High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements
<p>Changes in the concentration of tilmicosin in pig manure from each experimental group (n = 6). Data are expressed as mean ± SD based on dry matter (DM).</p> "> Figure 2
<p>Abundance of ARGs in pig manure after tilmicosin treatment. Absolute (<b>A</b>) and relative (<b>B</b>) abundance of <span class="html-italic">tol</span>C, total absolute abundance (<b>C</b>), and total relative abundance (<b>D</b>) of ARGs. Groups labeled with different letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Abundance of MGEs in pig manure after tilmicosin treatment. Absolute (<b>A</b>) and relative (<b>B</b>) abundance of MGEs and (<b>C</b>) Pearson’s correlation coefficient of ARGs and MGEs. * 0.01 < <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Groups labeled with different letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Changes in the diversity and structure of the pig manure flora following tilmicosin treatment. (<b>A</b>,<b>B</b>) α diversity assessed by Chao1 and Shannon indices, (<b>C</b>) relative abundance of bacteria at the phylum level, and (<b>D</b>) relative abundance of bacteria at the genus level. Groups labeled with different letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Potential host bacteria for ARGs. (<b>A</b>) Network analysis of the CK group, (<b>B</b>) network analysis of the L group, (<b>C</b>) network analysis of the H group, and (<b>D</b>) mean abundance of <span class="html-italic">Escherichia/Shigella</span>, <span class="html-italic">Paenalcaligenes</span>, <span class="html-italic">Solibacillus, Proteiniclasticum</span>, and <span class="html-italic">Anaerostipes</span> in the CK, L, and H groups and their correlation with <span class="html-italic">tol</span>C. *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>Impacts of antibiotics, bacterial flora, physicochemical properties, and MGEs on ARGs. Black arrows, red arrows, and bluish-purple arrows represent ARGs, physicochemical properties, and bacteria, respectively.</p> ">
1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. DNA Extraction and Bacterial 16S rRNA Gene Sequencing
2.3. Quantification of Antibiotic Resistance Genes
2.4. Measurement of Physicochemical Properties
2.5. Detection of Tilmicosin in Pig Manure
2.6. Data Analysis
3. Results and Discussion
3.1. Residual Concentrations in Pig Manure After Tilmicosin Treatment
3.2. Abundance of ARGs in Pig Gut Microbiome After Tilmicosin Treatment
3.3. Cooccurrence of ARGs and MGEs
3.4. Effects of Tilmicosin Treatment on the Bacterial Flora in Pig Gut Microbiome
3.5. Effects of Tilmicosin Treatment on Potential Host Bacteria for ARGs in the Pig Gut Microbiome
3.6. Effects of Antibiotics, Physicochemical Properties, Bacterial Flora, and MGEs on ARGs
3.7. Limitations of the Current Study and Recommendations for Future Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Sugden, R.; Kelly, R.; Davies, S. Combatting antimicrobial resistance globally. Nat. Microbiol. 2016, 1, 16187. [Google Scholar] [CrossRef]
- Peng, J.J.; Balasubramanian, B.; Ming, Y.Y.; Niu, J.L.; Yi, C.M.; Ma, Y.; Liu, W.C. Identification of antimicrobial resistance genes and drug resistance-analysis of in the animal farm environment. J. Infect. Public Health 2021, 14, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, S.R.S.; Mahmud, B.; Dantas, G. Antibiotic perturbations to the gut microbiome. Nature reviews. Microbiology 2023, 21, 772–788. [Google Scholar] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Ji, X.; Zhang, S.L.; Wang, W.X.; Zhang, H.L.; Ding, H.Z. Pharmacokinetic/pharmacodynamic integration of tilmicosin against in a piglet tissue cage model. Front. Vet. Sci. 2023, 10, 1260990. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhao, M.X.; Tang, X.Y.; Wei, W.X.; Wen, X.; Zhou, S.Z.; Ma, B.H.; Zou, Y.D.; Zhang, N.; Mi, J.D.; et al. The tigecycline resistance gene tetX has an expensive fitness cost based on increased outer membrane permeability and metabolic burden in Escherichia coli. J. Hazard. Mater. 2023, 458, 131889. [Google Scholar] [CrossRef]
- Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.; Cole, J.R.; et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef]
- Li, X.; Tang, X.; Chen, M.; Wang, S.; Tong, C.; Xu, J.; Xie, G.; Ma, B.; Zou, Y.; Wang, Y.; et al. Intramuscular therapeutic doses of enrofloxacin affect microbial community structure but not the relative abundance of fluoroquinolones resistance genes in swine manure. Sci. Total Environ. 2024, 913, 169794. [Google Scholar] [CrossRef]
- Luby, E.M.; Moorman, T.B.; Soupir, M.L. Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure. Sci. Total Environ. 2016, 550, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Petrin, S.; Patuzzi, I.; Di Cesare, A.; Tiengo, A.; Sette, G.; Biancotto, G.; Corno, G.; Drigo, M.; Losasso, C.; Cibin, V. Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environ. Pollut. 2019, 255, 113183. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Rieke, E.L.; Moorman, T.B.; Douglass, E.L.; Soupir, M.L. Seasonal variation of macrolide resistance gene abundances in the South Fork Iowa River Watershed. Sci. Total Environ. 2018, 610, 1173–1179. [Google Scholar] [CrossRef]
- Huang, J.L.; Mi, J.D.; Yan, Q.F.; Wen, X.; Zhou, S.Z.; Wang, Y.; Ma, B.H.; Zou, Y.D.; Liao, X.D.; Wu, Y.B. Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. Sci. Total Environ. 2021, 787, 147667. [Google Scholar] [CrossRef]
- Nnadozie, C.E.; Odume, O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- Zhu, T.; Chen, T.; Cao, Z.; Zhong, S.; Wen, X.; Mi, J.D.; Ma, B.H.; Zou, Y.D.; Zhang, N.; Liao, X.D.; et al. Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poultry Sci. 2021, 100, 101485. [Google Scholar] [CrossRef]
- Pu, Q.; Zhao, L.X.; Li, Y.T.; Su, J.Q. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. J. Hazard. Mater. 2020, 391, 122267. [Google Scholar] [CrossRef]
- Wang, P.L.; Wu, D.; You, X.X.; Su, Y.; Xie, B. Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills. J. Hazard. Mater. 2021, 403, 123689. [Google Scholar] [CrossRef]
- Shen, J.Z.; Li, C.; Jiang, H.Y.; Zhang, S.X.; Guo, P.; Ding, S.Y.; Li, X.W. Pharmacokinetics of tilmicosin after oral administration in swine. Am. J. Vet. Res. 2005, 66, 1071–1074. [Google Scholar] [CrossRef]
- Berendsen, B.J.A.; Lahr, J.; Nibbeling, C.; Jansen, L.J.M.; Bongers, I.E.A.; Wipfler, E.L.; van de Schans, M.G.M. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 2018, 204, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Schlüsener, M.P.; Bester, K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ. Pollut. 2006, 143, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Perruchon, C.; Katsivelou, E.; Karas, P.A.; Vassilakis, S.; Lithourgidis, A.A.; Kotsopoulos, T.A.; Sotiraki, S.; Vasileiadis, S.; Karpouzas, D.G. Following the route of veterinary antibiotics tiamulin and tilmicosin from livestock farms to agricultural soils. J. Hazard. Mater. 2022, 429, 128293. [Google Scholar] [CrossRef]
- Jang, S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: Toward understanding its operation mechanism. BMB Rep. 2023, 56, 326–334. [Google Scholar] [CrossRef]
- Mechesso, A.F.; Park, S.C. Tylosin exposure reduces the susceptibility of Salmonella Typhimurium to florfenicol and tetracycline. BMC Vet. Res. 2020, 16, 22. [Google Scholar] [CrossRef]
- Bay, D.C.; Stremick, C.A.; Slipski, C.J.; Turner, R.J. Secondary multidrug efflux pump mutants alter biofilm growth in the presence of cationic antimicrobial compounds. Res. Microbiol. 2017, 168, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Wang, L.Y.; Hirata, T.; Hayashi-Nishino, M.; Nishino, K. Multidrug efflux pumps contribute to biofilm maintenance. Int. J. Antimicrob. Aegents 2015, 45, 439–441. [Google Scholar] [CrossRef]
- Jindal, A.; Kocherginskaya, S.; Mehboob, A.; Robert, M.; Mackie, R.I.; Raskin, L.; Zilles, J.L. Antimicrobial use and resistance in swine waste treatment systems. Appl. Environ. Microb. 2006, 72, 7813–7820. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fluharty, F.L.; St-Pierre, N.; Morrison, M.; Yu, Z. Technical note: Occurrence in fecal microbiota of genes conferring resistance to both macrolide-lincosamide-streptogramin B and tetracyclines concomitant with feeding of beef cattle with tylosin. J. Anim. Sci. 2008, 86, 2385–2391. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, F.G.; Li, S.; Wang, J.; Hu, J.; Chen, S.; Chen, Q.; Li, Y.; Ha, X.; Sun, W. Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. J. Hazard. Mater. 2023, 456, 131706. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, X.H.; Zheng, S.N.; Kai, Z.; Jin, T.; Shi, R.; Huang, H.; Zheng, X. Effects of wastewater treatment and manure application on the dissemination of antimicrobial resistance around swine feedlots. J. Clean. Prod. 2021, 280, 123794. [Google Scholar] [CrossRef]
- Leungtongkam, U.; Thummeepak, R.; Tasanapak, K.; Sitthisak, S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS ONE 2018, 13, e0208468. [Google Scholar] [CrossRef]
- Lau, C.H.; Tien, Y.C.; Stedtfeld, R.D.; Topp, E. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Sci. Total Environ. 2020, 727, 138520. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.Y.; Wang, M.F.; Chen, H.; Yang, Y.; Chen, Q.L.; Yao, M. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ. Int. 2019, 127, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xie, G.M.; Mi, J.D.; Wen, X.; Cao, Z.; Ma, B.; Zou, Y.; Zhang, N.; Wang, Y.; Liao, X.; et al. Recovery of the Structure and Function of the Pig Manure Bacterial Community after Enrofloxacin Exposure. Microbiol. Spectr. 2022, 10, e02004-21. [Google Scholar] [CrossRef]
- Jo, H.E.; Kwon, M.S.; Whon, T.W.; Kim, D.W.; Yun, M.; Lee, J.; Shin, M.Y.; Kim, S.H.; Choi, H.J. Alteration of Gut Microbiota After Antibiotic Exposure in Finishing Swine. Front. Microbiol. 2021, 12, 596002. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef]
- Lourenco, J.M.; Hampton, R.S.; Johnson, H.M.; Callaway, T.R.; Rothrock Jr, M.J.; Azain, M.J. The Effects of Feeding Antibiotic on the Intestinal Microbiota of Weanling Pigs. Front. Vet. Sci. 2021, 8, 601394. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, W.Q.; Luo, H.C.; Xing, C.; Wang, H.; Liu, B.; Si, Q.; Ren, N. Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: Driven by functional modules and bacterial community. Water Res. 2021, 205, 117672. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhou, G.X.; Wang, H.J. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J. Hazard. Mater. 2022, 422, 126883. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Ma, J.W.; Sun, W.; Yang, Y.; Zhang, X. Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Sci. Total Environ. 2019, 649, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Rhee, C.; Shin, J.; Jang, H.M.; Shin, S.G.; Kim, Y.M. Determining the composition of bacterial community and relative abundance of specific antibiotics resistance genes via thermophilic anaerobic digestion of sewage sludge. Bioresource Technol. 2020, 311, 123510. [Google Scholar] [CrossRef] [PubMed]
- Huerta, B.; Marti, E.; Gros, M.; López, P.; Pompêo, M.; Armengol, J.; Barceló, D.; Balcázar, J.L.; Rodríguez-Mozaz, S.; Marcé, R. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci. Total Environ. 2013, 456, 161–170. [Google Scholar] [CrossRef]
- Luo, W.H.; Qin, H.; Chen, D.M.; Wu, M.; Meng, K.; Zhang, A.; Pan, Y.; Qu, W.; Xie, S. The dose regimen formulation of tilmicosin against in pigs by pharmacokinetic-pharmacodynamic (PK-PD) model. Microb. Pathog. 2020, 147, 104389. [Google Scholar] [CrossRef] [PubMed]
- Subirats, J.; Murray, R.; Yin, X.; Zhang, T.; Topp, E. Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. Sci. Total Environ. 2021, 801, 149718. [Google Scholar] [CrossRef]
- Zhang, K.; Xin, R.; Zhao, Z.; Li, W.; Wang, Y.; Wang, Q.; Niu, Z.; Zhang, Y. Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin. J. Hazard. Mater. 2021, 401, 123271. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Michel, F.C., Jr.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 2007, 73, 4407–4416. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, H.; Canales, M.; Ciric, L. Use of synthesized double-stranded gene fragments as qPCR standards for the quantification of antibiotic resistance genes. J. Microbiol. Meth. 2019, 164, 105670. [Google Scholar] [CrossRef]
- Zhang, K.; Gu, J.; Wang, X.; Zhang, X.; Hu, T.; Zhao, W. Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. Bioresour. Technol. 2019, 291, 121803. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Lee, P.Y.; Fukusihma, T.; Whang, L.M.; Lin, J.G. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR. Bioresour. Technol. 2012, 113, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegård, B.; Söderström, H.; Larsson, D.G. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6, e17038. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhao, M.; Chen, M.; Tang, X.; Qian, Y.; Li, X.; Wang, Y.; Liao, X.; Wu, Y. High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. Animals 2025, 15, 70. https://doi.org/10.3390/ani15010070
Chen T, Zhao M, Chen M, Tang X, Qian Y, Li X, Wang Y, Liao X, Wu Y. High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. Animals. 2025; 15(1):70. https://doi.org/10.3390/ani15010070
Chicago/Turabian StyleChen, Tao, Minxing Zhao, Majian Chen, Xiaoyue Tang, Yuliang Qian, Xiaoting Li, Yan Wang, Xindi Liao, and Yinbao Wu. 2025. "High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements" Animals 15, no. 1: 70. https://doi.org/10.3390/ani15010070
APA StyleChen, T., Zhao, M., Chen, M., Tang, X., Qian, Y., Li, X., Wang, Y., Liao, X., & Wu, Y. (2025). High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. Animals, 15(1), 70. https://doi.org/10.3390/ani15010070