Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii)
<p>Identification of 34 novel single nucleotide polymorphisms (SNPs) of the frog prion protein gene (<span class="html-italic">PRNP</span>) found in this study. (<b>A</b>) The diagram describes the frog <span class="html-italic">PRNP</span> gene. In exon 2, the open reading frame (ORF) is represented by the black box. The white boxes depict non-coding exons. On the black box, the SNPs shown above are synonymous SNPs, while the SNPs shown below (marked with an asterisk) are non-synonymous. (<b>B</b>) Electropherograms describe the 34 novel SNPs discovered in the frog <span class="html-italic">PRNP</span> gene. Non-synonymous SNPs are indicated with an asterisk. The peaks in the box indicate each base of DNA sequence as follows: green: adenine; black: guanine; blue: cytosine; red: thymine. The red arrows indicate the locations of SNP sites. M/M: major allele homozygote; M/m: heterozygote; m/m: minor allele homozygote.</p> "> Figure 2
<p>The linkage disequilibrium (LD) block structure consisting of 34 SNPs located in the frog <span class="html-italic">PRNP</span> gene. The coefficient of the LD (r<sup>2</sup> value) between the SNPs was calculated by HaploView Ver. 4.2 software. The LD color scale ranges from white to black, with an increasing color intensity corresponding to higher r² values.</p> "> Figure 3
<p>The analysis of the hydrogen bond alterations in the frog prion protein (PrP) according to 6 non-synonymous SNPs was evaluated using Swiss-Pdb Viewer Ver. 4.1.0 software. (<b>A</b>) The 3D structure of frog PrP with Trp6 and Leu6 alleles. (<b>B</b>) The 3D structure of frog PrP with Cys8 and Tyr8 alleles. (<b>C</b>) The 3D structure of frog PrP with Ser143 and Asn143 alleles. (<b>D</b>) The 3D structure of frog PrP with Thr207 and Ser207 alleles. (<b>E</b>) The 3D structure of frog PrP with Arg211 and Trp211 alleles. (<b>F</b>) The 3D structure of frog PrP with Leu241 and Phe241 alleles. The red box indicates the functional groups of the target amino acid. The green and gray dotted lines indicate hydrogen bonds. The green and gray numbers indicate the length of the hydrogen bond. The orange arrow indicates the region where the hydrogen bond length changed.</p> "> Figure 4
<p>The electrostatic potential prediction of frog PrP according to six non-synonymous SNPs. (<b>A</b>) The electrostatic potential of frog PrP with Trp6 and Leu6 alleles. (<b>B</b>) The electrostatic potential of frog PrP with Cys8 and Tyr8 alleles. (<b>C</b>) The electrostatic potential of frog PrP with Ser143 and Asn143 alleles. (<b>D</b>) The electrostatic potential of frog PrP with Thr207 and Ser207 alleles. (<b>E</b>) The electrostatic potential of frog PrP with Arg211 and Trp211 alleles. (<b>F</b>) The electrostatic potential of frog PrP with Leu241 and Phe241 alleles. The color of the molecular surface indicates the electrostatic potential: blue: positive potential; red: negative potential.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animal Samples
2.2. Genomic DNA Extraction
2.3. PCR
2.4. Genotyping
2.5. In Silico Analyses
2.6. Statistical Analysis
2.7. Three-Dimensional Structure Analysis
2.8. Multiple Sequence Alignments and Phylogenetic Analysis
3. Results
3.1. Identification of the Novel Polymorphisms in the Frog PRNP Gene in 194 Dybowski’s Frogs
3.2. Haplotype Analysis of the Frog PRNP Polymorphisms
3.3. LD Analysis Among the 34 Polymorphisms in the Frog PRNP Gene
3.4. Artificial-Intelligence-Based Prediction of the 3D Structure of the Frog PrP According to Non-Synonymous SNPs
3.5. Evaluation of Functional Alteration of Frog PrP According to Non-Synonymous SNPs
3.6. In Silico Analysis of the Aggregation Propensity of the Frog PrP According to Non-Synonymous SNPs
3.7. Multiple Sequence Alignments and Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [PubMed]
- Ladogana, A.; Kovacs, G.G. Genetic Creutzfeldt-Jakob disease. Handb. Clin. Neurol. 2018, 153, 219–242. [Google Scholar] [PubMed]
- Parchi, P.; Zou, W.; Wang, W.; Brown, P.; Capellari, S.; Ghetti, B.; Kopp, N.; Schulz-Schaeffer, W.J.; Kretzschmar, H.A.; Head, M.W.; et al. Genetic influence on the structural variations of the abnormal prion protein. Proc. Natl. Acad. Sci. USA 2000, 97, 10168–10172. [Google Scholar] [CrossRef] [PubMed]
- Sigurdson, C.J.; Bartz, J.C.; Glatzel, M. Cellular and Molecular Mechanisms of Prion Disease. Annu. Rev. Pathol. 2019, 14, 497–516. [Google Scholar] [CrossRef]
- Mead, S.; Lloyd, S.; Collinge, J. Genetic Factors in Mammalian Prion Diseases. Annu. Rev. Genet. 2019, 53, 117–147. [Google Scholar] [CrossRef]
- Mead, S. Prion disease genetics. Eur. J. Hum. Genet. 2006, 14, 273–281. [Google Scholar] [CrossRef]
- Büeler, H.; Aguzzi, A.; Sailer, A.; Greiner, R.A.; Autenried, P.; Aguet, M.; Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 1993, 73, 1339–1347. [Google Scholar] [CrossRef]
- Hunter, N. PrP genetics in sheep and the implications for scrapie and BSE. Trends Microbiol. 1997, 5, 331–334. [Google Scholar] [CrossRef]
- Hunter, N.; Foster, J.; Goldmann, W.; Stear, M.; Hope, J.; Bostock, C. Natural scrapie in a closed flock of Cheviot sheep occurs only in specific PrP genotypes. Arch. Virol. 1996, 141, 809–824. [Google Scholar] [CrossRef]
- Papasavva-Stylianou, P.; Kleanthous, M.; Toumazos, P.; Mavrikiou, P.; Loucaides, P. Novel polymorphisms at codons 146 and 151 in the prion protein gene of Cyprus goats, and their association with natural scrapie. Vet. J. 2007, 173, 459–462. [Google Scholar] [CrossRef]
- Curcio, L.; Sebastiani, C.; Di Lorenzo, P.; Lasagna, E.; Biagetti, M. Review: A review on classical and atypical scrapie in caprine: Prion protein gene polymorphisms and their role in the disease. Animal 2016, 10, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Haase, B.; Doherr, M.G.; Seuberlich, T.; Drögemüller, C.; Dolf, G.; Nicken, P.; Schiebel, K.; Ziegler, U.; Groschup, M.H.; Zurbriggen, A.; et al. PRNP promoter polymorphisms are associated with BSE susceptibility in Swiss and German cattle. BMC Genet. 2007, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Juling, K.; Schwarzenbacher, H.; Williams, J.L.; Fries, R. A major genetic component of BSE susceptibility. BMC Biol. 2006, 4, 33. [Google Scholar] [CrossRef]
- Monello, R.J.; Galloway, N.L.; Powers, J.G.; Madsen-Bouterse, S.A.; Edwards, W.H.; Wood, M.E.; O’Rourke, K.I.; Wild, M.A. Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc. Natl. Acad. Sci. USA 2017, 114, 12208–12212. [Google Scholar] [CrossRef]
- Johnson, C.; Johnson, J.; Vanderloo, J.P.; Keane, D.; Aiken, J.M.; McKenzie, D. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J. Gen. Virol. 2006, 87, 2109–2114. [Google Scholar] [CrossRef]
- Robinson, S.J.; Samuel, M.D.; O’Rourke, K.I.; Johnson, C.J. The role of genetics in chronic wasting disease of North American cervids. Prion 2012, 6, 153–162. [Google Scholar] [CrossRef]
- Won, S.-Y.; Kim, Y.-C. The first meta-analysis of the G96S single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) with chronic wasting disease in white-tailed deer. Front. Vet. Sci. 2024, 11, 1437189. [Google Scholar] [CrossRef]
- Kimberlin, R.H. Bovine spongiform encephalopathy: An appraisal of the current epidemic in the United Kingdom. Intervirology 1993, 35, 208–218. [Google Scholar] [CrossRef]
- Doherr, M.G. Brief review on the epidemiology of transmissible spongiform encephalopathies (TSE). Vaccine 2007, 25, 5619–5624. [Google Scholar] [CrossRef]
- Bodemer, W.; Kaup, F.J. Comments on present-day spread and epidemiology of BSE and prion diseases. Gesundheitswesen 2004, 66 (Suppl. S1), S21–S25. [Google Scholar]
- Greenlee, J.J. Review: Update on Classical and Atypical Scrapie in Sheep and Goats. Vet. Pathol. 2019, 56, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Pritzkow, S.; Morales, R.; Moda, F.; Khan, U.; Telling, G.C.; Hoover, E.; Soto, C. Grass plants bind, retain, uptake, and transport infectious prions. Cell Rep. 2015, 11, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Gough, K.C.; Maddison, B.C. Prion transmission: Prion excretion and occurrence in the environment. Prion 2010, 4, 275–282. [Google Scholar] [CrossRef]
- Pritzkow, S.; Morales, R.; Lyon, A.; Concha-Marambio, L.; Urayama, A.; Soto, C. Efficient prion disease transmission through common environmental materials. J. Biol. Chem. 2018, 293, 3363–3373. [Google Scholar] [CrossRef]
- Valencia-Aguilar, A.; Cortés-Gómez, A.M.; Ruiz-Agudelo, C.A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 257–272. [Google Scholar] [CrossRef]
- Hocking, D.J.; Babbitt, K.J. Amphibian contributions to ecosystem services. Herpetol. Conserv. Bio. 2014, 9, 1–17. [Google Scholar]
- Won, S.-Y.; Kim, Y.-C. The first report of prion protein gene sequences in Dybowski’s frog and the American bullfrog: High amyloid propensity of the frog prion protein. Front. Anim. Sci. 2024, 5, 1457653. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, R.; Ji, J.J.; Zhu, Q.; Li, X.P.; Ma, Y.; Xu, Y.C. Diversity of antimicrobial peptides in three partially sympatric frog species in Northeast Asia and implications for evolution. Genes 2020, 11, 158. [Google Scholar] [CrossRef]
- Tong, Q.; Du, X.-P.; Hu, Z.-F.; Cui, L.-Y.; Wang, H.-B. Modelling the growth of the brown frog (Rana dybowskii). PeerJ 2018, 6, e4587. [Google Scholar] [CrossRef]
- Tong, Q.; Dong, W.-J.; Long, X.-Z.; Hu, Z.-F.; Luo, Z.-W.; Guo, P.; Cui, L.-Y. Effects of fine-scale habitat quality on activity, dormancy, habitat use, and survival after reproduction in Rana dybowskii (Chordata, Amphibia). BMC Zool. 2023, 8, 1. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic. Acids. Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Iglesias, V.; Conchillo-Sole, O.; Batlle, C.; Ventura, S. AMYCO: Evaluation of mutational impact on prion-like proteins aggregation propensity. BMC Bioinform. 2019, 20, 1–5. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef]
- Thomas, P.D.; Campbell, M.J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.; Diemer, K.; Muruganujan, A.; Narechania, A. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 2003, 13, 2129–2141. [Google Scholar] [CrossRef]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Laskar, F.S.; Bappy, M.N.I.; Hossain, M.S.; Alam, Z.; Afrin, D.; Saha, S.; Ali Zinnah, K.M. An In silico Approach towards Finding the Cancer-Causing Mutations in Human MET Gene. Int. J. Genom. 2023, 2023, 9705159. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Lee, C. In silico comparative analysis of DNA and amino acid sequences for prion protein gene. Transbound. Emerg. Dis. 2008, 55, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Calzolai, L.; Lysek, D.A.; Pérez, D.R.; Güntert, P.; Wüthrich, K. Prion protein NMR structures of chickens, turtles, and frogs. Proc. Natl. Acad. Sci. USA 2005, 102, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, Y.C.; Jeong, B.H. Novel Polymorphisms and Genetic Characteristics of the Prion Protein Gene in Pheasants. Front. Vet. Sci. 2022, 9, 935476. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Kim, Y.C.; Kim, A.D.; Jeong, B.H. Novel Polymorphisms and Genetic Characteristics of the Prion Protein Gene (PRNP) in Dogs-A Resistant Animal of Prion Disease. Int. J. Mol. Sci. 2020, 21, 4160. [Google Scholar] [CrossRef]
- Moazami-Goudarzi, K.; Andréoletti, O.; Vilotte, J.L.; Béringue, V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet. Res. 2021, 52, 128. [Google Scholar] [CrossRef]
- Sola, D.; Artigas, R.; Mediano, D.R.; Zaragoza, P.; Badiola, J.J.; Martín-Burriel, I.; Acín, C. Novel polymorphisms in the prion protein gene (PRNP) and stability of the resultant prion protein in different horse breeds. Vet. Res. 2023, 54, 94. [Google Scholar] [CrossRef]
- Goldmann, W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 2008, 39, 30. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, B.H. The first report of polymorphisms and genetic characteristics of the prion protein gene (PRNP) in horses. Prion 2018, 12, 245–252. [Google Scholar] [CrossRef]
- Kim, Y.C.; Won, S.Y.; Do, K.; Jeong, B.H. Identification of the novel polymorphisms and potential genetic features of the prion protein gene (PRNP) in horses, a prion disease-resistant animal. Sci. Rep. 2020, 10, 8926. [Google Scholar] [CrossRef]
- Kim, Y.C.; Won, S.Y.; Jeong, B.H. Absence of single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of the prion protein gene (PRNP) in a large sampling of various chicken breeds. BMC Genom. 2019, 20, 922. [Google Scholar] [CrossRef]
- Nicholson, E.M.; Brunelle, B.W.; Richt, J.A.; Kehrli, M.E., Jr.; Greenlee, J.J. Identification of a heritable polymorphism in bovine PRNP associated with genetic transmissible spongiform encephalopathy: Evidence of heritable BSE. PLoS ONE 2008, 3, e2912. [Google Scholar] [CrossRef] [PubMed]
- Won, S.Y.; Kim, Y.C.; Jeong, B.H. First Report of the Potential Bovine Spongiform Encephalopathy (BSE)-Related Somatic Mutation E211K of the Prion Protein Gene (PRNP) in Cattle. Int. J. Mol. Sci. 2020, 21, 4246. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Borges, N.; Parra, B.; Vidal, E.; Eraña, H.; Sánchez-Martín, M.A.; de Castro, J.; Elezgarai, S.R.; Pumarola, M.; Mayoral, T.; Castilla, J. Unraveling the key to the resistance of canids to prion diseases. PLoS Pathog. 2017, 13, e1006716. [Google Scholar] [CrossRef] [PubMed]
- Biljan, I.; Ilc, G.; Plavec, J. Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights from NMR Spectroscopy. Prog. Mol. Biol. Transl. Sci. 2017, 150, 83–103. [Google Scholar]
- Bortot, L.O.; Rangel, V.L.; Pavlovici, F.A.; El Omari, K.; Wagner, A.; Brandao-Neto, J.; Talon, R.; von Delft, F.; Reidenbach, A.G.; Vallabh, S.M.; et al. Novel quaternary structures of the human prion protein globular domain. Biochimie 2021, 191, 118–125. [Google Scholar] [CrossRef]
- Appleby, B.S.; Shetty, S.; Elkasaby, M. Genetic aspects of human prion diseases. Front. Neurol. 2022, 13, 1003056. [Google Scholar] [CrossRef]
- Won, S.Y.; Kim, Y.C.; Jeong, B.H. Elevated E200K Somatic Mutation of the Prion Protein Gene (PRNP) in the Brain Tissues of Patients with Sporadic Creutzfeldt-Jakob Disease (CJD). Int. J. Mol. Sci. 2023, 24, 14831. [Google Scholar] [CrossRef]
- Gallardo, M.J.; Delgado, F.O. Animal prion diseases: A review of intraspecies transmission. Open Vet. J. 2021, 11, 707–723. [Google Scholar] [CrossRef]
Polymorphisms | Genotype Frequency (%) | Allele Frequency (%) | |||
---|---|---|---|---|---|
M/M | M/m | m/m | M | m | |
c.17G>T | 75.77 | 3.61 | 20.62 | 77.58 | 22.42 |
c.23G>A | 92.27 | 6.70 | 1.03 | 95.62 | 4.38 |
c.30C>T | 76.29 | 9.28 | 14.43 | 80.93 | 19.07 |
c.42C>T | 86.60 | 6.18 | 7.22 | 89.69 | 10.31 |
c.63C>G,A | 63.40 | 8.76 | 27.84 | 67.78 | 32.22 |
c.111C>T | 98.96 | 0.52 | 0.52 | 99.23 | 0.77 |
c.120C>T | 69.59 | 22.16 | 8.25 | 80.67 | 19.33 |
c.177A>G | 96.39 | 2.58 | 1.03 | 97.68 | 2.32 |
c.198A>T | 97.94 | 2.06 | 0 | 98.97 | 1.03 |
c.237C>T | 75.26 | 15.46 | 9.28 | 82.99 | 17.01 |
c.252C>T | 96.91 | 3.09 | 0 | 98.45 | 1.55 |
c.291C>T | 98.97 | 1.03 | 0 | 99.48 | 0.52 |
c.303G>A | 86.08 | 10.31 | 3.61 | 91.24 | 8.76 |
c.321C>T | 76.29 | 15.98 | 7.73 | 84.28 | 15.72 |
c.339T>C | 83.50 | 13.92 | 2.58 | 90.46 | 9.54 |
c.372C>T | 64.43 | 35.05 | 0.52 | 81.96 | 18.04 |
c.378T>A | 60.31 | 12.37 | 27.32 | 66.49 | 33.51 |
c.381A>G | 72.16 | 13.92 | 13.92 | 79.12 | 20.88 |
c.428G>A | 98.45 | 1.55 | 0 | 99.23 | 0.77 |
c.492C>A | 91.75 | 7.22 | 1.03 | 95.36 | 4.64 |
c.525T>C | 98.97 | 1.03 | 0 | 99.48 | 0.52 |
c.540T>A | 62.37 | 11.86 | 25.77 | 68.30 | 31.70 |
c.549T>A | 70.62 | 18.56 | 10.82 | 79.90 | 20.10 |
c.558A>T | 97.42 | 2.58 | 0 | 98.71 | 1.29 |
c.603C>T | 89.69 | 8.25 | 2.06 | 93.81 | 6.19 |
c.610A>C | 90.72 | 6.70 | 2.58 | 94.07 | 5.93 |
c.619A>T | 92.78 | 3.61 | 3.61 | 94.59 | 5.41 |
c.627C>T | 94.33 | 5.67 | 0 | 97.16 | 2.84 |
c.631C>T | 91.24 | 8.76 | 0 | 95.62 | 4.38 |
c.691C>T | 97.94 | 2.06 | 0 | 98.97 | 1.03 |
c.693G>A | 89.69 | 8.76 | 1.55 | 94.07 | 5.93 |
c.717C>G | 97.42 | 2.58 | 0 | 98.71 | 1.29 |
c.721C>T | 78.86 | 7.22 | 13.92 | 82.47 | 17.53 |
c.735C>A | 94.85 | 5.15 | 0 | 97.42 | 2.58 |
- | Haplotypes | Frequency (n = 388) |
---|---|---|
Haplotype 1 | GGCCGCCAACCCGCTCTAGCTTTACAACCCGCTC | 49 (0.126) |
Haplotype 2 | TGCCCCTAACCCGCTCTAGCTTTACAACCCGCCC | 43 (0.111) |
Haplotype 3 | GGCCCCCAACCCGCTCTAGCTTTACAACCCGCCC | 34 (0.087) |
Haplotype 4 | TGCCCCCAACCCGCTCTAGCTTTACAACCCGCCC | 19 (0.050) |
Haplotype 5 | GGCCGCCAATCCACCCAAGCTAAATCTCCCGCCC | 12 (0.031) |
Haplotype 6 | GGTTCCCAATCCGTTCAGGCTAAACAACCCACCC | 12 (0.031) |
Haplotype 7 | GGCCCCCAACCCGCTCTAGCTATACAACCCGCCC | 11 (0.030) |
Haplotype 8 | TGCCCCTAACCCGCTTTAGCTTTACAACCCGCCC | 10 (0.025) |
Haplotype 9 | GGCCGCCAACCCGCTCTAGCTTTACAACCCGCCC | 10 (0.025) |
Haplotype 10 | GGCCCCCAACCCGCTCTAGATTTACAACCCGCCC | 8 (0.020) |
Haplotype 11 | GGCCGCTAACCCGCTCTAGCTTTACAACCCGCTC | 7 (0.018) |
Haplotype 12 | GGCCCCTAACCCGCTCTAGCTTTACAACCCGCCC | 6 (0.016) |
Haplotype 13 | GGCCCCCAACCCGCTTTAGATTTACAACCCGCCC | 6 (0.016) |
Haplotype 14 | GGCCCCCAACCCGCTTTAGCTTTACAACCCGCCC | 6 (0.016) |
Haplotype 15 | GGTCCCCAACCCGTTCAGGCTTTACAACCCGCCA | 6 (0.015) |
Haplotype 16 | GGTTCCCAACCCGCTCAAGCTATACAACCCGCCC | 6 (0.015) |
Haplotype 17 | GGTCCCCAACCCGTTCAGGCTAAACAACCCGCCC | 5 (0.013) |
Haplotype 18 | TGCCCCCAACCCGCTTTAGCTTTACAACCCGCCC | 5 (0.012) |
Haplotype 19 | GGCCCCCAACCCGCTCAAGCTATACAACCCGCCC | 4 (0.011) |
- | Others * | 129 (0.332) |
Variations | Methods | Score | Prediction |
---|---|---|---|
c.17G>T (W6L) | PolyPhen-2 | 0.816 | Possibly Damaging |
PANTHER | 361 | Possibly Damaging | |
MutPred2 | 0.613 | Pathogenic | |
SIFT | 0.00 | Damaging | |
AMYCO | 0.29 | Identical | |
c.23G>A (C8Y) | PolyPhen-2 | 0.969 | Probably Damaging |
PANTHER | - | Not scored | |
MutPred2 | 0.232 | Benign | |
SIFT | 0.04 | Damaging | |
AMYCO | 0.29 | Identical | |
c.428G>A (S143N) | PolyPhen-2 | 0.953 | Possibly Damaging |
PANTHER | - | Not scored | |
MutPred2 | 0.259 | Benign | |
SIFT | 0.97 | Tolerated | |
AMYCO | 0.30 | Increase | |
c.619A>T (T207S) | PolyPhen-2 | 0.002 | Benign |
PANTHER | - | Not scored | |
MutPred2 | 0.102 | Benign | |
SIFT | 0.78 | Tolerated | |
AMYCO | 0.29 | Identical | |
c.631C>T (R211W) | PolyPhen-2 | 0.984 | Probably Damaging |
PANTHER | 361 | Possibly Damaging | |
MutPred2 | 0.477 | Benign | |
SIFT | 0.00 | Damaging | |
AMYCO | 0.29 | Identical | |
c.721C>T (L241F) | PolyPhen-2 | 0.915 | Possibly Damaging |
PANTHER | 361 | Possibly Damaging | |
MutPred2 | 0.648 | Pathogenic | |
SIFT | 0.01 | Damaging | |
AMYCO | 0.29 | Identical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.-S.; Won, S.-Y.; Park, S.-H.; Kim, Y.-C. Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii). Animals 2025, 15, 220. https://doi.org/10.3390/ani15020220
Han C-S, Won S-Y, Park S-H, Kim Y-C. Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii). Animals. 2025; 15(2):220. https://doi.org/10.3390/ani15020220
Chicago/Turabian StyleHan, Chang-Su, Sae-Young Won, Sang-Hun Park, and Yong-Chan Kim. 2025. "Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii)" Animals 15, no. 2: 220. https://doi.org/10.3390/ani15020220
APA StyleHan, C.-S., Won, S.-Y., Park, S.-H., & Kim, Y.-C. (2025). Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii). Animals, 15(2), 220. https://doi.org/10.3390/ani15020220