Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas
<p>Infection rate, mean EPG, and number of adult worms.</p> "> Figure 2
<p>Mean number of worms expelled by different sexes of giant pandas after administration of four anthelmintics.</p> "> Figure 3
<p>Sex ratio of expelled worms.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- (i)
- Efficacy, where FECRs and the 95% CLU were >95% and the 95% CLL was >90%;
- (ii)
- Resistance, where FECRs and the 95% CLU were <95% and the 95% CLL was <90%;
- (iii)
- Suspected resistance, where none of the above conditions were met.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, F.; Costanza, R.; Dai, Q.; Stoeckl, N.; Gu, X.; Farber, S.; Nie, Y.; Kubiszewski, I.; Hu, Y.; Swaisgood, R.; et al. The Value of Ecosystem Services from Giant Panda Reserves. Curr. Biol. 2018, 28, 2174–2180.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, F.; Swaisgood, R.; Hu, Y.; Nie, Y.; Yan, L.; Zhang, Z.; Zhu, D.Q. Progress in the Ecology and Conservation of Giant Pandas. Conserv. Biol. 2015, 29, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Karim, M.R.; Li, J.; Zhang, L.Z. Review on Parasites of Wild and Captive Giant Pandas (Ailuropoda Melanoleuca): Diversity, Disease and Conservation Impact. Int. J. Parasitol. Parasites Wildl. 2020, 13, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xie, Y.; Zheng, Y.; Wang, C.; Li, D.; Koehler, A.V.; Gasser, R.B. Parasites of the Giant Panda: A Risk Factor in the Conservation of a Species. Adv. Parasitol. 2018, 99, 1–33. [Google Scholar] [PubMed]
- Tang, X.P.; Jia, J.S.; Wang, Z.; Zhang, D.H.; Yu, B.C.; Yue, J.B.; Gong, M.H.; Liu, Y. Scheme Design and Main Result Analysis of The Fouth National Survey on Giant Pandas. Forest Resour. Manag. 2015, 11–16. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.-S.; Daszak, P.; Huang, H.-L.; Yang, G.-Y.; Kilpatrick, A.M.; Zhang, S. Parasite Threat to Panda Conservation. EcoHealth 2008, 5, 6–9. [Google Scholar] [CrossRef]
- McIntosh, A. A New Nematode, Ascaris Schroederi, from a Giant Panda, Ailuropoda Melanoleuca. Zool. Sci. Contrib. NY Zool. Soc. 1939, 24, 355–357. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, S.; Bai, M.; Geng, Y.; Miller, D.; Zhao, R.; Hou, R.; Huang, W.; Zhang, D.; Su, X. First Report of Fatal Baylisascariasis-Induced Acute Pancreatitis in a Giant Panda. Parasitol. Int. 2021, 84, 102380. [Google Scholar] [CrossRef]
- Cooper, L.G.; Caffe, G.; Cerutti, J.; Nielsen, M.K.; Anziani, O.S. Reduced Efficacy of Ivermectin and Moxidectin against Parascaris Spp. In Foals from Argentina. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100388. [Google Scholar] [CrossRef]
- Krücken, J.; Fraundorfer, K.; Mugisha, J.C.; Ramünke, S.; Sifft, K.C.; Geus, D.; Habarugira, F.; Ndoli, J.; Sendegeya, A.; Mukampunga, C.; et al. Reduced Efficacy of Albendazole against Ascaris Lumbricoides in Rwandan Schoolchildren. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 262–271. [Google Scholar] [CrossRef]
- Nielsen, M.; Reinemeyer, C.; Donecker, J.; Leathwick, D.; Marchiondo, A.; Kaplan, R. Anthelmintic Resistance in Equine Parasites--Current Evidence and Knowledge Gaps. Vet. Parasitol. 2014, 204, 55–63. [Google Scholar] [CrossRef]
- Li, D.S.; He, Y.; Deng, L.H.; Chen, Z.Q.; Cheng, Y.X.; Xie, Y.; Han, H.Y.; Yang, G.Y.; Wang, C.D. Experiments of ivermectin and pyrantel pamoate against Baylisascaris schroederi in captive giant panda. Anim. Husb. Vet. Med. 2015, 47, 87–90. (In Chinese) [Google Scholar]
- Li, C.W.; Li, G.; Wang, Y.; Hu, Z.Q.; Cheng, Y.X.; Wang, Q.; He, M.; Zhou, Y.; Zeng, W.; Zhou, J.Q.; et al. Preliminary observation on the anthelmintic effect of three benzimidazole drugs on Baylisascaris Schroederi. Sichuan J. Zool. 2019, 38, 300–304. (In Chinese) [Google Scholar]
- Raza, A.; Qamar, A.G.; Hayat, K.; Ashraf, S.; Williams, A.R. Anthelmintic Resistance and Novel Control Options in Equine Gastrointestinal Nematodes. Parasitology 2019, 146, 425–437. [Google Scholar] [CrossRef]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Methods for the Detection of Anthelmintic Resistance in Nematodes of Veterinary Importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, C.; Shen, M.; Bao, H.; Hou, Z.; He, S.; Hua, Y. Baylisascaris Schroederi Infection in Giant Pandas (Ailuropoda Melanoleuca) in Foping National Nature Reserve, China. J. Wildl. Dis. 2017, 53, 854–858. [Google Scholar] [CrossRef]
- Geurden, T.; Chartier, C.; Fanke, J.; di Regalbono, A.F.; Traversa, D.; von Samson-Himmelstjerna, G.; Demeler, J.; Vanimisetti, H.B.; Bartram, D.J.; Denwood, M.J. Anthelmintic Resistance to Ivermectin and Moxidectin in Gastrointestinal Nematodes of Cattle in Europe. Int. J. Parasitol. Drugs Drug. Resist. 2015, 5, 163–171. [Google Scholar] [CrossRef]
- Lyndal-Murphy, M.; Swain, A.J.; Pepper, P.M. Methods to Determine Resistance to Anthelmintics When Continuing Larval Development Occurs. Vet. Parasitol. 2014, 199, 191–200. [Google Scholar] [CrossRef]
- Alanazi, A.D.; Mukbel, R.M.; Alyousif, M.S.; AlShehri, Z.S.; Alanazi, I.O.; Al-Mohammed, H.I. A Field Study on the Anthelmintic Resistance of Parascaris Spp. In Arab Foals in the Riyadh Region, Saudi Arabia. Vet. Q. 2017, 37, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.; Woodgate, R.; Gough, S.; Heller, J.; Sangster, N.; Hughes, K. The Efficacy of Ivermectin, Pyrantel and Fenbendazole against Parascaris Equorum Infection in Foals on Farms in Australia. Vet. Parasitol. 2014, 205, 575–580. [Google Scholar] [CrossRef]
- Vercruysse, J.; Albonico, M.; Behnke, J.M.; Kotze, A.C.; Prichard, R.K.; McCarthy, J.S.; Montresor, A.; Levecke, B. Is Anthelmintic Resistance a Concern for the Control of Human Soil-Transmitted Helminths? Int. J. Parasitol. Drugs Drug Resist. 2011, 1, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Torgerson, P.R.; Kaplan, R.; George, M.M.; Furrer, R. Furrer. Modelling Anthelmintic Resistance by Extending Eggcounts Package to Allow Individual Efficacy. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 386–393. [Google Scholar] [CrossRef]
- Torgerson, P.R.; Paul, M.; Furrer, R. Evaluating Faecal Egg Count Reduction Using a Specifically Designed Package "Eggcounts" in R and a User Friendly Web Interface. Int. J. Parasitol. 2014, 44, 299–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 24 March 2022).
- Dauparaitė, E.; Kupčinskas, T.; von Samson-Himmelstjerna, G.; Petkevičius, S. Anthelmintic Resistance of Horse Strongyle Nematodes to Ivermectin and Pyrantel in Lithuania. Acta Vet. Scand. 2021, 63, 5. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Höglund, J.; Bergström, T.F.; Lindsjö, O.K.; Tydén, E. Resistance to Pyrantel Embonate and Efficacy of Fenbendazole in Parascaris Univalens on Swedish Stud Farms. Vet. Parasitol. 2018, 264, 69–73. [Google Scholar] [CrossRef]
- Veronesi, F.; Moretta, I.; Moretti, A.; Fioretti, D.P.; Genchi, C. Field Effectiveness of Pyrantel and Failure of Parascaris Equorum Egg Count Reduction Following Ivermectin Treatment in Italian Horse Farms. Vet. Parasitol. 2009, 161, 138–141. [Google Scholar] [CrossRef]
- Jackson, F.; Coop, R.L. The Development of Anthelmintic Resistance in Sheep Nematodes. Parasitology 2000, 120, S95–S107. [Google Scholar] [CrossRef]
- Leathwick, D.M. Managing Anthelmintic Resistance—Parasite Fitness, Drug Use Strategy and the Potential for Reversion Towards Susceptibility. Vet. Parasitol. 2013, 198, 145–153. [Google Scholar] [CrossRef]
- Waller, P. Anthelmintic Resistance and the Future for Roundworm Control. Vet. Parasitol. 1987, 25, 177–191. [Google Scholar] [CrossRef]
- Leathwick, D.M.; Sauermann, C.W.; Geurden, T.; Nielsen, M.K. Managing Anthelmintic Resistance in Parascaris Spp.: A Modelling Exercise. Vet. Parasitol. 2017, 240, 75–81. [Google Scholar] [CrossRef]
- A Piché, C.; Kennedy, M.J.; A Herbers, H.; Newcomb, K.M. Comparison of Ivermectin, Oxibendazole, and Pyrantel Pamoate in Suppressing Fecal Egg Output in Horses. Can. Vet. J. 1991, 32, 104–107. [Google Scholar]
- Han, L.; Lan, T.; Li, D.; Li, H.; Deng, L.; Peng, Z.; He, S.; Zhou, Y.; Han, R.; Li, L.; et al. Chromosome-Scale Assembly and Whole-Genome Sequencing of 266 Giant Panda Roundworms Provide Insights into Their Evolution, Adaptation and Potential Drug Targets. Mol. Ecol. Resour. 2022, 22, 768–785. [Google Scholar] [CrossRef]
- Martin, P.J.; Anderson, N.; Jarrett, R.G. Detecting Benzimidazole Resistance with Faecal Egg Count Reduction Tests and in Vitro Assays. Aust. Vet. J. 1989, 66, 236–240. [Google Scholar] [CrossRef]
- Codina, A.V.; Priotti, J.; Leonardi, D.; Vasconi, M.D.; Lamas, M.C.; Hinrichsen, L.I. Effect of Sex and Genotype of the Host on the Anthelmintic Efficacy of Albendazole Microcrystals, in the Cbi-Ige Trichinella Infection Murine Model. Parasitology 2021, 148, 1545–1553. [Google Scholar] [CrossRef]
- Lockard, R.D.; Wilson, M.E.; Rodríguez, N.E. Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. J. Immunol. Res. 2019, 2019, 4103819. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, M.A. Sex-Determined Susceptibility and Differential Muc2 Mrna Expression During the Course of Murine Intestinal Eimeriosis. Parasitol. Res. 2015, 114, 283–288. [Google Scholar] [CrossRef]
- Luoga, W.; Mansur, F.; Lowe, A.; Duce, I.R.; Buttle, D.J.; Behnke, J.M. Factors Affecting the Anthelmintic Efficacy of Papaya Latex in Vivo: Host Sex and Intensity of Infection. Parasitol. Res. 2015, 114, 2535–2541. [Google Scholar] [CrossRef]
Anthelmintic Drug | Monitoring Interval (2018) | Dosage | Treating Day |
---|---|---|---|
PYR (Bimeda Inc., paste, Dublin, Ireland) | 25 April–24 June | 0.1 g/kg BW * | 24 April |
MBZ (Xian-Janssen Inc., paste, Xi’an, China) | 25 June–21 August | 10 mg/kg BW * | 24–26 June |
ABZ (SK&F Inc., paste, Tianjin, China) | 22 August–23 October | 10 mg/kg BW * | 21–23 August |
IVM (Vetone Inc., paste, Boise, America) | 24 October–20 December | 0.3 mg/kg BW * | 23–24 October |
Drug | Day 0 | Day 1 | Day 4 | Day 8 | Day 15 | Day 22 | Day 29 | Day 36 | Day 43 | Day 50 | Day 57 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PYR | mean EPG (n/g) | 10.7 | 2.2 | 0.1 a | 2.2 | 0.6 | 0.8 | 0.3 | 0.6 | 3.6 | 7.4 | 31.4 |
infection rate (%) | 31.8% (7/22) | 27.3% (6/22) | 4.5% (1/22) | 4.6% (1/22) | 4.6% (1/22) | 4.6% (1/22) | 4.6% (1/22) | 9.1% (2/22) | 18.2% (4/22) | 36.4% (8/22) | 31.8% (7/22) | |
MBZ | mean EPG(n/g) | 31.4 | 6.8 | 0.1 a | 0 | 0 | 0 | 0 | 0 | 0.3 b | 3.0 | 29.2 |
infection rate (%) | 31.8% (7/22) | 40.9% (9/22) | 4.5% (1/22) | 0% | 0% | 0% | 0% | 0% | 13.6% (3/22) | 40.9% (9/22) | 36.4% (8/22) | |
ABZ | mean EPG(n/g) | 29.2 | \ | \ | \ | 0 | \ | \ | \ | \ | 1.1 | 12 |
infection rate (%) | 36.4% (8/22) | \ | \ | \ | 0% | \ | \ | \ | \ | 13.6% (3/22) | 36.4% (8/22) | |
IVM | mean EPG(n/g) | 12 | 0.01 a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 a | 0 |
infection rate (%) | 36.4% (8/22) | 4.6% (1/22) | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 4.6% (1/22) | 0% |
Rule * | Anthelmintic Resistance (AR) | Efficacy | Suspected Resistance (Inconclusive) | Interpretation Results Based on the FECRT Data of the Present Research | ||||
---|---|---|---|---|---|---|---|---|
Approach | PYR | MBZ | ABZ | IVM | ||||
Rule 1 [17,18] | FECR < 95% and CLL < 90%, and CLU < 95% | FECR > 95% and CLL > 90%, and CLU > 95% | Neither of other two criteria | Arithmetic Mean | Suspected Resistance | Efficacious | Efficacious | Efficacious |
MCMC Bayesian | Suspected Resistance | Efficacious | Efficacious | Efficacious | ||||
Rule 2 [15] | FECR < 95% and CLL < 90% | FECR > 95% and CLL > 90% | Neither of other two criteria | Arithmetic Mean | Resistance | Efficacious | Efficacious | Efficacious |
MCMC Bayesian | AR | Efficacious | Efficacious | Efficacious | ||||
Rule 3 [19] | FECR < 90% and CLL < 90% | FECR ≥ 95% and CLL > 90% | FECR ≤ 90% or CLL < 90% | Arithmetic Mean | Suspected Resistance | Efficacious | Efficacious | Efficacious |
MCMC Bayesian | AR | Efficacious | Efficacious | Efficacious | ||||
Rule 4 [20] | FECR < 80% and CLL < 90% | FECR > 95% and CLL > 90% | FECR in 80–90% and CLL < 90% | Arithmetic Mean | Null | Efficacious | Efficacious | Efficacious |
MCMC Bayesian | Suspected Resistance | Efficacious | Efficacious | Efficacious | ||||
Rule 5 [10,21] | FECR < 95% and CLU < 95% | CLL > 95% | FECR including 95% in their 95% CI | Arithmetic Mean | Suspected Resistance | Efficacious | Efficacious | Efficacious |
MCMC Bayesian | Suspected Resistance | Efficacious | Efficacious | Efficacious |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Deng, L.; Peng, Z.; Zhou, M.; Wang, C.; Han, L.; Huang, S.; Wei, M.; Wei, R.; Tian, L.; et al. Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas. Animals 2023, 13, 142. https://doi.org/10.3390/ani13010142
Lu Y, Deng L, Peng Z, Zhou M, Wang C, Han L, Huang S, Wei M, Wei R, Tian L, et al. Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas. Animals. 2023; 13(1):142. https://doi.org/10.3390/ani13010142
Chicago/Turabian StyleLu, Yaxian, Linhua Deng, Zhiwei Peng, Mengchao Zhou, Chengdong Wang, Lei Han, Shan Huang, Ming Wei, Rongping Wei, Lihong Tian, and et al. 2023. "Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas" Animals 13, no. 1: 142. https://doi.org/10.3390/ani13010142
APA StyleLu, Y., Deng, L., Peng, Z., Zhou, M., Wang, C., Han, L., Huang, S., Wei, M., Wei, R., Tian, L., Li, D., & Hou, Z. (2023). Investigation of the Efficacy of Pyrantel Pamoate, Mebendazole, Albendazole, and Ivermectin against Baylisascaris schroederi in Captive Giant Pandas. Animals, 13(1), 142. https://doi.org/10.3390/ani13010142