Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats
<p>Schematic of the chamber used for the forced exposure experiment.</p> "> Figure 2
<p>Schematic of the chamber used for the aversion-avoidance experiment.</p> "> Figure 3
<p>Naïve rats (<b>dark bar</b>) vs. previously exposed rats (<b>light bar</b>) in natural log time to leave the dark chamber when comparing within treatment groups. An asterisk (* or **) signifies when the <span class="html-italic">p</span> value is significant (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Husbandry
2.3. Experiment 1: Forced Exposure
2.3.1. Apparatus
2.3.2. Experimental Design
2.3.3. Testing Procedure
2.3.4. Behavioral Observations
2.3.5. Expected Outcomes
2.4. Experiment 2: Aversion-Avoidance
2.4.1. Apparatus
2.4.2. Habituation and Training
2.4.3. Experimental Design
2.4.4. Testing Procedure
2.4.5. Expected Outcomes
2.5. Data Analysis
2.5.1. Analysis for Experiment 1: Forced Exposure
2.5.2. Analysis for Experiment 2: Aversion-Avoidance
3. Results
3.1. Forced Exposure
3.1.1. Baseline Data
3.1.2. Active Data
3.1.3. Change from Baseline Data
3.2. Aversion-Avoidance
4. Discussion
4.1. Forced Exposure
4.1.1. Baseline Data
4.1.2. Active Data
4.1.3. Change from Baseline Data
4.2. Aversion-Avoidance
4.2.1. Between Treatment Groups
4.2.2. Within Treatment Groups
4.3. Comparisons
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boivin, G.P.; Hickman, D.L.; Creamer-Hente, M.A.; Pritchett-Corning, K.R.; Bratcher, N.A. Review of CO₂ as a Euthanasia Agent for Laboratory Rats and Mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 491–499. [Google Scholar] [PubMed]
- Hawkins, P.; Prescott, M.J.; Carbone, L.; Dennison, N.; Johnson, C.; Makowska, I.J.; Marquardt, N.; Readman, G.; Weary, D.M.; Golledge, H.D.R. A Good Death? Report of the Second Newcastle Meeting on Laboratory Animal Euthanasia. Animals 2016, 6, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Améndola, L.; Ratuski, A.; Weary, D.M. Variation in the onset of CO2-induced anxiety in female Sprague Dawley rats. Sci. Rep. 2019, 9, 19007. [Google Scholar] [CrossRef] [Green Version]
- Améndola, L.; Weary, D.M. Evidence for consistent individual differences in rat sensitivity to carbon dioxide. PLoS ONE 2019, 14, e0215808. [Google Scholar] [CrossRef] [PubMed]
- Kirkden, R.D.; Niel, L.; Lee, G.; Makowska, I.J.; Pfaffinger, M.J.; Weary, D.M. The validity of using an approach-avoidance test to measure the strength of aversion to carbon dioxide in rats. Appl. Anim. Behav. Sci. 2008, 114, 216–234. [Google Scholar] [CrossRef]
- Niel, L.; Weary, D.M. Rats avoid exposure to carbon dioxide and argon. Appl. Anim. Behav. Sci. 2007, 107, 100–109. [Google Scholar] [CrossRef]
- Niel, L.; Weary, D.M. Behavioural responses of rats to gradual-fill carbon dioxide euthanasia and reduced oxygen concentrations. Appl. Anim. Behav. Sci. 2006, 100, 295–308. [Google Scholar] [CrossRef]
- Leach, M.; Bowell, V.; Allan, T.; Morton, D. Measurement of aversion to determine humane methods of anaesthesia and euthanasia. Anim. Welf. 2004, 13, S77–S86. [Google Scholar]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Aversion to gaseous euthanasia agents in rats and mice. Comp. Med. 2002, 52, 249–257. [Google Scholar]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Degrees of aversion shown by rats and mice to different concentrations of inhalational anaesthetics. Vet. Rec. 2002, 150, 808. [Google Scholar] [CrossRef]
- Smith, W.; Harrap, S.B. Behavioural and cardiovascular responses of rats to euthanasia using carbon dioxide gas. Lab. Anim. 1997, 31, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.M.; Drinkenburg, W.H.; Hoenderken, R.; van Luijtelaar, E.L. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia. Lab. Anim. 1995, 29, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, S.R.; Valentim, A.M.; Antunes, L.M. Mice aversion to sevoflurane, isoflurane and carbon dioxide using an approach-avoidance task. Appl. Anim. Behav. Sci. 2017, 189, 91–97. [Google Scholar] [CrossRef]
- Burkholder, T.H.; Niel, L.; Weed, J.L.; Brinster, L.R.; Bacher, J.D.; Foltz, C.J. Comparison of carbon dioxide and argon euthanasia: Effects on behavior, heart rate, and respiratory lesions in rats. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 448–453. [Google Scholar]
- Hewett, T.A.; Kovacs, M.S.; Artwohl, J.E.; Bennett, B.T. A comparison of euthanasia methods in rats, using carbon dioxide in prefilled and fixed flow rate filled chambers. Lab. Anim. Sci. 1993, 43, 579–582. [Google Scholar]
- Bowyer, G.; Cubitt, S. An improved method of carbon dioxide euthanasia for rodents. Anim. Technol. 1995, 46, 19–28. [Google Scholar]
- Hackbarth, H.; Küppers, N.; Bohnet, W. Euthanasia of rats with carbon dioxide--animal welfare aspects. Lab. Anim. 2000, 34, 91–96. [Google Scholar] [CrossRef]
- Valentine, H.; Williams, W.O.; Maurer, K.J. Sedation or inhalant anesthesia before euthanasia with CO2 does not reduce behavioral or physiologic signs of pain and stress in mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 50–57. [Google Scholar]
- Hickman, D.L.; Fitz, S.D.; Bernabe, C.S.; Caliman, I.F.; Haulcomb, M.M.; Federici, L.M.; Shekhar, A.; Johnson, P.L. Evaluation of Low versus High Volume per Minute Displacement CO₂ Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology. Animals 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, R.; Niel, L.; Olfert, E.; von Keyserlingk, M.; Griffin, G. CCAC Guidelines on: Euthanasia of Animals Used in Science; Canadian Council on Animal Care: Ottawa, ON, Canada, 2010. [Google Scholar]
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available online: https://www.avma.org/sites/default/files/2020-01/2020-Ethanasia-Final-1-17-20.pdf (accessed on 25 June 2020).
- Young, A. Halothane induction results in differing behaviours compared with Carbon Dioxide mixed with Oxygen when used as a rat euthanasia agent. Anim. Technol. Welf. 2006, 5, 49–59. [Google Scholar]
- Wong, D.; Makowska, I.J.; Weary, D.M. Rat aversion to isoflurane versus carbon dioxide. Biol. Lett. 2013, 9, 20121000. [Google Scholar] [CrossRef] [PubMed]
- Boulanger Bertolus, J.; Nemeth, G.; Makowska, I.J.; Weary, D.M. Rat aversion to sevoflurane and isoflurane. Appl. Anim. Behav. Sci. 2015, 164, 73–80. [Google Scholar] [CrossRef]
- Makowska, I.J.; Weary, D.M. Rat aversion to induction with inhalant anaesthetics. Appl. Anim. Behav. Sci. 2009, 119, 229–235. [Google Scholar] [CrossRef]
- Makowska, I.J.; Vickers, L.; Mancell, J.; Weary, D.M. Evaluating methods of gas euthanasia for laboratory mice. Appl. Anim. Behav. Sci. 2009, 121, 230–235. [Google Scholar] [CrossRef]
- Powell, K.; Ethun, K.; Taylor, D.K. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia. Lab. Anim. (N.Y.) 2016, 45, 386–395. [Google Scholar] [CrossRef]
- Chisholm, J.; De Rantere, D.; Fernandez, N.J.; Krajacic, A.; Pang, D.S.J. Carbon dioxide, but not isoflurane, elicits ultrasonic vocalizations in female rats. Lab. Anim. 2013, 47, 324–327. [Google Scholar] [CrossRef]
- Frost, K.; Shah, M.; Leung, V.S.Y.; Pang, D.S.J. Aversion to Desflurane and Isoflurane in Sprague-Dawley Rats (Rattus norvegicus). Animals 2020, 10, 950. [Google Scholar] [CrossRef]
- Creamer-Hente, M.; Lao, F.; Dragos, Z.; Waterman, L. Sex- and Strain-related Differences in the Stress Response of Mice to CO2 Euthanasia. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 513–519. [Google Scholar] [CrossRef]
- Hickman, D.L. Home Cage Compared with Induction Chamber for Euthanasia of Laboratory Rats. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2018, 57, 729–733. [Google Scholar] [CrossRef]
- Fisher, S.; Burgess, W.L.; Hines, K.D.; Mason, G.L.; Owiny, J.R. Interstrain Differences in CO2-Induced Pulmonary Hemorrhage in Mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2016, 55, 811–815. [Google Scholar]
- Olfe, J.; Domanska, G.; Schuett, C.; Kiank, C. Different stress-related phenotypes of BALB/c mice from in-house or vendor: Alterations of the sympathetic and HPA axis responsiveness. BMC Physiol. 2010, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britt, D.P. The Humaneness of Carbon Dioxide as an Agent of Euthanasia for Laboratory Rodents; Universities Federation for Animal Welfare: Potters Bar, UK, 1987; pp. 19–31. [Google Scholar]
- Ramachandra, V.; Phuc, S.; Franco, A.C.; Gonzales, R.A. Ethanol Preference Is Inversely Correlated with Ethanol-Induced Dopamine Release in 2 Substrains of C57BL/6 Mice. Alcohol. Clin. Exp. Res. 2007, 31, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Khisti, R.T.; Wolstenholme, J.; Shelton, K.L.; Miles, M.F. Characterization of the ethanol-deprivation effect in substrains of C57BL/6 mice. Alcohol 2006, 40, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Company, T.C. Safety Data Sheet. Available online: https://www.thecloroxcompany.com/wp-content/uploads/cloroxregular-bleach12015-06-12.pdf (accessed on 25 June 2020).
- Makowska, I.J.; Weary, D.M. Using Rat Behavior to Assess Aversion to Euthanasia Agents. ALTEX Proc. Proc. WC8 2012, 1, 465–467. [Google Scholar]
- Steiner, A.R.; Axiak Flammer, S.; Beausoleil, N.J.; Berg, C.; Bettschart-Wolfensberger, R.; García Pinillos, R.; Golledge, H.D.R.; Marahrens, M.; Meyer, R.; Schnitzer, T.; et al. Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide. Animals 2019, 9, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.; et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 2014, 11, 629–632. [Google Scholar] [CrossRef]
- Gorman, J.M.; Kent, J.; Martinez, J.; Browne, S.; Coplan, J.; Papp, L.A. Physiological Changes During Carbon Dioxide Inhalation in Patients With Panic Disorder, Major Depression, and Premenstrual Dysphoric Disorder: Evidence for a Central Fear Mechanism. Arch. Gen. Psychiatry 2001, 58, 125–131. [Google Scholar] [CrossRef]
- Améndola, L.; Weary, D.M. Understanding rat emotional responses to CO2. Transl. Psychiatry 2020, 10, 253. [Google Scholar] [CrossRef]
- Campagna, J.A.; Miller, K.W.; Forman, S.A. Mechanisms of Actions of Inhaled Anesthetics. N. Engl. J. Med. 2003, 348, 2110–2124. [Google Scholar] [CrossRef]
- Hüneke, R.; Faßl, J.; Rossaint, R.; Lückhoff, A. Effects of volatile anesthetics on cardiac ion channels. Acta Anaesthesiol. Scand. 2004, 48, 547–561. [Google Scholar] [CrossRef]
- Franks, N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, J.; Dai, C.-L.; Li, H.; Iqbal, K.; Liu, F.; Gong, C.-X. Anesthesia with sevoflurane or isoflurane induces severe hypoglycemia in neonatal mice. PLoS ONE 2020, 15, e0231090. [Google Scholar] [CrossRef] [PubMed]
- Behdad, S.; Mortazavizadeh, A.; Ayatollahi, V.; Khadiv, Z.; Khalilzadeh, S. The Effects of Propofol and Isoflurane on Blood Glucose during Abdominal Hysterectomy in Diabetic Patients. Diabetes Metab. J. 2014, 38, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loepke, A.W.; McCann, J.C.; Kurth, C.D.; McAuliffe, J.J. The Physiologic Effects of Isoflurane Anesthesia in Neonatal Mice. Anesth. Analg. 2006, 102, 75–80. [Google Scholar] [CrossRef] [PubMed]
Active Behaviors |
|
Passive Behaviors |
|
Other Measurements | Time spent on either side of the cage (seconds) |
Behaviors | F Ratio [df]; p Value | Mean Relative Frequency ± Standard Deviation [95% CI] | |||
---|---|---|---|---|---|
CO2 | Fox Urine | Isoflurane | Oxygen | ||
Rears | 6.2068 [3, 49.07]; 0.0012 * | 0.109 ± 0.074 [0.077, 0.140] | 0.057 ± 0.044 [0.037, 0.077] | 0.102 ± 0.038 [0.085, 0.118] | 0.064 ± 0.051 [0.042, 0.086] |
Line crosses | 7.1582 [3, 49.494]; 0.0004 * | 0.057 ± 0.032 [0.044, 0.071] | 0.025 ± 0.026 [0.013, 0.036] | 0.032 ± 0.022 [0.022, 0.041] | 0.018 ± 0.027 [0.007, 0.030] |
Immobility time | 3.2660 [3, 49.271]; 0.0290 * | 0.366 ± 0.246 [0.262, 0.470] | 0.535 ± 0.332 [0.386, 0.681] | 0.364 ± 0.251 [0.258, 0.470] | 0.562 ± 0.298 [0.436, 0.688] |
Time by gas inlet | 0.8066 [3, 48.648]; 0.4964 | 0.414 ± 0.230 [0.317, 0.512] | 0.440 ± 0.357 [0.265, 0.582] | 0.527 ± 0.285 [0.407, 0.647] | 0.470 ± 0.385 [0.307, 0.633] |
Time by tea ball | 0.8013 [3, 48.647]; 0.4992 | 0.585 ± 0.230 [0.487, 0.682] | 0.557 ± 0.356 [0.416, 0.732] | 0.472 ± 0.285 [0.352, 0.592] | 0.529 ± 0.387 [0.366, 0.693] |
Behaviors | F Ratio [df]; p-Value | Mean Relative Frequency ± Standard Deviation [95% CI] | |||
---|---|---|---|---|---|
CO2 | Fox Urine | Isoflurane | Oxygen | ||
Rears | 4.7473 [3, 48.556]; 0.0056 * | 0.019 ± 0.095 [−0.020, 0.059] | −0.025 ± 0.039 [−0.042, −0.008] | 0.015 ± 0.044 [−0.003, 0.034] | −0.025 ± 0.073 [−0.057, 0.005] |
Line crosses | 2.3571 [3, 49.497]; 0.0830 | 0.024 ± 0.048 [0.003, 0.044] | −0.007 ± 0.039 [−0.024, 0.010] | 0.0006 ± 0.033 [−0.013, 0.014] | −0.006 ± 0.040 [−0.023, 0.009] |
Immobility time | 2.6673 [3, 49.678]; 0.0578 | −0.066 ± 0.365 [−0.220, 0.088] | 0.145 ± 0.301 [0.011, 0.278] | 0.003 ± 0.274 [−0.112, 0.119] | 0.172 ± 0.341 [0.028, 0.316] |
Time by gas inlet | 0.0850 [3, 49.955]; 0.9679 | 0.002 ± 0.276 [−0.114, 0.118] | −0.033 ± 0.246 [−0.143, 0.075] | −0.021 ± 0.317 [−0.155, 0.112] | −0.032 ± 0.295 [−0.157, 0.092] |
Time by tea ball | 0.0810 [3, 49.955]; 0.9700 | −0.002 ± 0.276 [−0.118, 0.114] | 0.032 ± 0.248 [−0.077, 0.142] | 0.021 ± 0.317 [−0.112, 0.155] | 0.032 ± 0.296 [−0.092, 0.157] |
Groups | F Ratio [df]; p-Value | Mean (in Seconds) [95% CI] | |
---|---|---|---|
Forced Exposure (FE) or Naïve | 6.1998 [1, 93]; 0.0146 * | FE | Naïve |
69.72 [56.0, 87.2] | 103.30 [82.9, 128.6] | ||
Treatment | 6.6565 [1, 93]; 0.0115 * | CO2 | Isoflurane |
69.42 [55.7, 86.4] | 104.64 [83.3, 129.8] | ||
Forced Exposure (FE) or Naïve interaction with Treatment | 0.9614 [3, 93]; 0.3294 | FE, CO2 | FE, Isoflurane |
61.67 [45.2, 84.0] | 78.14 [57.3, 106.5] | ||
Naïve, CO2 | Naïve, Isoflurane | ||
79.25 [57.7, 108.7] | 136.57 [100.1, 186.1] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, S.; Hickman, D. Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats. Animals 2020, 10, 1431. https://doi.org/10.3390/ani10081431
Kulkarni S, Hickman D. Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats. Animals. 2020; 10(8):1431. https://doi.org/10.3390/ani10081431
Chicago/Turabian StyleKulkarni, Satyajit, and Debra Hickman. 2020. "Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats" Animals 10, no. 8: 1431. https://doi.org/10.3390/ani10081431
APA StyleKulkarni, S., & Hickman, D. (2020). Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats. Animals, 10(8), 1431. https://doi.org/10.3390/ani10081431