A Review of Cervidae Visual Ecology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Predator Detection and Avoidance
3. Foraging
4. Movement and Navigation
5. Social Interactions
6. Human–Cervid Interactions
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aben, J.; Signer, J.; Heiskanen, J.; Pellikka, P.; Travis, J.M.J. What You See Is Where You Go: Visibility Influences Movement Decisions of a Forest Bird Navigating a Three-Dimensional-Structured Matrix. Biol. Lett. 2021, 17, 20200478. [Google Scholar] [CrossRef]
- Jordan, L.A.; Ryan, M.J. The Sensory Ecology of Adaptive Landscapes. Biol. Lett. 2015, 11, 20141054. [Google Scholar] [CrossRef]
- Jacobs, G.H. Evolution of Colour Vision in Mammals. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2957–2967. [Google Scholar] [CrossRef] [PubMed]
- Caves, E.M.; Brandley, N.C.; Johnsen, S. Visual Acuity and the Evolution of Signals. Trends Ecol. Evol. 2018, 33, 358–372. [Google Scholar] [CrossRef]
- Baden, T.; Euler, T.; Berens, P. Understanding the Retinal Basis of Vision across Species. Nat. Rev. Neurosci. 2020, 21, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Healy, K.; McNally, L.; Ruxton, G.D.; Cooper, N.; Jackson, A.L. Metabolic Rate and Body Size Are Linked with Perception of Temporal Information. Anim. Behav. 2013, 86, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Cronin, T.W.; Johnsen, S.; Marshall, N.J.; Warrant, E.J. Visual Ecology; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 9781400853021. [Google Scholar]
- Stevens, M.; Searle, W.T.L.; Seymour, J.E.; Marshall, K.L.A.; Ruxton, G.D. Motion Dazzle and Camouflage as Distinct Anti-Predator Defenses. BMC Biol. 2011, 9, 81. [Google Scholar] [CrossRef]
- Scott-Samuel, N.E.; Baddeley, R.; Palmer, C.E.; Cuthill, I.C. Dazzle Camouflage Affects Speed Perception. PLoS ONE 2011, 6, e20233. [Google Scholar] [CrossRef]
- Tan, E.J.; Elgar, M.A. Motion: Enhancing Signals and Concealing Cues. Biol. Open 2021, 10, bio058762. [Google Scholar] [CrossRef]
- Hornstein, E.P.; O’Carroll, D.C.; Anderson, J.C.; Laughlin, S.B. Sexual Dimorphism Matches Photoreceptor Performance to Behavioural Requirements. Proc. R. Soc. B Biol. Sci. 2000, 267, 2111–2117. [Google Scholar] [CrossRef]
- Fennell, J.G.; Talas, L.; Baddeley, R.J.; Cuthill, I.C.; Scott-Samuel, N.E. Optimizing Colour for Camouflage and Visibility Using Deep Learning: The Effects of the Environment and the Observer’s Visual System. J. R. Soc. Interface 2019, 16, 20190183. [Google Scholar] [CrossRef]
- Saito, A.; Mikami, A.; Hosokawa, T.; Hasegawa, T. Advantage of Dichromats over Trichromats in Discrimination of Color-Camouflaged Stimuli in Humans. Percept. Mot. Ski. 2006, 102, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Mikami, A.; Kawamura, S.; Ueno, Y.; Hiramatsu, C.; Widayati, K.A.; Suryobroto, B.; Teramoto, M.; Mori, Y.; Nagano, K.; et al. Advantage of Dichromats over Trichromats in Discrimination of Color-Camouflaged Stimuli in Non-Human Primates. Am. J. Primatol. 2005, 67, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Surridge, A.K.; Prescott, M.J.; Osorio, D.; Mundy, N.I.; Buchanan-Smith, H.M. Effect of Colour Vision Status on Insect Prey Capture Efficiency of Captive and Wild Tamarins (Saguinus spp.). Anim. Behav. 2012, 83, 479–486. [Google Scholar] [CrossRef]
- Troscianko, J.; Wilson-Aggarwal, J.; Griffiths, D.; Spottiswoode, C.N.; Stevens, M. Relative Advantages of Dichromatic and Trichromatic Color Vision in Camouflage Breaking. Behav. Ecol. 2017, 28, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.A.M.; Green, S.D.; Stevens, M.; Kelley, L.A. Finding a Signal Hidden among Noise: How Can Predators Overcome Camouflage Strategies?: How Predators Overcome Camouflage. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190478. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, S. Family Cervidae (Deer). In Handbook of the Mammals of the World; Wilson, D.E., Mittermeier, R.A., Eds.; Lynx Edicions: Barcelona, Spain, 2011; Volume 2, pp. 350–407. [Google Scholar]
- Putman, R. The Natural History of Deer; Comstock Publishing Associates: Ithaca, NY, USA, 1988; ISBN 0801422833. [Google Scholar]
- Hanley, T.A. Potential Role of Deer (Cervidae) as Ecological Indicators of Forest Management. For. Ecol. Manag. 1996, 88, 199–204. [Google Scholar] [CrossRef]
- Rooney, T.P.; Waller, D.M. Direct and Indirect Effects of White-Tailed Deer in Forest Ecosystems. For. Ecol. Manag. 2003, 181, 165–176. [Google Scholar] [CrossRef]
- Gill, R.M.A.; Beardall, V. The Impact of Deer on Woodlands: The Effects of Browsing and Seed Dispersal on Vegetation Structure and Composition. Forestry 2001, 74, 209–218. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Jones, C.G.; Wolff, J.O. Of Mice and Mast. Bioscience 1996, 46, 323–330. [Google Scholar] [CrossRef]
- Persson, A.I.; Danell, K.; Bergström, R.; Persson, I.; Danell, K. Disturbance by Large Herbivores in Boreal Forests with Special Reference to Moose. Ann. Zool. Fenn. 2000, 37, 215–263. [Google Scholar]
- Pastor, J.; Naiman, R.J. Selective Foraging and Ecosystem Processes in Boreal Forests. Am. Nat. 1992, 139, 690–705. [Google Scholar] [CrossRef]
- Spiegel, O.; Crofoot, M.C. The Feedback between Where We Go and What We Know—Information Shapes Movement, but Movement Also Impacts Information Acquisition. Curr. Opin. Behav. Sci. 2016, 12, 90–96. [Google Scholar] [CrossRef]
- DeVault, T.L.; Seamans, T.W.; Blackwell, B.F. Frontal Vehicle Illumination via Rear-Facing Lighting Reduces Potential for Collisions with White-Tailed Deer. Ecosphere 2020, 11, e03187. [Google Scholar] [CrossRef]
- VerCauteren, K.C.; Pipas, M.J. A Review of Color Vision in White-Tailed Deer. Wildl. Soc. Bull. 2003, 31, 684–691. [Google Scholar] [CrossRef]
- Brieger, F.; Kämmerle, J.L.; Martschuk, N.; Ortmann, S.; Hagen, R. No Evidence for a “warning Effect” of Blue Light in Roe Deer. Wildl. Biol. 2017, 2017, 1–5. [Google Scholar] [CrossRef]
- Banks, M.S.; Sprague, W.W.; Schmoll, J.; Parnell, J.A.Q.; Love, G.D. Why Do Animal Eyes Have Pupils of Different Shapes? Sci. Adv. 2015, 1, e1500391. [Google Scholar] [CrossRef]
- Schiviz, A.N.; Ruf, T.; Kuebber-Heiss, A.; Schubert, C.; Ahnelt, P.K. Retinal Cone Topography of Artiodactyl Mammals: Influence of Body Height and Habitat. J. Comp. Neurol. 2008, 507, 1336–1350. [Google Scholar] [CrossRef]
- Rahman, D.A.; Mardiastuti, A. Factors Influencing the Activity Patterns of Two Deer Species and Their Response to Predators in Two Protected Areas in Indonesia. Therya 2021, 12, 149–161. [Google Scholar] [CrossRef]
- Crivelaro, R.M.; Thiesen, R.; Aldrovani, M.; Lima, T.B.; Ortêncio, K.P.; Padua, I.R.M.; Duarte, J.M.B.; Laus, J.L. Electroretinography in Eight Species of Neotropical Deer. Arq. Bras. Med. Vet. Zootec. 2018, 70, 1505–1513. [Google Scholar] [CrossRef]
- Ahnelt, P.K.; Schubert, C.; Kübber-Heiss, A.; Schiviz, A.; Anger, E. Independent Variation of Retinal S and M Cone Photoreceptor Topographies: A Survey of Four Families of Mammals. Vis. Neurosci. 2006, 23, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Lindenau, W.; Kuhrt, H.; Ulbricht, E.; Körner, K.; Bringmann, A.; Reichenbach, A. Cone-to-Müller Cell Ratio in the Mammalian Retina: A Survey of Seven Mammals with Different Lifestyle. Exp. Eye Res. 2019, 181, 38–48. [Google Scholar] [CrossRef]
- Vanpé, C.; Gaillard, J.M.; Kjellander, P.; Mysterud, A.; Magnien, P.; Delorme, D.; Van Laere, G.; Klein, F.; Liberg, O.; Hewison, A.J.M. Antler Size Provides an Honest Signal of Male Phenotypic Quality in Roe Deer. Am. Nat. 2007, 169, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Obleser, P.; Waignerová, P.; Bartoš, L.; Burda, H. Colour of the Hunters’ Clothing and the Alertness in Capreolus capreolus (Artiodactyla: Cervidae). Lynx New Ser. 2019, 50, 87–96. [Google Scholar]
- Bergman, M.; Iason, G.R.; Hester, A.J. Feeding Patterns by Roe Deer and Rabbits on Pine, Willow and Birch in Relation to Spatial Arrangement. Oikos 2005, 109, 513–520. [Google Scholar] [CrossRef]
- Carranza, J.; Mateos-Quesada, P. Habitat Modification When Scent Marking: Shrub Clearance by Roe Deer Bucks. Oecologia 2001, 126, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Mpemba, H.; Fan, Y.; Macleod, K.J.; Wen, D.; Jiang, G. The Effect of Novel and Familiar Predator Cues on Prey Vigilance and Foraging Behaviors in the Greater Khingan Mountains, Inner Mongolia, China. Appl. Ecol. Environ. Res. 2019, 17, 8219–8234. [Google Scholar] [CrossRef]
- Douglas Scott, M. Fluorescent Orange Discrimination by Wapiti. Wildl. Soc. Bull. 1981, 9, 256–260. [Google Scholar]
- Backhaus, D. Experimentelle Untersuchungen Über Die Sehschärfe Und Das Farbsehen Einiger Huftiere. Z. Tierpsychol. 1959, 16, 445–467. [Google Scholar] [CrossRef]
- Bartošová, J.; Ceacero, F.; Bartoš, L. Pre-Orbital Gland Opening: Part of Sucking Behavior in Red Deer (Cervus elaphus) Calves. J. Anim. Sci. 2012, 90, 3207–3212. [Google Scholar] [CrossRef]
- Lincoln, G.A. The Role of Antlers in the Behaviour of Red Deer. J. Exp. Zool. 1972, 182, 233–249. [Google Scholar] [CrossRef]
- Recuerda, P.; De Reyna, L.A. Individual Information Analysis of Visual Communication in Red Deer (Cervus elaphus). Mammalia 1987, 51, 201–210. [Google Scholar] [CrossRef]
- Okubo, M.; Sato, M.; Tamamura, W.; Tsutsumi, S.; Morie, S.; Souma, K. Discrimination between Two Chromatic Colors in Sika Deer. Appl. Anim. Behav. Sci. 2022, 247, 105536. [Google Scholar] [CrossRef]
- Nakamura, N.; Tominaga, A.; Ishii, D.; Yanagita, D.; Isakari, A.; Matsumoto, S.; Katahira, K.; Inadome, T.; Shioya, K.; Akai, K.; et al. Color Vision in Sika Deer (Cervus nippon): Color Discrimination between Three Colors (Red, Green, and Blue) and Gray. Anim. Behav. Manag. 2018, 54, 134–141. [Google Scholar] [CrossRef]
- Jacobs, G.H.; Deegan, J.F.; Neitz, J.; Murphy, B.P.; Miller, K.V.; Marchinton, R.L. Electrophysiological Measurements of Spectral Mechanisms in the Retinas of Two Cervids: White-Tailed Deer (Odocoileus virginianus) and Fallow Deer (Dama dama). J. Comp. Physiol. A 1994, 174, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Birgersson, J.; Alm, U.; Forkman, B. Colour Vision in Fallow Deer: A Behavioural Study. Anim. Behav. 2001, 61, 367–371. [Google Scholar] [CrossRef]
- Stenström, D.; Dahlblom, S.; Jones Fur, C.; Höglund, J. Rutting Pit Distribution and the Significance of Fallow Deer Dama dama Scrapes during the Rut. Wildl. Biol. 2000, 6, 23–29. [Google Scholar] [CrossRef]
- Alvarez, F.; Braza, F.; Norzagaray, A. The Use of the Rump Patch in the Fallow Deer (D. dama). Behaviour 1976, 56, 298–308. [Google Scholar] [CrossRef]
- Jennings, D.J.; Gammell, M.P.; Carlin, C.M.; Hayden, T.J. Is the Parallel Walk between Competing Male Fallow Deer, Dama dama, a Lateral Display of Individual Quality? Anim. Behav. 2003, 65, 1005–1012. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Ding, Y.; Zhang, L.; Fang, H.; Tang, S.; Jiang, Z. Do Père David’s Deer Lose Memories of Their Ancestral Predators? PLoS ONE 2011, 6, 6–11. [Google Scholar] [CrossRef]
- Pratas-Santiago, L.P.; Gonçalves, A.L.S.; Nogueira, A.J.A.; Spironello, W.R. Dodging the Moon: The Moon Effect on Activity Allocation of Prey in the Presence of Predators. Ethology 2017, 123, 467–474. [Google Scholar] [CrossRef]
- Stankowich, T.; Coss, R.G. The Re-Emergence of Felid Camouflage with the Decay of Predator Recognition in Deer under Relaxed Selection. Proc. R. Soc. B Biol. Sci. 2007, 274, 175–182. [Google Scholar] [CrossRef]
- Cherry, M.J.; Barton, B.T. Effects of Wind on Predator-Prey Interactions. Food Webs. 2017, 13, 92–97. [Google Scholar] [CrossRef]
- D’Angelo, G.J.; Glasser, A.; Wendt, M.; Williams, G.A.; Osborn, D.A.; Gallagher, G.R.; Warren, R.J.; Miller, K.V.; Pardue, M.T. Visual Specialization of an Herbivore Prey Species, the White-Tailed Deer. Can. J. Zool. 2008, 86, 735–743. [Google Scholar] [CrossRef]
- Watson, E.M.; Cohen, B.S.; Osborn, D.A.; Brown, J.M.; Miller, K.V. Estimation of Visual Discrimination in the White-Tailed Deer by Behavioral Assay. Am. Midl. Nat. 2022, 187, 90–96. [Google Scholar] [CrossRef]
- Witzel, D.A. Cone and Rod Photoreceptors in the White-Tailed Deer Odocoileus virginianus. Am. J. Vet. Res. 1978, 39, 699–701. [Google Scholar] [PubMed]
- Hirth, D.H.; McCullough, D.R. Evolution of Alarm Signals in Ungulates with Special Reference to White-Tailed Deer. Am. Nat. 1977, 111, 31–42. [Google Scholar] [CrossRef]
- Morina, D.L.; Demarais, S.; Strickland, B.K.; Larson, J.E. While Males Fight, Females Choose: Male Phenotypic Quality Informs Female Mate Choice in Mammals. Anim. Behav. 2018, 138, 69–74. [Google Scholar] [CrossRef]
- Miller, K.V.; Marchinton, R.L.; Bush, P.B. Signpost Communication by White-Tailed Deer: Research since Calgary. Appl. Anim. Behav. Sci. 1991, 29, 195–204. [Google Scholar] [CrossRef]
- VerCauteren, K.C.; Gilsdorf, J.M.; Hygnstrom, S.E.; Fioranelli, P.B.; Wilson, J.A.; Barras, S. Green and Blue Lasers Are Ineffective for Dispersing Deer at Night. Wildl. Soc. Bull. 2006, 34, 371–374. [Google Scholar] [CrossRef]
- Gallagher, G.R.; Holloway, C.H.; Williams, K.L.; Ellenburg, R.Y.; Saylors, B.M.; Van Der Heiden, L.; Peters, S.O. Influence of Visual Input on Behavior of White-Tailed Deer (Odocoileus virginianus) to an Auditory Alert Recording. Proc. Vertebr. Pest Conf. 2016, 27, 384–389. [Google Scholar] [CrossRef]
- Gallagher, G.R.; Keen, H.A.; Prince, R.H. Effectiveness of a Perceived Solid Barrier as an Exclusion Fence to Prevent White-Tailed Deer Damage. In Proceedings of the 10th Wildlife Damage Management Conference, Hot Springs, AR, USA, 6–9 April 2003; pp. 23–28. [Google Scholar]
- Newman, B.A.; Dyal, J.R.; Miller, K.V.; Cherry, M.J.; D’Angelo, G.J. Influence of Visual Perception on Movement Decisions by an Ungulate Prey Species. Biol. Open. 2023, 12, bio059932. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.H.; Jeffery, G. The Spectral Transmission of Ocular Media Suggests Ultraviolet Sensitivity Is Widespread among Mammals. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132995. [Google Scholar] [CrossRef]
- Hogg, C.; Neveu, M.; Stokkan, K.A.; Folkow, L.; Cottrill, P.; Douglas, R.; Hunt, D.M.; Jeffery, G. Arctic Reindeer Extend Their Visual Range into the Ultraviolet. J. Exp. Biol. 2011, 214, 2014–2019. [Google Scholar] [CrossRef]
- Stokkan, K.A.; Folkow, L.; Dukes, J.; Neveu, M.; Hogg, C.; Siefken, S.; Dakin, S.C.; Jeffery, G. Shifting Mirrors: Adaptive Changes in Retinal Reflections to Winter Darkness in Arctic Reindeer. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132451. [Google Scholar] [CrossRef] [PubMed]
- Fosbury, R.A.E.; Jeffery, G. Reindeer Eyes Seasonally Adapt to Ozone-Blue Arctic Twilight by Tuning a Photonic Tapetum Lucidum. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221002. [Google Scholar] [CrossRef]
- Tyler, N.; Stokkan, K.A.; Hogg, C.; Nellemann, C.; Vistnes, A.I.; Jeffery, G. Ultraviolet Vision and Avoidance of Power Lines in Birds and Mammals. Conserv. Biol. 2014, 28, 630–631. [Google Scholar] [CrossRef]
- Tyler, N.J.C.; Jeffery, G.; Hogg, C.R.; Stokkan, K.A. Ultraviolet Vision May Enhance the Ability of Reindeer to Discriminate Plants in Snow. Arctic 2014, 67, 159–166. [Google Scholar] [CrossRef]
- Tyler, N.J.C.; Stokkan, K.A.; Hogg, C.R.; Nellemann, C.; Vistnes, A.I. Cryptic Impact: Visual Detection of Corona Light and Avoidance of Power Lines by Reindeer. Wildl. Soc. Bull. 2016, 40, 50–58. [Google Scholar] [CrossRef]
- Pluháček, J.; Ceacero, F.; Lupták, P. First Records of Preorbital Gland Opening in Rare Wild Barasingha (Rucervus duvaucelii) in Social Contexts May Help to Explain This Phenomenon in Cervids. Behav. Process. 2015, 119, 28–31. [Google Scholar] [CrossRef]
- Ceacero, F.; Pluháček, J.; Komárková, M.; Zábranský, M. Pre-Orbital Gland Opening during Aggressive Interactions in Rusa Deer (Rusa timorensis). Behav. Process. 2015, 111, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Geist, V. Deer of the World: Their Evolution, Behavior, and Ecology, 1st ed.; Stackpole Books: Mechanicsburg, PA, USA, 1998; ISBN 0811704963. [Google Scholar]
- Schwab, I.R.; Yuen, C.K.; Buyukmihci, N.C.; Blankenship, T.N.; Fitzgerald, P.G. Evolution of the Tapetum. Trans. Am. Opthalmol. Soc. 2002, 100, 187–200. [Google Scholar]
- Shinozaki, A.; Hosaka, Y.; Imagawa, T.; Uehara, M. Topography of Ganglion Cells and Photoreceptors in the Sheep Retina. J. Comp. Neurol. 2010, 518, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, J.P.; Alagaili, A.N.; Bennett, N.C.; Mohammed, O.B.; Manger, P.R. Unusual Topographic Specializations of Retinal Ganglion Cell Density and Spatial Resolution in a Cliff-Dwelling Artiodactyl, the Nubian Ibex (Capra nubiana). J. Comp. Neurol. 2019, 527, 2813–2825. [Google Scholar] [CrossRef] [PubMed]
- Caro, T. The Adaptive Significance of Coloration in Mammals. Bioscience 2005, 55, 125–136. [Google Scholar] [CrossRef]
- Cuthill, I.C.; Matchette, S.R.; Scott-Samuel, N.E. Camouflage in a Dynamic World. Curr. Opin. Behav. Sci. 2019, 30, 109–115. [Google Scholar] [CrossRef]
- Morgan, M.J.; Adam, A.; Mollon, J.D. Dichromats Detect Colour-Camouflaged Objects That Are Not Detected by Trichromats. Proc. R. Soc. B Biol. Sci. 1992, 248, 291–295. [Google Scholar]
- Melin, A.D.; Fedigan, L.M.; Hiramatsu, C.; Sendall, C.L.; Kawamura, S. Effects of Colour Vision Phenotype on Insect Capture by a Free-Ranging Population of White-Faced Capuchins, Cebus capucinus. Anim. Behav. 2007, 73, 205–214. [Google Scholar] [CrossRef]
- Dawkins, R.; Krebs, J.R. Arms Races between and within Species. Proc. R. Soc. Lond. B Biol. Sci. 1979, 205, 489–511. [Google Scholar] [CrossRef]
- Coss, R.G.; Ramakrishnan, U. Perceptual Aspects of Leopard Recognition by Wild Bonnet Macaques (Macaca radiata). Behaviour 2000, 137, 315–335. [Google Scholar] [CrossRef]
- Berger, J.; Swenson, J.E.; Persson, I.L. Recolonizing Carnivores and Naïve Prey: Conservation Lessons from Pleistocene Extinctions. Science 2001, 291, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A. The Color of Light in Forests and Its Implications. Ecol. Monogr. 1993, 63, 1–27. [Google Scholar] [CrossRef]
- Veilleux, C.C.; Cummings, M.E. Nocturnal Light Environments and Species Ecology: Implications for Nocturnal Color Vision in Forests. J. Exp. Biol. 2012, 215, 4085–4096. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.S.; Fieberg, J.; Swanson, A.; Kosmala, M.; Packer, C. A ‘Dynamic’ Landscape of Fear: Prey Responses to Spatiotemporal Variations in Predation Risk across the Lunar Cycle. Ecol. Lett. 2017, 20, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A.; Théry, M. Interacting Effects of Lek Placement, Display Behavior, Ambient Light, and Color Patterns in Three Neotropical Forest-Dwelling Birds. Am. Nat. 1996, 148, 421–452. [Google Scholar] [CrossRef]
- Cronin, T.W.; Bok, M.J. Photoreception and Vision in the Ultraviolet. J. Exp. Biol. 2016, 219, 2790–2801. [Google Scholar] [CrossRef]
- Cohen, B.S.; Osborn, D.A.; Gallagher, G.R.; Warren, R.J.; Miller, K.V. Behavioral Measure of the Light-Adapted Visual Sensitivity of White-Tailed Deer. Wildl. Soc. Bull. 2014, 38, 480–485. [Google Scholar] [CrossRef]
- Matchette, S.R.; Cuthill, I.C.; Scott-Samuel, N.E. Dappled Light Disrupts Prey Detection by Masking Movement. Anim. Behav. 2019, 155, 89–95. [Google Scholar] [CrossRef]
- Merilaita, S.; Scott-Samuel, N.E.; Cuthill, I.C. How Camouflage Works. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160341. [Google Scholar] [CrossRef]
- Hall, J.R.; Cuthill, I.C.; Baddeley, R.; Shohet, A.J.; Scott-Samuel, N.E. Camouflage, Detection and Identification of Moving Targets. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130064. [Google Scholar] [CrossRef]
- Stoner, C.J.; Caro, T.M.; Graham, C.M. Ecological and Behavioral Correlates of Coloration in Artiodactyls: Systematic Analyses of Conventional Hypotheses. Behav. Ecol. 2003, 14, 823–840. [Google Scholar] [CrossRef]
- Caves, E.M.; Frank, T.M.; Johnsen, S. Spectral Sensitivity, Spatial Resolution and Temporal Resolution and Their Implications for Conspecific Signalling in Cleaner Shrimp. J. Exp. Biol. 2016, 219, 597–608. [Google Scholar] [CrossRef]
- Tyrrell, L.P.; Fernández-Juricic, E. Sensory Systems and Escape Behavior. In Escaping from Predators: An Integrative View of Escape Decisions; Cooper, W.E., Blumstein, D.T., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 322–342. ISBN 9781107447189. [Google Scholar]
- Eisen-Enosh, A.; Farah, N.; Burgansky-Eliash, Z.; Polat, U.; Mandel, Y. Evaluation of Critical Flicker-Fusion Frequency Measurement Methods for the Investigation of Visual Temporal Resolution. Sci. Rep. 2017, 7, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Hagura, N.; Kanai, R.; Orgs, G.; Haggard, P. Ready Steady Slow: Action Preparation Slows the Subjective Passage of Time. Proc. R. Soc. B Biol. Sci. 2012, 279, 4399–4406. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, T.A.; Swenson, B. An Ecological Correlate of Critical Flicker-Fusion Frequencies for Some Anolis Lizards. Vis. Res. 1974, 14, 965–970. [Google Scholar] [CrossRef]
- Boström, J.E.; Haller, N.K.; Dimitrova, M.; Ödeen, A.; Kelber, A. The Flicker Fusion Frequency of Budgerigars (Melopsittacus undulatus) Revisited. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2017, 203, 15–22. [Google Scholar] [CrossRef]
- Umino, Y.; Pasquale, R.; Solessio, E. Visual Temporal Contrast Sensitivity in the Behaving Mouse Shares Fundamental Properties with Human Psychophysics. eNeuro 2018, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Umino, Y.; Guo, Y.; Chen, C.K.; Pasquale, R.; Solessio, E. Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J. Neurosci. 2019, 39, 3041–3056. [Google Scholar] [CrossRef]
- Stavros, K.A.; Kiorpes, L. Behavioral Measurement of Temporal Contrast Sensitivity Development in Macaque Monkeys (Macaca nemestrina). Vis. Res. 2008, 48, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.M.; Wolfe, L.; Davis, T.; Kendall, T.; Richter, B.; Wang, Y.; Bryce, C.; Elkaim, G.H.; Wilmers, C.C. Instantaneous Energetics of Puma Kills Reveal Advantage of Felid Sneak Attacks. Science 2014, 346, 81–85. [Google Scholar] [CrossRef]
- Bobrowicz, K.; Osvath, M. Cognition in the Fast Lane: Ravens’ Gazes Are Half as Short as Humans’ When Choosing Objects. Anim. Behav. Cogn. 2019, 6, 81–97. [Google Scholar] [CrossRef]
- Houston, A.I.; Mcnamara, J.M. Foraging Currencies, Metabolism and Behavioural Routines. J. Anim. Ecol. 2014, 83, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Pyke, G.H.; Pulliam, H.R.; Charnov, E.L. Optimal Foraging: A Selective Review of Theory and Tests. Q. Rev. Biol. 1977, 52, 137–154. [Google Scholar] [CrossRef]
- Howery, L.D.; Bailey, D.W.; Ruyle, G.B.; Renken, W.J. Cattle Use Visual Cues to Track Food Locations. Appl. Anim. Behav. Sci. 2000, 67, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stutz, R.S.; Banks, P.B.; Proschogo, N.; McArthur, C. Follow Your Nose: Leaf Odour as an Important Foraging Cue for Mammalian Herbivores. Oecologia 2016, 182, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Stutz, R.S.; Croak, B.M.; Proschogo, N.; Banks, P.B.; McArthur, C. Olfactory and Visual Plant Cues as Drivers of Selective Herbivory. Oikos 2017, 126, 259–268. [Google Scholar] [CrossRef]
- Veilleux, C.C.; Kirk, E.C. Visual Acuity in Mammals: Effects of Eye Size and Ecology. Brain. Behav. Evol. 2014, 83, 43–53. [Google Scholar] [CrossRef]
- Ghim, M.M.; Hodos, W. Spatial Contrast Sensitivity of Birds. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2006, 192, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, M.C.; Osorio, D. Animal Coloration Patterns: Linking Spatial Vision to Quantitative Analysis. Am. Nat. 2019, 193, 164–186. [Google Scholar] [CrossRef]
- Howery, L.D.; Cibils, A.F.; Anderson, D.M. Potential for Using Visual, Auditory and Olfactory Cues to Manage Foraging Behaviour and Spatial Distribution of Rangeland Livestock. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Dominy, N.J.; Hobaiter, C.; Harris, J.M. Reindeer and the Quest for Scottish Enlichenment. Iperception 2023, 14, 1–6. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B.; Lukose, S.; Gopakumar, B.; Koshy, K.C. UV Induced Visual Cues in Grasses. Sci. Rep. 2013, 3, 2738. [Google Scholar] [CrossRef] [PubMed]
- O’Daniels, S.T.; Kesler, D.C.; Mihail, J.D.; Webb, E.B.; Werner, S.J. Visual Cues for Woodpeckers: Light Reflectance of Decayed Wood Varies by Decay Fungus. Wilson J. Ornithol. 2018, 130, 200–212. [Google Scholar] [CrossRef]
- Hirata, M.; Kusatake, N. How Cattle Discriminate between Green and Dead Forages Accessible by Head and Neck Movements by Means of Senses: Reliance on Vision Varies with the Distance to the Forages. Anim. Cogn. 2020, 23, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Kusatake, N. Relative Importance of Senses in Forage Discrimination by Cattle Depends on the Sensory Contrast between the Discrimination Targets: A Preliminary Study. Anim. Cogn. 2021, 24, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Bazely, D.R.; Ensor, C.V. Discrimination Learning in Sheep with Cues Varying in Brightness and Hue. Appl. Anim. Behav. Sci. 1989, 23, 293–299. [Google Scholar] [CrossRef]
- Temple, S.E. Why Different Regions of the Retina Have Different Spectral Sensitivities: A Review of Mechanisms and Functional Significance of Intraretinal Variability in Spectral Sensitivity in Vertebrates. Vis. Neurosci. 2011, 28, 281–293. [Google Scholar] [CrossRef]
- Dangles, O.; Irschick, D.; Chittka, L.; Casas, J. Variability in Sensory Ecology: Expanding the Bridge between Physiology and Evolutionary Biology. Q. Rev. Biol. 2009, 84, 51–74. [Google Scholar] [CrossRef]
- Chiao, C.C.; Vorobyev, M.; Cronin, T.W.; Osorio, D. Spectral Tuning of Dichromats to Natural Scenes. Vis. Res. 2000, 40, 3257–3271. [Google Scholar] [CrossRef]
- Bodmer, R.E. Ungulate Frugivores and the Browser-Grazer Continuum. Oikos 1990, 57, 319–325. [Google Scholar] [CrossRef]
- Dominy, N.J.; Harris, J.M. Adaptive Optics in the Arctic? A Commentary on Fosbury and Jeffery. Proc. R. Soc. B Biol. Sci. 2022, 289, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Poulter, S.; Hartley, T.; Lever, C. The Neurobiology of Mammalian Navigation. Curr. Biol. 2018, 28, R1023–R1042. [Google Scholar] [CrossRef] [PubMed]
- Burgess, N. Spatial Memory: How Egocentric and Allocentric Combine. Trends Cogn. Sci. 2006, 10, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Ranc, N.; Cagnacci, F.; Moorcroft, P.R. Memory Drives the Formation of Animal Home Ranges: Evidence from a Reintroduction. Ecol. Lett. 2022, 25, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Morrison, T.A.; Merkle, J.A.; Hopcraft, J.G.C.; Aikens, E.O.; Beck, J.L.; Boone, R.B.; Courtemanch, A.B.; Dwinnell, S.P.; Fairbanks, W.S.; Griffith, B.; et al. Drivers of Site Fidelity in Ungulates. J. Anim. Ecol. 2021, 90, 955–966. [Google Scholar] [CrossRef]
- Abrahms, B.; Aikens, E.O.; Armstrong, J.B.; Deacy, W.W.; Kauffman, M.J.; Merkle, J.A. Emerging Perspectives on Resource Tracking and Animal Movement Ecology. Trends Ecol. Evol. 2021, 36, 308–320. [Google Scholar] [CrossRef]
- Abraham, J.O.; Upham, N.S.; Damian-Serrano, A.; Jesmer, B.R. Evolutionary Causes and Consequences of Ungulate Migration. Nat. Ecol. Evol. 2022, 6, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Aikens, E.O.; Mysterud, A.; Merkle, J.A.; Cagnacci, F.; Rivrud, I.M.; Hebblewhite, M.; Hurley, M.A.; Peters, W.; Bergen, S.; De Groeve, J.; et al. Wave-like Patterns of Plant Phenology Determine Ungulate Movement Tactics. Curr. Biol. 2020, 30, 3444–3449.e4. [Google Scholar] [CrossRef]
- Lendrum, P.E.; Anderson, C.R.; Monteith, K.L.; Jenks, J.A.; Bowyer, R.T. Relating the Movement of a Rapidly Migrating Ungulate to Spatiotemporal Patterns of Forage Quality. Mamm. Biol. 2014, 79, 369–375. [Google Scholar] [CrossRef]
- Bischof, R.; Loe, L.E.; Meisingset, E.L.; Zimmermann, B.; van Moorter, B.; Mysterud, A. A Migratory Northern Ungulate in the Pursuit of Spring: Jumping or Surfing the Green Wave? Am. Nat. 2012, 180, 407–424. [Google Scholar] [CrossRef]
- Bracis, C.; Mueller, T. Memory, Not Just Perception, Plays an Important Role in Terrestrial Mammalian Migration. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170449. [Google Scholar] [CrossRef]
- Merkle, J.A.; Sawyer, H.; Monteith, K.L.; Dwinnell, S.P.H.; Fralick, G.L.; Kauffman, M.J. Spatial Memory Shapes Migration and Its Benefits: Evidence from a Large Herbivore. Ecol. Lett. 2019, 22, 1797–1805. [Google Scholar] [CrossRef]
- Watson, C.; Binks, D. Elongation of the CA1 Field of the Septal Hippocampus in Ungulates. J. Comp. Neurol. 2019, 527, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Wystrach, A.; Dewar, A.; Philippides, A.; Graham, P. How Do Field of View and Resolution Affect the Information Content of Panoramic Scenes for Visual Navigation? A Computational Investigation. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2016, 202, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Keller, M.; Saint-Dizier, H.; Perrin, G.; Lévy, F. Transfer between Views of Conspecific Faces at Different Ages or in Different Orientations by Sheep. Behav. Process. 2004, 67, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Coulon, M.; Deputte, B.L.; Heyman, Y.; Baudoin, C. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds. PLoS ONE 2009, 4, e4441. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.; Shillito, E.E. The Importance of Odour, Appearance and Voice in Maternal Recognition of the Young in Merino Sheep (Ovis aries). Appl. Anim. Ethol. 1977, 3, 127–135. [Google Scholar] [CrossRef]
- Sugnaseelan, S.; Prescott, N.B.; Broom, D.M.; Wathes, C.M.; Phillips, C.J.C. Visual Discrimination Learning and Spatial Acuity in Sheep. Appl. Anim. Behav. Sci. 2013, 147, 104–111. [Google Scholar] [CrossRef]
- Caro, T.; Raees, H.; Stankowich, T. Flash Behavior in Mammals? Behav. Ecol. Sociobiol. 2020, 74, 44. [Google Scholar] [CrossRef]
- Caro, T.; Mallarino, R. Coloration in Mammals. Trends Ecol. Evol. 2020, 35, 357–366. [Google Scholar] [CrossRef]
- Geist, V. On the Evolution of Optical Signals in Deer: A Preliminary Analysis. In Biology and Management of the Cervidae; Wemmer, C.M., Ed.; Smithsonian Institution Press: Washington, DC, USA, 1987; pp. 235–255. [Google Scholar]
- Bildstein, K.L. Why White-Tailed Deer Flag Their Tails. Am. Nat. 1983, 121, 709–715. [Google Scholar] [CrossRef]
- Bae, S.; Kim, D.; Sherratt, T.N.; Caro, T.; Kang, C. How Size and Conspicuousness Affect the Efficacy of Flash Coloration. Behav. Ecol. 2019, 30, 697–702. [Google Scholar] [CrossRef]
- Guthrie, R.D. The Evolutionary Significance of the Cervid Labial Spot. J. Mammal. 1971, 52, 209–212. [Google Scholar] [CrossRef]
- De Vos, A.; Brokx, P.; Geist, V. A Review of Social Behavior of the North American Cervids during the Reproductive Period. Am. Midl. Natu. 1967, 77, 390–417. [Google Scholar] [CrossRef]
- Quay, W.B.; Muller-Schwarze, D. Functional Histology of Integumentary Glandular Regions in Black-Tailed Deer (Odocoileus hemionus columbianus). J. Mammal. 1970, 51, 675–694. [Google Scholar] [CrossRef]
- Bubenik, A.B. The Behavioral Aspects of Antlerogenesis. In Antler development in Cervidae; Brown, R.D., Ed.; Caesar Kleberg Wildlife Research Institute: Kingsville, TX, USA, 1983; pp. 389–449. [Google Scholar]
- Jennings, D.J.; Gammell, M.P.; Carlin, C.M.; Hayden, T.J. Does Lateral Presentation of the Palmate Antlers during Fights by Fallow Deer (Dama dama l.) Signify Dominance or Submission? Ethology 2002, 108, 389–401. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Albon, S.D. The Roaring of Red Deer and the Evolution of Honest Advertisement. Behaviour 1979, 69, 145–170. [Google Scholar] [CrossRef]
- Bartoš, L.; Fričová, B.; Bartošová-Víchová, J.; Panamá, J.; Šustr, P.; Šmídová, E. Estimation of the Probability of Fighting in Fallow Deer (Dama dama) during the Rut. Aggress Behav. 2007, 33, 7–13. [Google Scholar] [CrossRef]
- Jennings, D.J. Contest Behaviour Varies in Relation to Reproductive Opportunities and Reproductive Success in the Fallow Deer. Anim. Behav. 2020, 163, 95–103. [Google Scholar] [CrossRef]
- Malo, A.F.; Roldan, E.R.S.; Garde, J.; Soler, A.J.; Gomendio, M. Antlers Honestly Advertise Sperm Production and Quality. Proc. R. Soc. B Biol. Sci. 2005, 272, 149–157. [Google Scholar] [CrossRef]
- Barto, T.L.; Bahbouh, R. Antler Size and Fluctuating Asymmetry in Red Deer (Cervus elaphus) Stags and Probability of Becoming a Harem Holder in Rut. Biol. J. Linn. Soc. 2006, 87, 59–68. [Google Scholar] [CrossRef]
- Weatherhead, P.J.; Robertson, R.J. Offspring Quality and the Polygyny Threshold: “The Sexy Son Hypothesis”. Am. Nat. 1979, 113, 201–208. [Google Scholar] [CrossRef]
- McComb, K.; Clutton-Brock, T. Is Mate Choice Copying or Aggregation Responsible for Skewed Distributions of Females on Leks? Proc. R. Soc. B Biol. Sci. 1994, 255, 13–19. [Google Scholar] [CrossRef]
- Chávez, A.E.; Bozinovic, F.; Peichl, L.; Palacios, A.G. Retinal Spectral Sensitivity, Fur Coloration, and Urine Reflectance in the Genus Octodon (Rodentia): Implications for Visual Ecology. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2290–2296. [Google Scholar] [CrossRef]
- Alberts, A.C. Ultraviolet Visual Sensitivity in Desert Iguanas: Implications for Pheromone Detection. Anim. Behav. 1989, 38, 129–137. [Google Scholar] [CrossRef]
- Hata, A.; Nakashita, R.; Fukasawa, K.; Minami, M.; Fukue, Y.; Higuchi, N.; Uno, H.; Nakajima, Y.; Saeki, M.; Kozakai, C.; et al. Occurrence Patterns of Crop-Foraging Sika Deer Distribution in an Agriculture–Forest Landscape Revealed by Nitrogen Stable Isotopes. Ecol. Evol. 2021, 11, 15303–15311. [Google Scholar] [CrossRef] [PubMed]
- Bissonette, J.A.; Kassar, C.A.; Cook, L.J. Assessment of Costs Associated with Deer—Vehicle Collisions: Human Death and Injury, Vehicle Damage, and Deer Loss. Hum.-Wildl. Interact. 2008, 2, 17–27. [Google Scholar]
- Laliberté, J.; St-Laurent, M.H. In the Wrong Place at the Wrong Time: Moose and Deer Movement Patterns Influence Wildlife-Vehicle Collision Risk. Accid. Anal. Prev. 2020, 135, 105365. [Google Scholar] [CrossRef]
- Burkholder, E.N.; Jakes, A.F.; Jones, P.F.; Hebblewhite, M.; Bishop, C.J. To Jump or Not to Jump: Mule Deer and White-Tailed Deer Fence Crossing Decisions. Wildl. Soc. Bull. 2018, 42, 420–429. [Google Scholar] [CrossRef]
- VerCauteren, K.C.; Seward, N.W.; Lavelle, M.J.; Fischer, J.W.; Phillips, G.E. A Fence Design for Excluding Elk without Impeding Other Wildlife. Rangel. Ecol. Manag. 2007, 60, 529–532. [Google Scholar] [CrossRef]
- Stull, D.W.; Gulsby, W.D.; Martin, J.A.; D’Angelo, G.J.; Gallagher, G.R.; Osborn, D.A.; Warren, R.J.; Miller, K.V. Comparison of Fencing Designs for Excluding Deer from Roadways. Hum.-Wildl. Interact. 2011, 5, 47–57. [Google Scholar]
- VerCauteren, K.C.; Lavelle, M.J.; Hygnstrom, S. Fences and Deer-Damage Management: A Review of Designs and Efficacy. Wildl. Soc. Bull. 2006, 34, 191–200. [Google Scholar] [CrossRef]
- D’Angelo, G.J.; D’Angelo, J.G.; Gallagher, G.R.; Osborn, D.A.; Miller, K.V.; Warren, R.J. Evaluation of Wildlife Warning Reflectors for Altering White-Tailed Deer Behavior along Roadways. Wildl. Soc. Bull. 2006, 34, 1175–1183. [Google Scholar] [CrossRef]
- Riginos, C.; Graham, M.W.; Davis, M.J.; Johnson, A.B.; May, A.B.; Ryer, K.W.; Hall, L.E. Wildlife Warning Reflectors and White Canvas Reduce Deer–Vehicle Collisions and Risky Road-Crossing Behavior. Wildl. Soc. Bull. 2018, 42, 119–130. [Google Scholar] [CrossRef]
- Benten, A.; Annighöfer, P.; Vor, T. Wildlife Warning Reflectors’ Potential to Mitigate Wildlife-Vehicle Collisions-A Review on the Evaluation Methods. Front. Ecol. Evol. 2018, 6, 37. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Distribution | SH | BM | Status | Vision Research |
---|---|---|---|---|---|---|
Moose | Alces alces | North America, Europe, Asia | 185–210 | 280–600 | LC | Physiology [30,31] |
Chital | Axis axis | south Asia | 70–95 | 45–85 | LC | |
Calamian deer | Axis calamianensis | Calamian Islands | 60–75 | 35–50 | EN | |
Bawean deer | Axis kuhlii | Bawean Island | 60–75 | 40–60 | CR | Behavior [32] |
Indian hog deer | Axis porcinus | South and southeast Asia | 55–75 | 30–55 | EN | |
Marsh deer | Blastocerus dichotomus | South America | 100–130 | 70–130 | VU | Physiology [33] |
European roe deer | Capreolus capreolus | Europe, west Asia | 65–84 | 17–30 | LC | Physiology [31,34,35]; Signals [36,37,38]; Behavior [29,39] |
Siberian roe deer | Capreolus pygargus | Asia | 82–94 | 32–50 | LC | Behavior [40] |
White-lipped deer | Cervus albirostris | China | 110–130 | 90–220 | VU | |
Wapiti | Cervus canadensis | North America, Asia | 130–165 | 150–400 | LC | Signals [41] |
Red deer | Cervus elaphus | Europe, west Asia | 95–130 | 75–220 | LC | Physiology [31,34,35,42]; Signals [43,44]; Behavior [45] |
Central Asian red deer | Cervus hanglu | Central Asia | 110–145 | 110–240 | LC | |
Sika deer | Cervus nippon | East Asia | 60–115 | 20–140 | LC | Physiology [46,47] |
European fallow deer | Dama dama | Europe | 70–95 | 35–80 | LC | Physiology [48,49]; Signals [50,51,52] |
Persian fallow deer | Dama mesopotamica | Iran, Israel | 90–110 | 70–140 | EN | |
Tufted deer | Elaphodus cephalophus | China | 50–70 | 17–30 | NT | |
Père David’s deer | Elaphurus davidianus | China | 110–140 | 140–220 | EW | Signals [53] |
Taruca | Hippocamelus antisensis | South America | 70–80 | 45–60 | VU | |
Patagonian huemul | Hippocamelus bisulcus | Argentina, Chile | 80–90 | 60–75 | EN | |
Water deer | Hydropotes inermis | China, Korean Peninsula | 50–55 | 11–15 | VU | |
Red brocket | Mazama americana | South America | 60–80 | 30–35 | DD | Physiology [33]; Behavior [54] |
Small red brocket | Mazama bororo | Brazil | 50–60 | 25 | VU | Physiology [33] |
Mérida brocket | Mazama bricenii | South America | 45–50 | 8–13 | VU | |
Peruvian dwarf brocket | Mazama chunyi | Bolivia, Peru | 38 | 11 | VU | |
Gray brocket | Mazama gouazoubira | South America | 50–65 | 11–25 | LC | Physiology [33] |
Brazilian dwarf brocket | Mazama nana | South America | 45–50 | 14–16 | VU | Physiology [33] |
Amazonian brown brocket | Mazama nemorivaga | South America | 50 | 14–16 | LC | Physiology [33] |
Dwarf red brocket | Mazama rufina | Colombia, Ecuador, Peru | 45 | 10–15 | VU | |
Central American red brocket | Mazama temama | Central America, Colombia | 60–70 | 12–32 | DD | |
Bornean yellow muntjac | Muntiacus atherodes | Borneo | 65 | 14–18 | NT | |
Black muntjac | Muntiacus crinifrons | China | 55 | 20–25 | VU | |
Fea’s muntjac | Muntiacus feae | Myanmar, Thailand | 50–60 | 20–22 | DD | |
Gongshan muntjac | Muntiacus gongshanensis | China, Myanmar | 55 | 20–25 | DD | |
Southern red muntjac | Muntiacus muntjak | Southeast Asia | 50–70 | 20–35 | LC | |
Pu Hoat muntjac | Muntiacus puhoatensis | Vietnam | 40 | DD | ||
Leaf muntjac | Muntiacus putaoensis | India, Myanmar | 40 | 12 | DD | |
Reeves’ muntjac | Muntiacus reevesi | China, Taiwan | 45–50 | 12–15 | LC | Physiology [31] |
Roosevelts’ muntjac | Muntiacus rooseveltorum | Laos | 40 | DD | ||
Annamite muntjac | Muntiacus truongsonensis | Laos, Vietnam | 40 | 15 | DD | |
Northern red muntjac | Muntiacus vaginalis | South and southeast Asia | 50–70 | 20–28 | LC | |
Giant muntjac | Muntiacus vuquangensis | Vietnam, Laos, Cambodia | 65–70 | 34 | CR | |
Mule deer | Odocoileus hemionus | North America | 75–105 | 35–110 | LC | Signals [55]; Behavior [56] |
Yucatan brown brocket | Odocoileus pandora | Yucatan Peninsula | 70 | 17–21 | VU | |
White-tailed deer | Odocoileus virginianus | North and South America | 55–105 | 25–130 | LC | Physiology [28,33,48,57,58,59]; Signals [60,61,62,63]; Behavior [64,65,66] |
Pampas deer | Ozotoceros bezoarticus | South America | 60–70 | 22–40 | NT | Physiology [33] |
Northern pudu | Pudu mephitophiles | Colombia, Ecuador, Peru | 25–38 | 5–6 | DD | |
Southern pudu | Pudu puda | Argentina, Chile | 30–40 | 9–14 | NT | Physiology [31,67] |
Caribou/Reindeer | Rangifer tarandus | North America, Europe, Asia | 70–135 | 55–170 | VU | Physiology [67,68,69,70]; Signals [71,72,73] |
Barasingha | Rucervus duvaucelii | India, Nepal | 115–135 | 140–200 | VU | Signals [74] |
Eld’s deer | Rucervus eldii | South and southeast Asia | 90–130 | 60–125 | EN | |
Visayan spotted deer | Rusa alfredi | Philippines | 65–75 | 40 | EN | |
Philippine deer | Rusa marianna | Philippines | 55–70 | 40–60 | VU | |
Javan deer | Rusa timorensis | Indonesia | 85–110 | 50–135 | VU | Signals [75] |
Sambar | Rusa unicolor | South and southeast Asia | 110–160 | 130–270 | VU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newman, B.A.; D’Angelo, G.J. A Review of Cervidae Visual Ecology. Animals 2024, 14, 420. https://doi.org/10.3390/ani14030420
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals. 2024; 14(3):420. https://doi.org/10.3390/ani14030420
Chicago/Turabian StyleNewman, Blaise A., and Gino J. D’Angelo. 2024. "A Review of Cervidae Visual Ecology" Animals 14, no. 3: 420. https://doi.org/10.3390/ani14030420
APA StyleNewman, B. A., & D’Angelo, G. J. (2024). A Review of Cervidae Visual Ecology. Animals, 14(3), 420. https://doi.org/10.3390/ani14030420