Molecular Characterization and Pathogenicity of the Novel Recombinant Muscovy Duck Parvovirus Isolated from Geese
<p>The Simplot analysis of the complete genomic sequences of GPV and MDPV. The 20-0910G isolate was used as the query. The YY, SYG61v, and DY16 strains were the potential parental strains. Two regions, at nucleotide positions 423–615 and 3121–4251, were found to contain the recombination breakpoints. The pairwise distance with a window size of 200 bp and step size of 20 bp were used for the analysis. The potential recombination breakpoints are located at the junction of forward arrows.</p> "> Figure 2
<p>Phylogenetic analyses based on the nucleotide sequences from (<b>A</b>) the central 1.1-kb segment of VP1 (nucleotide positions 3121–4251); (<b>B</b>) the N-terminal 700-bp segment of VP1 (nucleotide positions 2419–3118); (<b>C</b>) the C-terminal 400-bp segment of VP1 (nucleotide positions 4218–4617); (<b>D</b>) the NS gene. All analyses were performed with the maximum-likelihood method. Relative bootstrap values were indicated at the nodes by 1000 replicates. Sequence determined in the present study is marked with a triangle.</p> "> Figure 3
<p>Pathogenicity of 20-0910G in goose embryos and goslings. The embryos were infected with 10<sup>5</sup>EID<sub>50</sub> and 1-day-old goslings were infected with 10<sup>5</sup>ELD<sub>50</sub> of 20-0910G. (<b>A</b>) Survival rate of goose embryos; (<b>B</b>) survival rate of goslings. All embryos and goslings died within 11 and 12 days post-infection, respectively. (<b>C</b>) 20-0910G infected embryos showed stunting and subcutaneous hemorrhage at 8 dpi; (<b>D</b>) a 20-day-old goose embryo used as control. The scale bar is 30 mm.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, Detection, and Virus Isolation
2.2. Genome Cloning and Sequencing
2.3. Sequence Analysis
2.4. Determination of Mean Embryo Lethal Dose (ELD50) and Mean Embryo Infection Dose (EID50)
2.5. Experimental Infection and Virulence Assay
3. Results
3.1. Virus Isolation
3.2. Nucleotide Sequence, Recombination, and Phylogenetic Analyses
3.3. Virulence Assay of 20-0910G
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Le Gall-Recule, G.; Jestin, V. Biochemical and genomic characterization of Muscovy duck parvovirus. Arch. Virol. 1994, 139, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zadori, Z.; Erdei, J.; Nagy, J.; Kisary, J. Characteristics of the genome of goose parvovirus. Avian Pathol. 1994, 23, 359–364. [Google Scholar] [CrossRef]
- Zadori, Z.; Stefancsik, R.; Rauch, T.; Kisary, J. Analysis of the complete nucleotide sequences of goose and Muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology 1995, 212, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.C.; Shien, J.H.; Wang, M.S.; Shieh, H.K. Phylogenetic analysis of parvoviruses isolated in Taiwan from ducks and geese. Avian Pathol. 2000, 29, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Glávits, R.; Zolnai, A.; Szabo, E.; Ivanics, E.; Zarka, P.; Mato, T.; Palya, V. Comparative pathological studies on domestic geese (Anser anser domestica) and Muscovy ducks (Cairina moschata) experimentally infected with parvovirus strains of goose and Muscovy duck origin. Acta Vet. Hung. 2005, 53, 73–89. [Google Scholar] [CrossRef]
- Yen, T.-Y.; Li, K.-P.; Ou, S.-C.; Shien, J.-H.; Chang, P.-C. The white roman goose as a host for infection and viral shedding of Muscovy duck parvovirus. Taiwan Vet. J. 2015, 41, 85–89. [Google Scholar] [CrossRef]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; Junglen, S.; et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2019, 164, 2417–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatár-Kis, T.; Mato, T.; Markos, B.; Palya, V. Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathol. 2004, 33, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Tseng, C.H.; Chang, P.C.; Mei, K.; Wang, S.C. Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives. Avian Dis. 2004, 48, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Poonia, B.; Dunn, P.A.; Lu, H.; Jarosinski, K.W.; Schat, K.A. Isolation and molecular characterization of a new Muscovy duck parvovirus from Muscovy ducks in the USA. Avian Pathol. 2006, 35, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, X.-X.; Chen, S.-Y.; Lin, F.-Q.; Chen, S.-L.; Zhu, X.-L.; Wang, J.-X.; Huang, M.-Q.; Zheng, M. Phylogenetic analysis of VP1 gene of waterfowl parvoviruses from mainland of China reveal genetic diversity and recombination. Gene 2016, 578, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, M.; Ohshima, T.; Une, Y.; Yachi, A. Recombination between vaccine and field Strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures. J. Vet. Med. Sci. 2008, 70, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cheng, S.; Yi, L.; Cheng, Y.; Yang, S.; Xu, H.; Zhao, H.; Yan, X.; Wu, H. Evidence for natural recombination between mink enteritis virus and canine parvovirus. Virol. J. 2012, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Dou, Y.; Tang, Y.; Zhang, Z.; Zheng, X.; Niu, X.; Yang, J.; Yu, X.; Diao, Y. Isolation and genetic characterization of a duck-origin GPV-related parvovirus from cherry valley ducklings in China. PLoS ONE 2015, 10, e0140284. [Google Scholar]
- Li, P.; Lin, S.; Zhang, R.; Chen, J.; Sun, D.; Lan, J.; Song, S.; Xie, Z.; Jiang, S. Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus. Transbound. Emerg. Dis. 2018, 65, e284–e295. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.A.; Erfan, A.M.; Samy, M.; Mahana, O.; Nasef, S.A. Detection of novel goose parvovirus disease associated with short beak and dwarfism syndrome in commercial ducks. Animals 2020, 10, 1833. [Google Scholar] [CrossRef]
- Matczuk, A.K.; Chmielewska-Wlayka, M.; Siedlecka, M.; Bednarek, K.J.; Wieliczko, A. Short beak and dwarfism syndrome in ducks in Poland cause by novel goose parvovirus. Animals 2020, 10, 2397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ling, J.; Wang, Z.; Huang, Y.; Zhu, Z.; Zhu, G. Molecular characterization of a novel Muscovy duck parvovirus isolate: Evidence of recombination between classical MDPV and goose parvovirus strains. BMC Vet. Res. 2017, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Jia, J.; Ling, J.; Mi, Q.; Zhu, G. Retrospective investigation and molecular characteristics of the recombinant Muscovy duck parvovirus circulating in Muscovy duck flocks in China. Avian Pathol. 2019, 48, 343–351. [Google Scholar] [CrossRef]
- Wang, J.; Mi, Q.; Wang, Z.; Jia, J.; Li, Y.; Zhu, G. Sole recombinant Muscovy duck parvovirus infection in Muscovy ducklings can form characteristic intestinal embolism. Vet. Microbiol. 2020, 242, 1085–1090. [Google Scholar] [CrossRef]
- Lu, Y.S.; Lin, D.F.; Lee, Y.L.; Liao, Y.K.; Tsai, H.J. Infectious bill atrophy syndrome caused by parvovirus in a co-outbreak with duck viral hepatitis in ducklings in Taiwan. Avian Dis. 1993, 37, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.-Y.; Li, K.-P.; Ou, S.-C.; Shien, J.-H.; Lu, H.-M.; Chang, P.-C. Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain. Avian Pathol. 2015, 44, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Chen, H.; Dou, Y.; Tang, Y.; Zheng, X.; Niu, X.; Yang, J.; Yu, X.; Diao, Y. Experimental reproduction of beak atrophy and dwarfism syndrome by infection in cherry valley ducklings with a novel goose parvovirus-related parvovirus. Vet. Microbiol. 2016, 183, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, W.; Wang, H.; Zhou, Y.; Shao, S. Identification of recombination between Muscovy duck parvovirus and goose parvovirus structural protein genes. Arch. Virol. 2015, 160, 2617–2621. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Z.; Huang, Y.; Yu, R.; Dong, S.; Li, Z.; Zhang, Y. Identification of a recombinant Muscovy duck parvovirus (MDPV) in Shanghai, China. Vet. Microbiol. 2014, 174, 560–564. [Google Scholar] [CrossRef]
- Shen, H.; Huang, J.; Yan, Z.; Yin, L.; Li, L.; Zhou, Q.; Chen, F. Isolation and characterization of a recombinant Muscovy duck parvovirus circulating in Muscovy ducks in south China. Arch. Virol. 2020, 165, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Hlink, A.; Muller, T.; Kramer, M.; Muhle, R.U.; Liebherr, H.; Ziedler, K. Serological survey of viral pathogens in bean and white-fronted geese from Germany. J. Wild. Dis. 1998, 34, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Hueffer, K.; Parrish, C.R. Parvovirus host range, cell tropism and evolution. Curr. Opin. Microbiol. 2003, 6, 392–398. [Google Scholar] [CrossRef]
- Shackelton, L.A.; Hoelzer, K.; Parrish, C.R.; Holmes, E.C. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 2007, 88 Pt 12, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-P.; Hsu, Y.-C.; Lin, C.-A.; Chang, P.-C.; Shien, J.-H.; Liu, H.-Y.; Yen, H.; Ou, S.-C. Molecular Characterization and Pathogenicity of the Novel Recombinant Muscovy Duck Parvovirus Isolated from Geese. Animals 2021, 11, 3211. https://doi.org/10.3390/ani11113211
Li K-P, Hsu Y-C, Lin C-A, Chang P-C, Shien J-H, Liu H-Y, Yen H, Ou S-C. Molecular Characterization and Pathogenicity of the Novel Recombinant Muscovy Duck Parvovirus Isolated from Geese. Animals. 2021; 11(11):3211. https://doi.org/10.3390/ani11113211
Chicago/Turabian StyleLi, Kuang-Po, Yu-Chen Hsu, Chih-An Lin, Poa-Chun Chang, Jui-Hung Shien, Hsien-Yueh Liu, Hua Yen, and Shan-Chia Ou. 2021. "Molecular Characterization and Pathogenicity of the Novel Recombinant Muscovy Duck Parvovirus Isolated from Geese" Animals 11, no. 11: 3211. https://doi.org/10.3390/ani11113211
APA StyleLi, K. -P., Hsu, Y. -C., Lin, C. -A., Chang, P. -C., Shien, J. -H., Liu, H. -Y., Yen, H., & Ou, S. -C. (2021). Molecular Characterization and Pathogenicity of the Novel Recombinant Muscovy Duck Parvovirus Isolated from Geese. Animals, 11(11), 3211. https://doi.org/10.3390/ani11113211