A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing
<p>Fluxes of horses (countries of origin) imported in Apulia provinces (BA, Bari; BR, Brindisi; FG, Foggia; LE, Lecce; TA, Taranto) in 2005 (<b>A</b>); influxes of animals, based on their destinations (DPA, animals destined to slaughter; non-DPA, animals with other destination) in Apulia region (<b>B</b>); geographic provenience of non-DPA horse in November-December 2005 (<b>C</b>). Pie charts are not proportionate to the number of animals.</p> "> Figure 2
<p>Phylogenetic analysis of haemagglutinin and neuraminidase genes of EIAV subtype H3N8 strain ITA/2005/horse/Bari compared with cognate sequences retrieved from GenBank database. Phylogeny of the hemagglutinin (HA) gene (<b>A</b>). Phylogeny of the neuraminidase (NA) (<b>B</b>). Phylogenetic trees were performed using the maximum likelihood method and Hasegawa–Kishino–Yano 2-parameter model with a gamma distribution. A total of 1000 bootstrap replicates were used to estimate the robustness of the individual nodes on the phylogenetic tree. Bootstrap values greater than 75% were indicated. Black arrow indicates the strain described in this study. Numbers of nucleotide substitutions are indicated by the scale bar.</p> "> Figure 3
<p>Phylogenetic tree of influenza virus polymerase complex (Polymerase basic protein 2, PB2, Polymerase basic protein 1, PB1, Polymerase acidic, PA), nucleoprotein (NP), matrix protein (M), and non-structural gene (NS) nucleotide sequences of the EIAV subtype H3N8 strain ITA/2005/horse/Bari were compared with cognate sequences retrieved from GenBank database. Phylogeny of PB2 gene (<b>A</b>). Phylogeny of PB1 gene (<b>B</b>). Phylogeny of PA gene (<b>C</b>). Phylogeny of NP gene (<b>D</b>). Phylogeny of M gene (<b>E</b>). Phylogeny of NS gene (<b>F</b>). Phylogenetic trees were performed using the maximum likelihood method and Hasegawa–Kishino–Yano 2-parameter model with a gamma distribution. A total of 1000 bootstrap replicates were used to estimate the robustness of the individual nodes on the phylogenetic tree. Bootstrap values greater than 75% were indicated. Black arrow indicates the strain described in this study. Numbers of nucleotide substitutions are indicated by the scale bar.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Cultivation
2.2. Genome Sequencing and Data Analysis
2.3. Animal Influxes
2.4. Sequence and Phylogenetic Analyses
2.5. GenBank Sequence Submission
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landolt, G.A.; Townsend, H.G.G.; Lunn, P. Equine Influenza Infection, 2nd ed.; WB Saunders: Philadelphia, PA, USA, 2014; Volume 1. [Google Scholar]
- Wright, P.; Neumann, G.; Kawaoka, Y. Orthomyxoviruses. In Fields Virology, 6th ed.; WoltersKluwer-Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, pp. 1186–1244. [Google Scholar]
- Durães-Carvalho, R.; Salemi, M. In-Depth Phylodynamics, Evolutionary Analysis and in Silico Predictions of Universal Epitopes of Influenza A Subtypes and Influenza B Viruses. Mol. Phylogenet. Evol. 2018, 121, 174–182. [Google Scholar] [CrossRef]
- Webster, R.G. Are Equine 1 Influenza Viruses Still Present in Horses? Equine Vet. J. 1993, 25, 537–538. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Nagai, M.; Hayakawa, Y.; Komae, H.; Murakami, N.; Yotsuya, S.; Asakura, S.; Sakoda, Y.; Kida, H. Genetic Analyses of an H3N8 Influenza Virus Isolate, Causative Strain of the Outbreak of Equine Influenza at the Kanazawa Racecourse in Japan in 2007. J. Vet. Med. Sci. 2008, 70, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, J.M.; Lai, A.C.K.; Binns, M.M.; Chambers, T.M.; Barrandeguy, M.; Mumford, J.A. Antigenic and Genetic Evolution of Equine H3N8 Influenza A Viruses. J. Gen. Virol. 1996, 77, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.C.K.; Chambers, T.M.; Holland, R.E., Jr.; Morley, P.S.; Haines, D.M.; Townsend, H.G.G.; Barrandeguy, M. Diverged Evolution of Recent Equine-2 Influenza (H3N8) Viruses in the Western Hemisphere. Arch. Virol. 2001, 146, 1063–1074. [Google Scholar] [CrossRef]
- Bryant, N.A.; Rash, A.S.; Russell, C.A.; Ross, J.; Cooke, A.; Bowman, S.; MacRae, S.; Lewis, N.S.; Paillot, R.; Zanoni, R.; et al. Antigenic and Genetic Variations in European and North American Equine Influenza Virus Strains (H3N8) Isolated from 2006 to 2007. Vet. Microbiol. 2009, 138, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Gildea, S.; Quinlivan, M.; Arkins, S.; Cullinane, A. The Molecular Epidemiology of Equine Influenza in Ireland from 2007–2010 and Its International Significance. Equine Vet. J. 2012, 44, 387–392. [Google Scholar] [CrossRef]
- Virmani, N.; Bera, B.C.; Gulati, B.R.; Karuppusamy, S.; Singh, B.K.; Kumar Vaid, R.; Kumar, S.; Kumar, R.; Malik, P.; Khurana, S.K.; et al. Descriptive Epidemiology of Equine Influenza in India (2008–2009): Temporal and Spatial Trends. Vet. Ital. 2010, 46, 449–458. [Google Scholar]
- Yamanaka, T.; Niwa, H.; Tsujimura, K.; Kondo, T.; Matsumura, T. Epidemic of Equine Influenza among Vaccinated Racehorses in Japan in 2007. J. Vet. Med. Sci. 2008, 70, 623–625. [Google Scholar] [CrossRef] [Green Version]
- Murcia, P.R.; Wood, J.L.N.; Holmes, E.C. Genome-Scale Evolution and Phylodynamics of Equine H3N8 Influenza A Virus. J. Virol. 2011, 85, 5312–5322. [Google Scholar] [CrossRef] [Green Version]
- Laabassi, F.; Lecouturier, F.; Amelot, G.; Gaudaire, D.; Mamache, B.; Laugier, C.; Legrand, L.; Zientara, S.; Hans, A. Epidemiology and Genetic Characterization of H3N8 Equine Influenza Virus Responsible for Clinical Disease in Algeria in 2011. Transbound. Emerg. Dis. 2015, 62, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, A.; Newton, J.R. Equine Influenza—A Global Perspective. Vet. Microbiol. 2013, 167, 205–214. [Google Scholar] [CrossRef]
- Shittu, I.; Meseko, C.A.; Sulaiman, L.P.; Inuwa, B.; Mustapha, M.; Zakariya, P.S.; Muhammad, A.A.; Muhammad, U.; Atuman, Y.J.; Barde, I.J.; et al. Fatal Multiple Outbreaks of Equine Influenza H3N8 in Nigeria, 2019: The First Introduction of Florida Clade 1 to West Africa. Vet. Microbiol. 2020, 248, 108820. [Google Scholar] [CrossRef]
- Diallo, A.A.; Souley, M.M.; Issa Ibrahim, A.; Alassane, A.; Issa, R.; Gagara, H.; Yaou, B.; Issiakou, A.; Diop, M.; Ba Diouf, R.O.; et al. Transboundary Spread of Equine Influenza Viruses (H3N8) in West and Central Africa: Molecular Characterization of Identified Viruses during Outbreaks in Niger and Senegal, in 2019. Transbound. Emerg. Dis. 2021, 68, 1253–1262. [Google Scholar] [CrossRef]
- Ahmed, B.M.; Bayoumi, M.M.; Farrag, M.A.; Elgamal, M.A.; Daly, J.M.; Amer, H.M. Emergence of Equine Influenza Virus H3Nx Florida Clade 2 in Arabian Racehorses in Egypt. Virol. J. 2022, 19, 185. [Google Scholar] [CrossRef] [PubMed]
- Martella, V.; Elia, G.; Decaro, N.; di Trani, L.; Lorusso, E.; Campolo, M.; Desario, C.; Parisi, A.; Cavaliere, N.; Buonavoglia, C. An Outbreak of Equine Influenza Virus in Vaccinated Horses in Italy Is Due to an H3N8 Strain Closely Related to Recent North American Representatives of the Florida Sub-Lineage. Vet. Microbiol. 2007, 121, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.R.; Daly, J.M.; Spencer, L.; Mumford, J.A. Description of the Outbreak of Equine Influenza (H3N8) in the United Kingdom in 2003, during Which Recently Vaccinated Horses in Newmarket Developed Respiratory Disease. Vet. Rec. 2006, 158, 185–192. [Google Scholar] [CrossRef]
- Pallen, M.J.; Loman, N.J.; Penn, C.W. High-Throughput Sequencing and Clinical Microbiology: Progress, Opportunities and Challenges. Curr. Opin. Microbiol. 2010, 13, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Hui, J.; Mao, H. Nanopore Technology and Its Applications in Gene Sequencing. Biosensors 2021, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- Baillie, G.J.; Galiano, M.; Agapow, P.-M.; Myers, R.; Chiam, R.; Gall, A.; Palser, A.L.; Watson, S.J.; Hedge, J.; Underwood, A.; et al. Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza Virus Lineages Revealed by Whole-Genome Analysis. J. Virol. 2012, 86, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langat, P.; Raghwani, J.; Dudas, G.; Bowden, T.A.; Edwards, S.; Gall, A.; Bedford, T.; Rambaut, A.; Daniels, R.S.; Russell, C.A.; et al. Genome-Wide Evolutionary Dynamics of Influenza B Viruses on a Global Scale. PLoS Pathog. 2017, 13, e1006749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, S.J.; Langat, P.; Reid, S.M.; Lam, T.T.-Y.; Cotten, M.; Kelly, M.; Van Reeth, K.; Qiu, Y.; Simon, G.; Bonin, E.; et al. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. J. Virol. 2015, 89, 9920–9931. [Google Scholar] [CrossRef] [Green Version]
- Quinlivan, M.; Dempsey, E.; Ryan, F.; Arkins, S.; Cullinane, A. Real-Time Reverse Transcription PCR for Detection and Quantitative Analysis of Equine Influenza Virus. J. Clin. Microbiol. 2005, 43, 5055–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wüthrich, D.; Lang, D.; Müller, N.F.; Neher, R.A.; Stadler, T.; Egli, A. Evaluation of Two Workflows for Whole Genome Sequencing-Based Typing of Influenza A Viruses. J. Virol. Methods 2019, 266, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic. Acids. Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozek, W.; Purzycka, M.; Polak, M.P.; Gradzki, Z.; Zmudzinski, J.F. Genetic Typing of Equine Influenza Virus Isolated in Poland in 2005 and 2006. Virus. Res. 2009, 145, 121–126. [Google Scholar] [CrossRef]
- Kwasnik, M.; Gora, I.M.; Rola, J.; Zmudzinski, J.F.; Rozek, W. NS-Gene Based Phylogenetic Analysis of Equine Influenza Viruses Isolated in Poland. Vet. Microbiol. 2016, 182, 95–101. [Google Scholar] [CrossRef]
- Houghton, R.; Ellis, J.; Galiano, M.; Clark, T.W.; Wyllie, S. Haemagglutinin and Neuraminidase Sequencing Delineate Nosocomial Influenza Outbreaks with Accuracy Equivalent to Whole Genome Sequencing. J. Infect. 2017, 74, 377–384. [Google Scholar] [CrossRef]
- Pagani, L.; Thomas, Y.; Huttner, B.; Sauvan, V.; Notaridis, G.; Kaiser, L.; Iten, A.; Pittet, D.; Harbarth, S. Transmission and Effect of Multiple Clusters of Seasonal Influenza in a Swiss Geriatric Hospital. J. Am. Geriatr. Soc. 2015, 63, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.G.; Perez, D.R. Universal Primer Set for the Full-Length Amplification of All Influenza A Viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
- Meinel, D.M.; Heinzinger, S.; Eberle, U.; Ackermann, N.; Schönberger, K.; Sing, A. Whole Genome Sequencing Identifies Influenza A H3N2 Transmission and Offers Superior Resolution to Classical Typing Methods. Infection 2018, 46, 69–76. [Google Scholar] [CrossRef]
- Zhou, B.; Wentworth, D.E. Influenza A Virus Molecular Virology Techniques. Methods Mol. Biol. 2012, 865, 175–192. [Google Scholar] [CrossRef]
- Valley-Omar, Z.; Nindo, F.; Mudau, M.; Hsiao, M.; Martin, D.P. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children’s Hospital, Cape Town, South Africa in 2011. PLoS ONE 2015, 10, e0141744. [Google Scholar] [CrossRef] [Green Version]
- McCrone, J.T.; Woods, R.J.; Martin, E.T.; Malosh, R.E.; Monto, A.S.; Lauring, A.S. Stochastic Processes Constrain the within and between Host Evolution of Influenza Virus. eLife 2018, 7, e35962. [Google Scholar] [CrossRef] [PubMed]
- Ghedin, E.; Sengamalay, N.A.; Shumway, M.; Zaborsky, J.; Feldblyum, T.; Subbu, V.; Spiro, D.J.; Sitz, J.; Koo, H.; Bolotov, P.; et al. Large-Scale Sequencing of Human Influenza Reveals the Dynamic Nature of Viral Genome Evolution. Nature 2005, 437, 1162–1166. [Google Scholar] [CrossRef] [Green Version]
- Virk, R.K.; Gunalan, V.; Lee, H.K.; Inoue, M.; Chua, C.; Tan, B.-H.; Tambyah, P.A. Molecular Evidence of Transmission of Influenza A/H1N1 2009 on a University Campus. PLoS ONE 2017, 12, e0168596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, K.S.; Stevens-Ayers, T.; Campbell, A.P.; Englund, J.A.; Pergam, S.A.; Boeckh, M.; Bloom, J.D. Parallel Evolution of Influenza across Multiple Spatiotemporal Scales. eLife 2017, 6, e26875. [Google Scholar] [CrossRef]
- Patrono, L.V.; Vrancken, B.; Budt, M.; Düx, A.; Lequime, S.; Boral, S.; Gilbert, M.T.P.; Gogarten, J.F.; Hoffmann, L.; Horst, D.; et al. Archival Influenza Virus Genomes from Europe Reveal Genomic Variability during the 1918 Pandemic. Nat. Commun. 2022, 13, 2314. [Google Scholar] [CrossRef]
- Office international des Epizooties (OIE) Expert Surveillance Panel on Equine Influenza Vaccine Composition—Videoconference, 16 April 2020. Off. Int. Epizoot. Bull. 2020, 2, 44–45. [CrossRef]
- OIE Expert Surveillance Panel on Equine Influenza Vaccine Composition: 2018. Paris, 28 March 2018. Off. Int. Epizoot. Bull. 2018, 2, 7–11. Available online: https://bulletin.woah.org/?officiel=8-4-1-oie-expert-surveillance-panel-on-equine-influenza-vaccine-composition (accessed on 28 February 2023).
- Holmes, E.C.; Ghedin, E.; Miller, N.; Taylor, J.; Bao, Y.; St George, K.; Grenfell, B.T.; Salzberg, S.L.; Fraser, C.M.; Lipman, D.J.; et al. Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses. PLoS Biol. 2005, 3, e300. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Viboud, C.; Simonsen, L.; Bennett, R.T.; Griesemer, S.B.; St. George, K.; Taylor, J.; Spiro, D.J.; Sengamalay, N.A.; Ghedin, E.; et al. Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918. PLoS Pathog. 2008, 4, e1000012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miño, S.; Mojsiejczuk, L.; Guo, W.; Zhang, H.; Qi, T.; Du, C.; Zhang, X.; Wang, J.; Campos, R.; Wang, X. Equine Influenza Virus in Asia: Phylogeographic Pattern and Molecular Features Reveal Circulation of an Autochthonous Lineage. J. Virol. 2019, 93, e00116-19. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.M.; Sindle, T.; Tearle, J.; Barquero, N.; Newton, J.R.; Corning, S. Equine Influenza Vaccine Containing Older H3N8 Strains Offers Protection against A/Eq/South Africa/4/03 (H3N8) Strain in a Short-Term Vaccine Efficacy Study. Equine Vet. J. 2007, 39, 446–450. [Google Scholar] [CrossRef]
- Tu, J.; Zhou, H.; Jiang, T.; Li, C.; Zhang, A.; Guo, X.; Zou, W.; Chen, H.; Jin, M. Isolation and Molecular Characterization of Equine H3N8 Influenza Viruses from Pigs in China. Arch. Virol. 2009, 154, 887–890. [Google Scholar] [CrossRef]
- Su, S.; Wang, L.; Fu, X.; He, S.; Hong, M.; Zhou, P.; Lai, A.; Gray, G.; Li, S. Equine Influenza A(H3N8) Virus Infection in Cats. Emerg. Infect. Dis. 2014, 20, 2096. [Google Scholar] [CrossRef]
- Yondon, M.; Zayat, B.; Nelson, M.I.; Heil, G.L.; Anderson, B.D.; Lin, X.; Halpin, R.A.; McKenzie, P.P.; White, S.K.; Wentworth, D.E.; et al. Equine Influenza A(H3N8) Virus Isolated from Bactrian Camel, Mongolia. Emerg. Infect. Dis. 2014, 20, 2144–2147. [Google Scholar] [CrossRef] [Green Version]
- Bean, W.J.; Schell, M.; Katz, J.; Kawaoka, Y.; Naeve, C.; Gorman, O.; Webster, R.G. Evolution of the H3 Influenza Virus Hemagglutinin from Human and Nonhuman Hosts. J. Virol. 1992, 66, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Mushtaq, M.H.; Ahmad, M.U.D.; Nazir, J.; Farooqi, S.H.; Khan, A. Molecular Epidemiology of a Novel Re-Assorted Epidemic Strain of Equine Influenza Virus in Pakistan in 2015–16. Virus. Res. 2017, 240, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Anderson, B.D.; Daramragchaa, U.; Chuluunbaatar, M.; Gray, G.C. A Review of Evidence That Equine Influenza Viruses Are Zoonotic. Pathogens 2016, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q. Isolation and Whole Genome Sequence Analysis of Equine H9N2 Influenza Virus in Guang Xi Province, China. Master’s Thesis, Guangxi University, Nanning, China, 2012. [Google Scholar]
Gene | Segment | Length (nt) | Reads (Number) | Coverage Depth | Accession |
---|---|---|---|---|---|
PB2 | 1 | 2341 | 16,195 | 35415.1 | OP919615 |
PB1 | 2 | 2341 | 19,245 | 42029.6 | OP919616 |
PA | 3 | 2233 | 28,177 | 63306.4 | OP919617 |
HA | 4 | 1778 | 14,653 | 42886.6 | EF117330 |
NP | 5 | 1565 | 26,191 | 84524.7 | OP919618 |
NA | 6 | 1413 | 41,878 | 153256.3 | OP919619 |
M | 7 | 1027 | 360,563 | 1858200.5 | OP919620 |
NS | 8 | 890 | 409,258 | 2421160.6 | OP919621 |
Gene | Gene Accession No. | Viruses with Highest % of Nucleotide Identity | Origin | Percent Identity |
---|---|---|---|---|
PB2 | MZ373289 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.7 |
PB1 | MZ364002 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.8 |
PA | MZ373291 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.9 |
HA | KT429521 | A/equine/Pulawy/1/2008(H3N8) | Poland | 99.0 |
NP | MZ373293 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.9 |
NA | MZ373294 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.8 |
M | MZ373295 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.8 |
NS | MZ373296 | A/equine/Pulawy/1/2005(H3N8) | Poland | 99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, F.; Buonavoglia, A.; Omar, A.H.; Diakoudi, G.; Lucente, M.S.; Odigie, A.E.; Sposato, A.; Augelli, R.; Camero, M.; Decaro, N.; et al. A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals 2023, 13, 1153. https://doi.org/10.3390/ani13071153
Pellegrini F, Buonavoglia A, Omar AH, Diakoudi G, Lucente MS, Odigie AE, Sposato A, Augelli R, Camero M, Decaro N, et al. A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals. 2023; 13(7):1153. https://doi.org/10.3390/ani13071153
Chicago/Turabian StylePellegrini, Francesco, Alessio Buonavoglia, Ahmed H. Omar, Georgia Diakoudi, Maria S. Lucente, Amienwanlen E. Odigie, Alessio Sposato, Raffaella Augelli, Michele Camero, Nicola Decaro, and et al. 2023. "A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing" Animals 13, no. 7: 1153. https://doi.org/10.3390/ani13071153
APA StylePellegrini, F., Buonavoglia, A., Omar, A. H., Diakoudi, G., Lucente, M. S., Odigie, A. E., Sposato, A., Augelli, R., Camero, M., Decaro, N., Elia, G., Bányai, K., Martella, V., & Lanave, G. (2023). A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals, 13(7), 1153. https://doi.org/10.3390/ani13071153