Surveillance of Drug Residue Profiles in Gallus gallus domesticus (Silkie Chickens) in Taiwan
<p>Percentage of compliant or non-compliant cases according to Taiwan’s regulations. A total of 130 cases were tested, including 122 compliant samples and eight non-compliant samples (red). In the 122 compliant samples, there were 55 cases without drug residues (light blue), and the resulting 67 were compliant cases with drug residues (dark blue).</p> "> Figure 2
<p>Percentage of drug residues in the investigated samples. The most common drug residue was trimethoprim (36.2%), followed by nicarbazin (26.9%), robenidine (19.2%), decoquinate (4.6%), diclazuril (4.6%), and sulfamonomethoxine (0.8%).</p> "> Figure 3
<p>Distributions of drug concentrations in the drug-detected samples. The <span class="html-italic">X</span>-axis represents the tested drugs, and the <span class="html-italic">Y</span>-axis shows the detected concentrations (ppm). The dotted lines represent the maximum residue limits according to Taiwan’s regulations. Bars reflect mean ± SEM.</p> "> Figure 4
<p>Comparisons of results from 35 randomly selected flocks with two cases simultaneously sampled. The blue parts of the donut figure represent the consistent results of two cases in the flocks, whereas the red and orange parts show the opposite results. The green chicken icon indicates that no drug residues were detected. The red and orange chicken icons show that drug residues were detected. The yellow warning icon represents the flock numbers of drug residues that exceeded the maximum residue limits.</p> "> Figure 5
<p>Comparisons of body weight of cases stratified by different parameters. (<b>a</b>) No significant difference was found in cases stratified by compliance; (<b>b</b>) cases without any drug detection exhibited significantly lower body weights; (<b>c</b>) cases with drug residues (below maximum residue limits) had elevated body weights compared with those without drug residues. Bars reflect mean ± SEM. Statistical analyses were performed with the unpaired Student’s <span class="html-italic">t</span>-test or one-way ANOVA. *<span class="html-italic">—p</span> < 0.05; ns—no significant difference.</p> ">
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Multiresidue Analysis for Detection of 48 Residual Veterinary Drugs
2.2.1. Chemicals and Reagents
2.2.2. Sample Preparation
2.2.3. LC–MS/MS Analysis
2.2.4. Method Validation
2.3. Multiresidue Analysis for Detection of 23 Items
2.3.1. Chemicals, Reagents, and Solution
2.3.2. Sample Preparation
2.3.3. LC–MS/MS Analysis
2.3.4. Method Validation
2.4. Statistical Analysis
3. Results
3.1. Drug Residue Profiles of Silkie Chickens in Taiwan
3.2. Percentages of Drug Residues in the Investigated Samples
3.3. Consistency of Drug Residue Profiles in Randamly Seleted Flocks
3.4. The Correlation Between Weight of Poultry Carcass and Drug Residues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández Miyakawa, M.E.; Casanova, N.A.; Kogut, M.H. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult. Sci. 2024, 103, 103278. [Google Scholar] [CrossRef] [PubMed]
- Mramba, R.P.; Mwantambo, P.A. The impact of management practices on the disease and mortality rates of broilers and layers kept by small-scale farmers in Dodoma urban district, Tanzania. Heliyon 2024, 10, e29624. [Google Scholar] [CrossRef]
- Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Chowdhury, S.; Hassan, M.M.; Alam, M.; Sattar, S.; Bari, M.S.; Saifuddin, A.; Hoque, M.A. Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh. Vet. World 2015, 8, 467. [Google Scholar] [CrossRef]
- Mingle, C.L.; Darko, G.; Borquaye, L.S.; Asare-Donkor, N.K.; Woode, E.; Koranteng, F. Veterinary drug residues in beef, chicken, and egg from Ghana. Chem. Afr. 2021, 4, 339–348. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Chapman, H.D. Milestones in avian coccidiosis research: A review. Poult. Sci. 2014, 93, 501–511. [Google Scholar] [CrossRef]
- Martins, R.R.; Silva, L.J.G.; Pereira, A.; Esteves, A.; Duarte, S.C.; Pena, A. Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods 2022, 11, 2738. [Google Scholar] [CrossRef]
- Quiroz-Castañeda, R.E.; Dantán-González, E. Control of Avian Coccidiosis: Future and Present Natural Alternatives. BioMed Res. Int. 2015, 2015, 430610. [Google Scholar] [CrossRef] [PubMed]
- Barreto, F.; Ribeiro, C.; Hoff, R.B.; Costa, T.D. A simple and high-throughput method for determination and confirmation of 14 coccidiostats in poultry muscle and eggs using liquid chromatography—Quadrupole linear ion trap—Tandem mass spectrometry (HPLC–QqLIT-MS/MS): Validation according to European Union 2002/657/EC. Talanta 2017, 168, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Peek, H.W.; Landman, W.J. Coccidiosis in poultry: Anticoccidial products, vaccines and other prevention strategies. Vet. Q. 2011, 31, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Lai, Y.-H.; Huang, C.-N.; Peng, G.-J.; Liao, C.-D.; Kao, Y.-M.; Tseng, S.-H.; Wang, D.-Y. Multi-residue analysis using liquid chromatography tandem mass spectrometry for detection of 20 coccidiostats in poultry, livestock, and aquatic tissues. J. Food Drug Anal. 2019, 27, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.H.; Bjerrum, L.; Pedersen, K. Impact of salinomycin on the intestinal microflora of broiler chickens. Acta Vet. Scand. 2007, 49, 30. [Google Scholar] [CrossRef]
- Yang, X.; Tang, C.; Ma, B.; Zhao, Q.; Jia, Y.; Meng, Q.; Qin, Y.; Zhang, J. Identification of Characteristic Bioactive Compounds in Silkie Chickens, Their Effects on Meat Quality, and Their Gene Regulatory Network. Foods 2024, 13, 969. [Google Scholar] [CrossRef]
- Yamada, R.; Kozono, M.; Ohmori, T.; Morimatsu, F.; Kitayama, M. Simultaneous determination of residual veterinary drugs in bovine, porcine, and chicken muscle using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biosci. Biotechnol. Biochem. 2006, 70, 54–65. [Google Scholar] [CrossRef]
- Sheridan, R.; Desjardins, L. Determination of Abamectin, Doramectin, Emamectin, Eprinomectin, Ivermectin, and Moxidectin in Milk by Liquid Chromatography Electrospray Tandem Mass Specrometry. J. AOAC Int. 2019, 89, 1088–1094. [Google Scholar] [CrossRef]
- Shao, B.; Wu, X.; Zhang, J.; Duan, H.; Chu, X.; Wu, Y. Development of a Rapid LC–MS–MS Method for Multi-Class Determination of 14 Coccidiostat Residues in Eggs and Chicken. Chromatographia 2009, 69, 1083–1088. [Google Scholar] [CrossRef]
- Hedges, S.; Pelligand, L.; Chen, L.; Seow, K.; Hoang, T.T.; Luu, H.Q.; Dang, S.T.T.; Pham, N.T.; Pham, H.T.T.; Cheah, Y.C.; et al. Antimicrobial residues in meat from chickens in Northeast Vietnam: Analytical validation and pilot study for sampling optimisation. J. Consum. Prot. Food Saf. 2024, 19, 225–234. [Google Scholar] [CrossRef]
- Hu, H.; Qiu, J.; Li, R.; Li, D.; Wang, Q.; Wang, Q.; Ma, Y.; Yang, W.; Xu, R.; Liu, L.; et al. Comparative study of the plasma pharmacokinetics and tissue residues of trimethoprim in silky fowls and 817 broilers after single oral administration. Poult. Sci. 2023, 102, 103060. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, C.; Zhen, Y. Genetic diversity, demographic history, and selective signatures of Silkie chicken. BMC Genom. 2024, 25, 754. [Google Scholar] [CrossRef]
- Danaher, M.; Campbell, K.; O’Keeffe, M.; Capurro, E.; Kennedy, G.; Elliott, C.T. Survey of the anticoccidial feed additive nicarbazin (as dinitrocarbanilide residues) in poultry and eggs. Food Addit. Contam. Part A 2008, 25, 32–40. [Google Scholar] [CrossRef]
- Shen, H.-T.; Pan, X.-D.; Han, J.-L. Occurrence and risk assessment of coccidiostat residues in chicken meat: A regional study in Southeast China. Food Biosci. 2024, 62, 105024. [Google Scholar] [CrossRef]
Analyte | Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (V) 1 | Collision Energy (eV) 2 |
---|---|---|---|---|
Azaperol | 330 | 121 | 30 | 30 |
149 | 30 | 25 | ||
Azaperone | 328 | 165 | 30 | 20 |
121 | 30 | 20 | ||
Carazolol | 299 | 116 | 30 | 20 |
222 | 30 | 20 | ||
Ciprofloxacin | 332 | 314 | 30 | 25 |
231 | 30 | 45 | ||
Clopidol | 192 | 101 | 45 | 25 |
87 | 40 | 30 | ||
Danofloxacin | 358 | 340 | 35 | 30 |
283 | 40 | 25 | ||
Dicyclanil | 191 | 150 | 30 | 25 |
175 | 30 | 20 | ||
Difloxacin | 400 | 356 | 35 | 20 |
299 | 35 | 30 | ||
Enrofloxacin | 360 | 316 | 35 | 20 |
245 | 35 | 25 | ||
Eprinomectin | 936.5 | 490 | 15 | 10 |
352 | 15 | 10 | ||
Fleroxacin | 370 | 326 | 30 | 20 |
269 | 35 | 25 | ||
Flumequine | 262 | 244 | 25 | 20 |
202 | 25 | 30 | ||
Lomefloxacin | 352 | 265 | 30 | 25 |
308 | 30 | 15 | ||
Marbofloxacin | 363 | 345 | 35 | 20 |
72 | 30 | 25 | ||
Morantel | 221 | 164 | 35 | 25 |
149 | 35 | 35 | ||
Nalidixic acid | 233 | 215 | 20 | 15 |
187 | 20 | 25 | ||
Norfloxacin | 320 | 302 | 30 | 20 |
276 | 30 | 15 | ||
Ormetoprim | 275 | 259 | 35 | 25 |
123 | 35 | 25 | ||
Oxolinic acid | 262 | 244 | 25 | 20 |
216 | 25 | 35 | ||
Pefloxacin | 334 | 316 | 30 | 20 |
233 | 35 | 25 | ||
Pipemidic acid | 304 | 217 | 30 | 20 |
189 | 30 | 30 | ||
Piromidic acid | 289 | 243 | 25 | 30 |
271 | 25 | 20 | ||
Sarafloxacin | 386 | 358 | 40 | 20 |
342 | 35 | 20 | ||
Succinylsulfathiazole | 356 | 256 | 35 | 15 |
192 | 30 | 25 | ||
Sulfabenzamide | 277 | 156 | 20 | 15 |
92 | 20 | 30 | ||
Sulfacetamide | 215 | 156 | 15 | 10 |
92 | 15 | 25 | ||
Sulfachlorpyridazine | 285 | 156 | 25 | 15 |
92 | 20 | 30 | ||
Sulfadiazine | 251 | 156 | 25 | 15 |
92 | 25 | 25 | ||
Sulfadimethoxine | 311 | 156 | 35 | 20 |
92 | 30 | 35 | ||
Sulfadoxine | 311 | 156 | 25 | 20 |
92 | 30 | 30 | ||
Sulfaethoxypyridazine | 295 | 156 | 30 | 20 |
92 | 30 | 30 | ||
Sulfaguanidine | 215 | 156 | 20 | 15 |
92 | 25 | 25 | ||
Sulfamerazine | 265 | 156 | 25 | 15 |
92 | 25 | 30 | ||
Sulfameter | 281 | 156 | 25 | 20 |
92 | 30 | 30 | ||
Sulfamethazine | 279 | 156 | 30 | 20 |
186 | 30 | 15 | ||
Sulfamethizole | 271 | 156 | 25 | 25 |
92 | 25 | 25 | ||
Sulfamethoxazole | 254 | 156 | 25 | 15 |
92 | 25 | 25 | ||
Sulfamethoxypyridazine | 281 | 156 | 25 | 15 |
92 | 30 | 30 | ||
Sulfamonomethoxine | 281 | 156 | 25 | 10 |
92 | 30 | 30 | ||
Sulfapyridine | 250 | 156 | 25 | 15 |
92 | 30 | 30 | ||
Sulfaquinoxaline | 301 | 156 | 25 | 15 |
92 | 25 | 30 | ||
Sulfathiazole | 256 | 156 | 25 | 15 |
92 | 25 | 25 | ||
Sulfatroxazole | 268 | 156 | 25 | 15 |
92 | 25 | 30 | ||
Tetramisole | 205 | 178 | 35 | 20 |
123 | 25 | 30 | ||
Trichlorfon | 259 | 109 | 20 | 20 |
109 | 20 | 20 | ||
Trimethoprim | 291 | 230 | 35 | 25 |
123 | 35 | 25 | ||
Ethopabate | 236 | 192 | 30 | 25 |
132 | 30 | 35 | ||
Fluazuron | 504 | 305 | 30 | 15 |
307 | 30 | 15 |
Analyte | Linearity (R2) | Calibration Range (ng/g) | LOQ (ng/g) | Precision (RSD%) | Recovery (%) | |
---|---|---|---|---|---|---|
Intraday | Interday | |||||
Azaperol | 0.9998 | 50–500 | 10 | 6.31 | 3.97 | 83.4 |
Azaperone | 0.9994 | 50–500 | 10 | 2.80 | 9.62 | 81.0 |
Carazolol | 0.9999 | 10–250 | 2 | 4.97 | 5.49 | 86.6 |
Ciprofloxacin | 0.9997 | 50–500 | 10 | 5.04 | 3.19 | 73.5 |
Clopidol | 0.9990 | 250–750 | 50 | 4.34 | 6.34 | 76.7 |
Danofloxacin | 0.9998 | 50–500 | 10 | 0.36 | 1.06 | 82.3 |
Dicyclanil | 0.9996 | 50–500 | 10 | 2.18 | 5.43 | 83.4 |
Difloxacin | 0.9999 | 50–500 | 10 | 1.45 | 0.56 | 83.3 |
Enrofloxacin | 0.9999 | 50–500 | 10 | 5.27 | 4.73 | 83.7 |
Eprinomectin | 0.9998 | 50–500 | 10 | 2.56 | 6.62 | 73.4 |
Fleroxacin | 0.9996 | 50–500 | 10 | 0.00 | 4.23 | 82.7 |
Flumequine | 0.9988 | 50–500 | 10 | 3.30 | 3.00 | 83.1 |
Lomefloxacin | 0.9997 | 50–500 | 10 | 2.29 | 4.50 | 73.4 |
Marbofloxacin | 0.9999 | 50–500 | 10 | 4.24 | 2.62 | 81.9 |
Morantel | 0.9999 | 50–500 | 10 | 3.27 | 3.27 | 80.8 |
Nalidixic acid | 0.9999 | 50–500 | 10 | 1.07 | 9.02 | 84.0 |
Norfloxacin | 0.9999 | 50–500 | 10 | 2.08 | 6.39 | 72.7 |
Ormetoprim | 0.9996 | 250–750 | 50 | 4.72 | 4.18 | 80.6 |
Oxolinic acid | 0.9998 | 50–500 | 10 | 1.87 | 2.19 | 91.7 |
Pefloxacin | 0.9999 | 50–500 | 10 | 0.00 | 3.98 | 76.0 |
Pipemidic acid | 0.9999 | 50–500 | 10 | 4.44 | 4.82 | 77.1 |
Piromidic acid | 0.9998 | 50–500 | 10 | 2.22 | 0.95 | 73.0 |
Sarafloxacin | 0.9991 | 25–500 | 5 | 1.32 | 7.79 | 76.3 |
Succinylsulfathiazole | 0.9995 | 50–500 | 10 | 3.33 | 6.71 | 76.3 |
Sulfabenzamide | 0.9994 | 50–500 | 10 | 1.37 | 0.82 | 87.1 |
Sulfacetamide | 0.9997 | 50–500 | 10 | 2.03 | 1.50 | 79.6 |
Sulfachlorpyridazine | 0.9989 | 100–500 | 20 | 1.15 | 1.17 | 86.7 |
Sulfadiazine | 0.9995 | 50–500 | 10 | 0.63 | 3.04 | 95.2 |
Sulfadimethoxine | 0.9996 | 50–500 | 10 | 5.00 | 4.75 | 100.4 |
Sulfadoxine | 0.9997 | 50–500 | 10 | 0.23 | 2.75 | 87.4 |
Sulfaethoxypyridazine | 0.9995 | 50–500 | 10 | 0.61 | 0.58 | 98.4 |
Sulfaguanidine | 0.9998 | 50–500 | 10 | 3.29 | 3.46 | 77.2 |
Sulfamerazine | 0.9997 | 50–500 | 10 | 0.53 | 3.64 | 94.3 |
Sulfameter | 0.9983 | 50–500 | 10 | 3.86 | 0.11 | 99.1 |
Sulfamethazine | 0.9999 | 50–500 | 10 | 2.24 | 6.28 | 90.1 |
Sulfamethizole | 0.9999 | 50–500 | 10 | 5.32 | 0.00 | 92.6 |
Sulfamethoxazole | 0.9998 | 50–500 | 10 | 2.81 | 4.44 | 90.1 |
Sulfamethoxypyridazine | 0.9999 | 50–500 | 10 | 2.68 | 2.99 | 83.3 |
Sulfamonomethoxine | 0.9997 | 50–500 | 10 | 1.44 | 0.46 | 84.0 |
Sulfapyridine | 0.9995 | 50–500 | 10 | 0.75 | 0.41 | 105.9 |
Sulfaquinoxaline | 0.9999 | 50–500 | 10 | 0.57 | 3.70 | 88.4 |
Sulfathiazole | 0.9999 | 50–500 | 10 | 1.82 | 6.11 | 87.1 |
Sulfatroxazole | 0.9997 | 50–500 | 10 | 3.66 | 3.76 | 91.7 |
Tetramisole | 0.9999 | 50–500 | 10 | 1.25 | 1.90 | 80.7 |
Trichlorfon | 0.9994 | 50–500 | 10 | 1.57 | 1.14 | 88.3 |
Trimethoprim | 0.9997 | 50–500 | 10 | 2.60 | 3.42 | 81.7 |
Ethopabate | 0.9998 | 50–500 | 10 | 2.12 | 4.90 | 88.8 |
Fluazuron | 0.9992 | 250–750 | 50 | 3.48 | 7.92 | 84.8 |
Analyte | Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (V) 1 | Collision Energy (eV) 2 |
---|---|---|---|---|
Buquinolate | 362 | 148 | 58 | 50 |
362 | 204 | 40 | ||
362 | 260 | 22 | ||
Carnidazole | 245 | 118 | 10 | 12 |
245 | 75 | 30 | ||
245 | 60 | 46 | ||
Decoquinate | 418 | 372 | 64 | 20 |
418 | 204 | 40 | ||
418 | 232 | 34 | ||
Diaveridine | 261 | 123 | 52 | 22 |
261 | 245 | 26 | ||
261 | 81 | 42 | ||
Diclazuril | 405 | 334 | 20 | 18 |
407 | 336 | 22 | ||
Dimetridazole | 142 | 96 | 12 | 16 |
142 | 81 | 22 | ||
Diminazene | 142 | 120 | 20 | 5 |
142 | 135 | 5 | ||
282 | 120 | 5 | ||
282 | 135 | 5 | ||
Halofuginone | 416 | 100 | 24 | 20 |
416 | 120 | 20 | ||
416 | 138 | 20 | ||
HMMNI (2-Hydroxymethyl-1-methyl-5-nitro-1H-imidazole) | 158 | 140 | 48 | 10 |
158 | 55 | 16 | ||
158 | 94 | 22 | ||
Imidocarb | 349 | 188 | 36 | 24 |
349 | 90 | 78 | ||
349 | 162 | 22 | ||
Ipronidazole-OH | 186 | 168 | 28 | 12 |
186 | 122 | 20 | ||
186 | 82 | 24 | ||
Isometamidium | 460 | 313 | 4 | 18 |
460 | 298 | 26 | ||
460 | 269 | 46 | ||
2-Methyl-5- nitroimidazole | 128 | 82 | 6 | 14 |
128 | 56 | 12 | ||
128 | 111 | 14 | ||
Metronidazole | 172 | 128 | 20 | 14 |
172 | 82 | 20 | ||
172 | 111 | 20 | ||
Metronidazole-OH | 188 | 123 | 28 | 12 |
188 | 126 | 14 | ||
188 | 144 | 12 | ||
Nicarbazine | 301 | 137 | 36 | 20 |
301 | 107 | 38 | ||
301 | 46 | 48 | ||
Praziquantel | 313 | 203 | 40 | 14 |
313 | 174 | 26 | ||
313 | 132 | 44 | ||
Pryrantel | 207 | 150 | 24 | 26 |
207 | 136 | 26 | ||
207 | 97 | 22 | ||
Pyrimethamine | 249 | 177 | 20 | 26 |
249 | 198 | 38 | ||
249 | 233 | 26 | ||
Robenidine hydrochloride | 334 | 111 | 52 | 42 |
334 | 138 | 24 | ||
334 | 155 | 18 | ||
Ronidazole | 201 | 140 | 24 | 12 |
201 | 55 | 20 | ||
Tinidazole | 248 | 121 | 15 | 17 |
248 | 82 | 25 | ||
Zoalene | 224 | 181 | 10 | 10 |
224 | 77 | 24 | ||
224 | 151 | 16 |
Analyte | Linearity (R) | Calibration Range (ng/g) | LOQ (ng/g) | Precision (RSD%) | Recovery (%) | |
---|---|---|---|---|---|---|
Intraday | Interday | |||||
Buquinolate | 0.9997 | 5–100 | 5 | 4.63 | 0.99 | 101.2 |
Carnidazole | 0.9993 | 5–100 | 5 | 1.20 | 3.16 | 103.0 |
Decoquinate | 0.9994 | 5–100 | 5 | 1.42 | 0.61 | 98.0 |
Diaveridine | 0.9985 | 5–100 | 5 | 0.20 | 9.74 | 109.8 |
Diclazuril | 0.9999 | 5–100 | 5 | 4.07 | 1.14 | 106.0 |
Dimetridazole | 0.9992 | 5–100 | 5 | 1.98 | 2.48 | 98.0 |
Diminazene | 0.9994 | 5–100 | 5 | 1.96 | 4.02 | 101.6 |
Halofuginone | 0.9993 | 5–100 | 5 | 2.66 | 4.02 | 106.6 |
HMMNI (2-Hydroxymethyl-1-methyl-5-nitro-1H-imidazole) | 0.9983 | 10–100 | 10 | 8.03 | 3.39 | 110.2 |
Imidocarb | 0.9983 | 5–100 | 5 | 1.43 | 2.56 | 100.4 |
Ipronidazole-OH | 0.9989 | 5–100 | 5 | 2.82 | 1.95 | 101.4 |
Isometamidium | 0.9985 | 5–100 | 5 | 5.41 | 8.20 | 106.6 |
2-Methyl-5-nitroimidazole | 0.9984 | 10–100 | 10 | 5.40 | 8.76 | 104.8 |
Metronidazole | 0.9997 | 5–100 | 5 | 4.78 | 1.89 | 106.6 |
Metronidazole-OH | 0.9994 | 5–100 | 5 | 4.07 | 3.93 | 104.8 |
Nicarbazine | 0.9990 | 5–100 | 5 | 9.76 | 1.16 | 104.2 |
Praziquantel | 0.9995 | 5–100 | 5 | 0.79 | 2.55 | 103.2 |
Pryrantel | 0.9998 | 5–100 | 5 | 5.13 | 2.83 | 104.4 |
Pyrimethamine | 0.9994 | 5–100 | 5 | 2.12 | 3.58 | 104.2 |
Robenidine hydrochloride | 0.9993 | 5–100 | 5 | 2.90 | 1.15 | 104.2 |
Ronidazole | 0.9987 | 5–100 | 5 | 4.63 | 3.78 | 93.4 |
Tinidazole | 0.9998 | 5–100 | 5 | 1.98 | 0.87 | 92.8 |
Zoalene | 0.9995 | 5–100 | 5 | 5.16 | 5.81 | 100.2 |
Results | Case Number (Percentage) |
---|---|
Detected (positive) | 75 (57.7%) |
One of the drugs detected | 44 (33.8%) |
Two of the drugs detected | 18 (13.8%) |
Three of the drugs detected | 12 (9.2%) |
Four of the drugs detected | 1 (0.8%) |
Undetected (negative) | 55 (42.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, C.-H.; Chen, J.-W.; Lin, C.-S. Surveillance of Drug Residue Profiles in Gallus gallus domesticus (Silkie Chickens) in Taiwan. Animals 2024, 14, 3529. https://doi.org/10.3390/ani14233529
Ke C-H, Chen J-W, Lin C-S. Surveillance of Drug Residue Profiles in Gallus gallus domesticus (Silkie Chickens) in Taiwan. Animals. 2024; 14(23):3529. https://doi.org/10.3390/ani14233529
Chicago/Turabian StyleKe, Chiao-Hsu, Jr-Wei Chen, and Chen-Si Lin. 2024. "Surveillance of Drug Residue Profiles in Gallus gallus domesticus (Silkie Chickens) in Taiwan" Animals 14, no. 23: 3529. https://doi.org/10.3390/ani14233529
APA StyleKe, C.-H., Chen, J.-W., & Lin, C.-S. (2024). Surveillance of Drug Residue Profiles in Gallus gallus domesticus (Silkie Chickens) in Taiwan. Animals, 14(23), 3529. https://doi.org/10.3390/ani14233529