | 33.82 | 34.37 | 32.21 | 31.68 | 34.67 | 0.429 | 0.088 |
FCR | 0.93 ab | 0.99 a | 0.75 c | 0.73 c | 0.81 bc | 0.027 | 0.001 |
15–35 days | |||||||
Initial weight (g) | 551.20 b | 536.40 b | 650.50 a | 658.60 a | 653.20 a | 13.223 | 0.001 |
Final weight (g) | 1760.00 b | 1720.00 b | 1980.00 a | 2000.00 a | 2000.00 a | 32.619 | 0.001 |
ADG (g/d) | 57.56 bc | 55.41 c | 66.37 a | 63.93 ab | 63.20 ab | 1.255 | 0.014 |
ADFI (g/d) | 121.80 a | 113.20 ab | 121.87 a | 108.11 b | 105.31 b | 2.178 | 0.026 |
FCR | 2.12 a | 2.06 ab | 1.84 a | 1.71 b | 1.68 b | 0.055 | 0.018 |
1–35 days | |||||||
Initial weight (g) | 46.40 | 46.40 | 46.20 | 46.80 | 46.40 | 0.337 | 0.990 |
Final weight (g) | 1760.00 b | 1720.00 b | 1980.00 a | 2000.00 a | 2000.00 a | 32.619 | 0.001 |
ADG (g/d) | 48.96 bc | 46.67 c | 57.09 a | 54.70 ab | 55.82 ab | 1.234 | 0.013 |
ADFI (g/d) | 86.60 a | 81.67 ab | 86.00 a | 77.54 b | 77.06 b | 1.187 | 0.008 |
FCR | 1.77 a | 1.77 a | 1.51 b | 1.42 b | 1.40 b | 0.045 | 0.001 |
Economic evaluation | |||||||
Total feed cost/chick, USD | 1.73 a | 1.63 ab | 1.71 a | 1.55 b | 1.54 b | 0.024 | 0.008 |
Feed cost/kg BW gain, USD | 1.01 a | 1.01 a | 0.86 b | 0.81 b | 0.79 b | 0.025 | 0.001 |
Total revenue, USD | 2.01 b | 1.96 b | 2.26 a | 2.28 a | 2.28 a | 0.037 | 0.001 |
Net profit, USD | 0.28 c | 0.33 c | 0.54 b | 0.73 a | 0.74 a | 0.047 | 0.001 |
Benefit/cost ratio | 1.17 c | 1.20 bc | 1.31 b | 1.48 a | 1.48 a | 0.031 | 0.001 |
Parameter | CON | AGPs, g/kg | Coffee Cherry Pulp Extract, g/kg | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 2.0 | ||||
ALT (U/L) | 3.67 a | 3.00 ab | 2.00 c | 2.33 bc | 2.67 bc | 0.182 | 0.009 |
Globulin (g/dl) | 2.13 | 1.97 | 1.97 | 1.90 | 2.20 | 0.048 | 0.246 |
ALP (U/L) | 1864.00 | 1771.33 | 2082.67 | 2083.33 | 2020.33 | 68.167 | 0.554 |
Creatinine (mg/dl) | 0.29 | 0.52 | 0.49 | 0.31 | 0.37 | 0.035 | 0.116 |
Total protein (g/dl) | 3.33 | 3.27 | 3.23 | 3.00 | 3.60 | 0.070 | 0.071 |
BUN (mg/dl) | 1.20 | 0.73 | 1.00 | 1.30 | 0.87 | 0.101 | 0.413 |
Albumin (g/dl) | 1.20 | 1.30 | 1.27 | 1.10 | 1.40 | 0.036 | 0.074 |
AST (U/L) | 337.00 ab | 351.67 a | 284.00 bc | 244.67 c | 291.33 bc | 12.150 | 0.008 |
Parameter | CON | AGPs, g/kg | Coffee Cherry Pulp Extract, g/kg | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 2.0 | ||||
Live weight (g) | 1760.00 b | 1720.00 b | 1980.00 a | 2000.00 a | 2000.00 a | 32.619 | 0.001 |
Defeathered weight (g) | 1640.00 b | 1640.00 b | 1860.00 a | 1920.00 a | 1920.00 a | 33.902 | 0.001 |
Carcass weight (g) | 1471.14 b | 1473.10 b | 1678.92 a | 1738.06 a | 1747.62 a | 32.855 | 0.001 |
Carcass percentage (%) | 84.49 | 85.58 | 84.74 | 86.95 | 87.42 | 0.469 | 0.180 |
Carcass composition (% lw) | |||||||
Neck | 4.83 | 5.22 | 6.82 | 4.48 | 4.64 | 0.633 | 0.804 |
Head | 3.27 | 3.29 | 3.30 | 3.24 | 3.29 | 0.056 | 0.998 |
Wing | 8.24 | 7.94 | 7.62 | 7.58 | 7.56 | 0.108 | 0.197 |
Drumstick | 10.35 | 10.41 | 10.31 | 10.27 | 10.34 | 0.066 | 0.976 |
Shank | 3.53 | 3.38 | 3.42 | 3.38 | 3.58 | 0.045 | 0.527 |
Skeleton | 19.39 | 19.69 | 19.74 | 20.17 | 18.77 | 0.293 | 0.682 |
Meat percentage (% lw) | |||||||
Breast | 12.55 | 12.37 | 13.18 | 13.49 | 13.24 | 0.190 | 0.284 |
Thigh | 13.48 | 12.90 | 13.65 | 13.73 | 14.03 | 0.144 | 0.141 |
Internal organ percentage (% lw) | |||||||
Liver | 2.06 | 2.41 | 2.15 | 1.95 | 2.02 | 0.059 | 0.108 |
Spleen | 0.09 | 0.09 | 0.08 | 0.07 | 0.07 | 0.004 | 0.373 |
Heart | 0.51 | 0.41 | 0.46 | 0.42 | 0.41 | 0.016 | 0.169 |
Proventriculus | 0.42 | 0.38 | 0.37 | 0.36 | 0.42 | 0.016 | 0.700 |
Gizzard | 3.08 | 2.88 | 2.59 | 2.71 | 2.47 | 0.076 | 0.080 |
Small intestine | 3.52 | 3.59 | 3.69 | 3.53 | 3.24 | 0.064 | 0.242 |
Cecum | 0.76 | 0.73 | 0.59 | 0.50 | 0.54 | 0.035 | 0.062 |
Abdominal fat | 0.53 | 0.31 | 0.37 | 0.43 | 0.44 | 0.050 | 0.732 |
Parameter | CON | AGPs, g/kg | Coffee Cherry Pulp Extract, g/kg | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 2.0 | ||||
pH 15 min | 6.02 | 5.87 | 5.47 | 5.54 | 5.81 | 0.122 | 0.62 |
pH 24 h | 6.29 | 6.38 | 6.24 | 6.49 | 6.08 | 0.191 | 0.976 |
pH 48 h | 5.55 | 5.39 | 5.37 | 5.4 | 5.48 | 0.039 | 0.561 |
Breast color (24 h) | |||||||
Lightness (L*) | 54.07 | 54.73 | 53.98 | 52.43 | 54.35 | 0.384 | 0.405 |
Redness (a*) | 0.16 | 0.26 | 0.2 | 0.63 | 0.11 | 0.179 | 0.917 |
Yellowness (b*) | 12.05 | 11.68 | 11.12 | 11.82 | 11.44 | 0.28 | 0.88 |
Thigh color (24 h) | |||||||
Lightness (L*) | 54.2 | 55.75 | 54.38 | 54.67 | 55.42 | 0.242 | 0.075 |
Redness (a*) | 1.36 | 0.15 | 0.34 | 0.85 | 0.64 | 0.17 | 0.188 |
Yellowness (b*) | 11.58 | 10.85 | 9.33 | 9.88 | 10.65 | 0.501 | 0.692 |
Breast color (48 h) | |||||||
Lightness (L*) | 53.59 | 54.3 | 53.69 | 53.2 | 51.08 | 0.751 | 0.741 |
Redness (a*) | 0.43 | 0.74 | 0.47 | 1.25 | 0.1 | 0.158 | 0.196 |
Yellowness (b*) | 12.97 | 13.59 | 12.36 | 12.23 | 10.84 | 0.389 | 0.24 |
Thigh color (48 h) | |||||||
Lightness (L*) | 54.1 | 55.53 | 55.32 | 54.69 | 55.1 | 0.201 | 0.222 |
Redness (a*) | 1.4 | 0.38 | 0.28 | 1.77 | 0.22 | 0.239 | 0.109 |
Yellowness (b*) | 13.08 | 11.52 | 10.02 | 11.38 | 11.69 | 0.359 | 0.103 |
Water holding capacity | |||||||
Breast | |||||||
Drip loss (%, 24 h) | 1.86 a | 2.08 a | 1.24 b | 1.27 b | 1.21 b | 0.091 | <0.001 |
Drip loss (%, 48 h) | 3.40 a | 3.49 a | 2.85 ab | 2.16 b | 2.27 b | 0.161 | 0.004 |
Shear force (kgf/cm2) | 3.28 | 3.28 | 3.31 | 3.29 | 3.28 | 0.007 | 0.392 |
Cooking loss (%) | 25.43 | 25.36 | 25.4 | 25.43 | 25.33 | 0.023 | 0.577 |
Thigh | |||||||
Shear force (kgf/cm2) | 4.08 | 4.08 | 4.08 | 4.11 | 4.09 | 0.007 | 0.392 |
Cooking loss (%) | 20.03 | 19.96 | 20.00 | 20.03 | 19.93 | 0.023 | 0.577 |
Items | CON | AGPs, g/kg | Coffee Cherry Pulp Extract, g/kg | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1.0 | 2.0 | ||||
Duodenum | |||||||
VH (µm) | 1068.19 e | 1087.90 d | 1163.36 a | 1137.18 b | 1113.27 c | 1.509 | 0.001 |
VW (µm) | 190.34 | 187.18 | 191.04 | 192.36 | 195.47 | 1.731 | 0.555 |
CD (µm) | 270.61 | 280.59 | 246.50 | 252.97 | 256.68 | 5.033 | 0.202 |
VH:CD | 3.99 b | 3.93 b | 4.83 a | 4.53 ab | 4.46 ab | 0.096 | 0.007 |
Jejunum | |||||||
VH (µm) | 1036.66 d | 1057.73 c | 1102.07 a | 1085.65 ab | 1075.32 ab | 3.704 | 0.001 |
VW (µm) | 185.49 | 168.82 | 186.87 | 175.27 | 169.73 | 4.277 | 0.555 |
CD (µm) | 274.68 | 275.32 | 252.93 | 258.25 | 258.00 | 3.427 | 0.084 |
VH:CD | 3.83 b | 3.90 b | 4.36 a | 4.21 ab | 4.18 ab | 0.054 | 0.002 |
Ileum | |||||||
VH (µm) | 716.57 ab | 675.95 b | 768.07 a | 755.56 a | 772.74 a | 9.178 | 0.001 |
VW (µm) | 146.94 | 145.77 | 147.53 | 144.91 | 144.40 | 1.778 | 0.966 |
CD (µm) | 136.59 | 131.01 | 136.26 | 136.22 | 135.65 | 1.098 | 0.552 |
VH:CD | 5.28 ab | 5.17 b | 5.65 a | 5.56 a | 5.70 a | 0.074 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapingkae, W.; Srinual, P.; Khamtavee, P.; Pintalerd, N.; Chaiyaso, T.; Yachai, M.; Kanmanee, C.; Lumsangkul, C.; Srinual, O. The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets. Animals 2025, 15, 244. https://doi.org/10.3390/ani15020244
Tapingkae W, Srinual P, Khamtavee P, Pintalerd N, Chaiyaso T, Yachai M, Kanmanee C, Lumsangkul C, Srinual O. The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets. Animals. 2025; 15(2):244. https://doi.org/10.3390/ani15020244
Chicago/Turabian StyleTapingkae, Wanaporn, Phatchari Srinual, Pimporn Khamtavee, Naret Pintalerd, Thanongsak Chaiyaso, Mongkol Yachai, Chanidapha Kanmanee, Chompunut Lumsangkul, and Orranee Srinual. 2025. "The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets" Animals 15, no. 2: 244. https://doi.org/10.3390/ani15020244
APA StyleTapingkae, W., Srinual, P., Khamtavee, P., Pintalerd, N., Chaiyaso, T., Yachai, M., Kanmanee, C., Lumsangkul, C., & Srinual, O. (2025). The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets. Animals, 15(2), 244. https://doi.org/10.3390/ani15020244