Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus
<p>Substrate saturation curves and Lineweaver–Burk plots for (<b>a</b>,<b>b</b>) <span class="html-italic">Sa</span>SufS and (<b>c</b>,<b>d</b>) <span class="html-italic">BsSufS</span>, respectively, determined at pH 8.0 in 100 mM MOPS buffer at 20 °C using Cys as the substrate and fit to the Michaelis–Menten equation. Specific activity is measured in nmol alanine produced per minute per mg of enzyme with PLP.</p> "> Figure 2
<p><span class="html-italic">Sa</span>SufS with Cys spectra. The absorbance of <span class="html-italic">Sa</span>SufS was measured from 300 to 460 nm in the absence (solid blue line) and presence of 5 mM Cys (rainbow lines) over the course of 5 min. Arrows indicate change in absorbance with time from 0 min (blue) to 5 min (red).</p> "> Figure 3
<p>The rate of change in <span class="html-italic">Sa</span>SufS absorbance at 340 nm as a function of the concentration of Cys: (<b>a</b>) 0 to 40 s after the reaction was initiated in the absence of 2 mM TCEP; (<b>b</b>) 0 to 40 s after the reaction was initiated in the presence of TCEP; (<b>c</b>) 40 to 120 s after the reaction was initiated in the absence of 2 mM TCEP; and (<b>d</b>) 40 to 120 s after the reaction was initiated in the presence of TCEP.</p> "> Figure 4
<p>The absorbance spectrum of <span class="html-italic">Sa</span>SufS upon incubation with 4.9 mM of (<b>a</b>) LCS and (<b>b</b>) DCS over the course of 24 h. Arrows indicate the change in absorbance with time from 0 h (blue) to 24 h. (red).</p> "> Figure 5
<p>The rate of change in <span class="html-italic">Sa</span>SufS absorbance upon the introduction of 10 mM Cys after a 96 h incubation in varying concentrations of (<b>a</b>) LCS and (<b>b</b>) DCS as a function of the cycloserine concentration. The LCS data, in red, were collected using the previously described Ala-NDA assay.</p> "> Figure 6
<p>Percent growth of the WT MRSA strain LAC (black) and the corresponding Δ<span class="html-italic">nfu</span> Δ<span class="html-italic">sufT</span> strain (red) after 18 h of growth in varying concentrations of (<b>a</b>) LCS and (<b>b</b>) DCS.</p> "> Scheme 1
<p>The cysteine desulfurase mechanism of <span class="html-italic">Sa</span>SufS.</p> "> Scheme 2
<p>The proposed mechanism of <span class="html-italic">Sa</span>SufS inhibition by (<b>a</b>) LCS and (<b>b</b>) DCS.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Kinetics of SaSufS with Cys as a Substrate
2.2. Spectrophotometric Determination of Michaelis–Menten Constants
2.3. Absorbance Spectroscopy of SaSufS with LCS and DCS
2.4. Quantitation of the Efficacy of LCS and DCS as Inhibitors of SaSufS
2.5. LCS and DCS Antimicrobial Growth Assays
3. Discussion
3.1. Spectrophotometric Determination of SaSufS Kinetic Constants
3.2. Spectrophotometric Quantitation of the Efficacy of PLP-Binding Inhibitors of SaSufS
3.3. S. aureus Growth Studies
4. Materials and Methods
4.1. Materials
4.2. Plasmids, Cell Cultures, and Protein Purification
4.3. Quantitation of SaSufS PLP Occupancy
4.4. Ultraviolet–Visible Absorbance Spectroscopy
4.5. Cysteine Desulfurase Substrate and Inhibitor Incubation
4.6. Cysteine Desulfurase Rate Dependence on Substrate Concentration
4.7. Quantitation of Cysteine Desulfurase Inhibitor Efficacy
4.8. Alanine Detection Assay
4.9. Antimicrobial Assays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SaSufS | The cysteine desulfurase of Staphylococcus aureus (SufS) |
PLP | Pyridoxal-5′-Phosphate |
MRSA | Methicillin-resistant Staphylococcus aureus |
VISA | Vancomycin-intermediate Staphylococcus aureus |
VRSA | Vancomycin-resistant Staphylococcus aureus |
PBP | Penicillin-binding Protein |
Fe-S | Iron–sulfur |
NIF | Nitrogen Fixation Pathway |
ISC | Iron–Sulfur Cluster Pathway |
CIA | Cytosolic Iron–Sulfur Cluster Assembly Pathway |
MIS | Minimal Iron–Sulfur Pathway |
SUF | Sulfur Mobilization Factor Pathway |
Cys | L-Cysteine |
Ala | L-Alanine |
DCS | D-Cycloserine |
LCS | L-Cycloserine |
BsSufS | The cysteine desulfurase of Bacillus subtilis (SufS) |
Ala-NDA | Alanine detection assay |
NDA | Naphthalene-2,3-Dicarboxaldehyde |
SA | Specific Activity |
AU | Absorbance Units |
LLP | Lysine-Bound Pyridoxal-5′-Phosphate |
EcSufS | The cysteine desulfurase of Escherichia coli (SufS) |
LB | Luria–Bertani Broth |
Tris-HCl | Tris(hydroxymethyl)aminomethane Hydrochloride |
IPTG | Isopropyl-β-D-1-thiogalactopyranoside |
KCl | Potassium Chloride |
TCA | Trichloroacetic Acid |
MOPS | 3-(N-Morpholino)propanesulfonic Acid |
TCEP | Tris(2-carboxyethyl)phosphine |
Ni-NTA | Nickel–Nitrilotriacetic Acid |
NaOH | Sodium Hydroxide |
HCl | Hydrochloric Acid |
UV-Vis | Ultraviolet–Visible Radiation |
KCN | Potassium Cyanide |
MHB | Mueller–Hinton Broth |
MIC | Minimal Inhibitory Concentration |
IC50 | Half Maximal Inhibitory Concentration |
Lys | Lysine |
His | Histidine |
References
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Wang, T.; Xu, N.; Lu, T.; Hong, W.; Penuelas, J.; Gillings, M.; Wang, M.; Gao, W.; et al. Assessment of Global Health Risk of Antibiotic Resistance Genes. Nat. Commun. 2022, 13, 1553. [Google Scholar] [CrossRef]
- Inda-Díaz, J.S.; Lund, D.; Parras-Moltó, M.; Johnning, A.; Bengtsson-Palme, J.; Kristiansson, E. Latent Antibiotic Resistance Genes Are Abundant, Diverse, and Mobile in Human, Animal, and Environmental Microbiomes. Microbiome 2023, 11, 44. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin Resistant Staphylococcus aureus Infections: A Review of Case Updating and Clinical Features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Stogios, P.J.; Savchenko, A. Molecular Mechanisms of Vancomycin Resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
- Sievert, D.M.; Rudrik, J.T.; Patel, J.B.; McDonald, L.C.; Wilkins, M.J.; Hageman, J.C. Vancomycin-Resistant Staphylococcus aureus in the United States, 2002–2006. Clin. Infect. Dis. 2008, 46, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Gardete, S.; Tomasz, A. Mechanisms of Vancomycin Resistance in Staphylococcus aureus. J. Clin. Investig. 2014, 124, 2836–2840. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C.; Dean, D.R.; Smith, A.D.; Johnson, M.K. Structure, Function, and Formation of Biological Iron-Sulfur Clusters. Annu. Rev. Biochem. 2005, 74, 247–281. [Google Scholar] [CrossRef]
- Boncella, A.E.; Sabo, E.T.; Santore, R.M.; Carter, J.; Whalen, J.; Hudspeth, J.D.; Morrison, C.N. The Expanding Utility of Iron-Sulfur Clusters: Their Functional Roles in Biology, Synthetic Small Molecules, Maquettes and Artificial Proteins, Biomimetic Materials, and Therapeutic Strategies. Coord. Chem. Rev. 2022, 453, 214229. [Google Scholar] [CrossRef]
- Srour, B.; Gervason, S.; Monfort, B.; D’Autréaux, B. Mechanism of Iron–Sulfur Cluster Assembly: In the Intimacy of Iron and Sulfur Encounter. Inorganics 2020, 8, 55. [Google Scholar] [CrossRef]
- Baussier, C.; Fakroun, S.; Aubert, C.; Dubrac, S.; Mandin, P.; Py, B.; Barras, F. Making Iron-Sulfur Cluster: Structure, Regulation and Evolution of the Bacterial ISC System. Adv. Microb. Physiol. 2020, 76, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, N.; Nonaka, C.; Ohashi, Y.; Shioda, M.; Terahata, T.; Chen, W.; Sakamoto, K.; Maruyama, C.; Saito, T.; Yuda, E.; et al. Distinct Roles for U-type Proteins in Iron–Sulfur Cluster Biosynthesis Revealed by Genetic Analysis of the Bacillus Subtilis SufCDSUB Operon. Mol. Microbiol. 2018, 107, 688–703. [Google Scholar] [CrossRef]
- Roche, B.; Aussel, L.; Ezraty, B.; Mandin, P.; Py, B.; Barras, F. Iron/Sulfur Proteins Biogenesis in Prokaryotes: Formation, Regulation and Diversity. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2013, 1827, 455–469. [Google Scholar] [CrossRef]
- Lill, R.; Mühlenhoff, U. Iron-Sulfur Protein Biogenesis in Eukaryotes: Components and Mechanisms. Annu. Rev. Cell Dev. Biol. 2006, 22, 457–486. [Google Scholar] [CrossRef] [PubMed]
- Hudspeth, J.D.; Boncella, A.E.; Sabo, E.T.; Andrews, T.; Boyd, J.M.; Morrison, C.N. Structural and Biochemical Characterization of Staphylococcus aureus Cysteine Desulfurase Complex SufSU. ACS Omega 2022, 7, 44124–44133. [Google Scholar] [CrossRef]
- Braymer, J.J.; Freibert, S.A.; Rakwalska-Bange, M.; Lill, R. Mechanistic Concepts of Iron-Sulfur Protein Biogenesis in Biology. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118863. [Google Scholar] [CrossRef]
- Fujishiro, T.; Nakamura, R.; Kunichika, K.; Takahashi, Y. Structural Diversity of Cysteine Desulfurases Involved in Iron-Sulfur Cluster Biosynthesis. Biophys. Physicobiol. 2022, 19, e190001. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.S.; D’Angelo, F.; Ollagnier de Choudens, S.; Dussouchaud, M.; Bouveret, E.; Gribaldo, S.; Barras, F. An Early Origin of Iron–Sulfur Cluster Biosynthesis Machineries before Earth Oxygenation. Nat. Ecol. Evol. 2022, 6, 1564–1572. [Google Scholar] [CrossRef]
- Blahut, M.; Sanchez, E.; Fisher, C.E.; Outten, F.W. Fe-S Cluster Biogenesis by the Bacterial Suf Pathway. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118829. [Google Scholar] [CrossRef]
- Selbach, B.; Earles, E.; Dos Santos, P.C. Kinetic Analysis of the Bisubstrate Cysteine Desulfurase SufS from Bacillus subtilis. Biochemistry 2010, 49, 8794–8802. [Google Scholar] [CrossRef]
- Roberts, C.A.; Al-Tameemi, H.M.; Mashruwala, A.A.; Rosario-Cruz, Z.; Chauhan, U.; Sause, W.E.; Torres, V.J.; Belden, W.J.; Boyd, J.M. The Suf Iron-Sulfur Cluster Biosynthetic System Is Essential in Staphylococcus aureus, and Decreased Suf Function Results in Global Metabolic Defects and Reduced Survival in Human Neutrophils. Infect. Immun. 2017, 85, e00100-17. [Google Scholar] [CrossRef]
- Nakamura, R.; Ogawa, S.; Takahashi, Y.; Fujishiro, T. Cycloserine Enantiomers Inhibit PLP-dependent Cysteine Desulfurase SufS via Distinct Mechanisms. FEBS J. 2022, 289, 5947–5970. [Google Scholar] [CrossRef] [PubMed]
- Charan, M.; Singh, N.; Kumar, B.; Srivastava, K.; Siddiqi, M.I.; Habib, S. Sulfur Mobilization for Fe-S Cluster Assembly by the Essential SUF Pathway in the Plasmodium Falciparum Apicoplast and Its Inhibition. Antimicrob. Agents Chemother. 2014, 58, 3389–3398. [Google Scholar] [CrossRef]
- Deshpande, D.; Alffenaar, J.-W.C.; Köser, C.U.; Dheda, K.; Chapagain, M.L.; Simbar, N.; Schön, T.; Sturkenboom, M.G.G.; McIlleron, H.; Lee, P.S.; et al. d-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-Resistant Tuberculosis: A Faustian Deal. Clin. Infect. Dis. 2018, 67, S308–S316. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, X.; Yu, W.; Zhang, Y.; Yang, K.; Liu, Z.; Qiao, X.; Song, Y. A Mini Review of Small-Molecule Inhibitors Targeting Palmitoyltransferases. Eur. J. Med. Chem. Rep. 2022, 5, 100041. [Google Scholar] [CrossRef]
- Siegel, L.M. A Direct Microdetermination for Sulfide. Anal. Biochem. 1965, 11, 126–132. [Google Scholar] [CrossRef]
- Outten, F.W.; Wood, M.J.; Muñoz, F.M.; Storz, G. The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli. J. Biol. Chem. 2003, 278, 45713–45719. [Google Scholar] [CrossRef] [PubMed]
- Selbach, B.P.; Pradhan, P.K.; Dos Santos, P.C. Protected Sulfur Transfer Reactions by the Escherichia coli Suf System. Biochemistry 2013, 52, 4089–4096. [Google Scholar] [CrossRef] [PubMed]
- Dunkle, J.A.; Bruno, M.R.; Outten, F.W.; Frantom, P.A. Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS. Biochemistry 2019, 58, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Blahut, M.; Wise, C.E.; Bruno, M.R.; Dong, G.; Makris, T.M.; Frantom, P.A.; Dunkle, J.A.; Outten, F.W. Direct Observation of Intermediates in the SufS Cysteine Desulfurase Reaction Reveals Functional Roles of Conserved Active-Site Residues. J. Biol. Chem. 2019, 294, 12444–12458. [Google Scholar] [CrossRef] [PubMed]
- Gogar, R.K.; Frantom, P.A. Persulfide Transfer to SufE Activates the Half-Sites Reactivity of the E. coli Cysteine Desulfurase SufS. Biochemistry 2024, 63, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Mashruwala, A.A.; Pang, Y.Y.; Rosario-Cruz, Z.; Chahal, H.K.; Benson, M.A.; Mike, L.A.; Skaar, E.P.; Torres, V.J.; Nauseef, W.M.; Boyd, J.M. Nfu Facilitates the Maturation of Iron-sulfur Proteins and Participates in Virulence in Staphylococcus aureus. Mol. Microbiol. 2015, 95, 383–409. [Google Scholar] [CrossRef] [PubMed]
- Mashruwala, A.A.; Bhatt, S.; Poudel, S.; Boyd, E.S.; Boyd, J.M. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLoS Genet. 2016, 12, e1006233. [Google Scholar] [CrossRef]
- Nakamura, R.; Hikita, M.; Ogawa, S.; Takahashi, Y.; Fujishiro, T. Snapshots of PLP-substrate and PLP-product External Aldimines as Intermediates in Two Types of Cysteine Desulfurase Enzymes. FEBS J. 2020, 287, 1138–1154. [Google Scholar] [CrossRef]
- Dos Santos, P.C. B. subtilis as a Model for Studying the Assembly of Fe–S Clusters in Gram-Positive Bacteria. Methods Enzymol. 2017, 595, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Tirupati, B.; Vey, J.L.; Drennan, C.L.; Bollinger, J.M. Kinetic and Structural Characterization of Slr0077/SufS, the Essential Cysteine Desulfurase from Synechocystis Sp. PCC 6803. Biochemistry 2004, 43, 12210–12219. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Front. Mol. Biosci. 2019, 6, 4. [Google Scholar] [CrossRef]
- Lambert, M.P.; Neuhaus, F.C. Mechanism of d-Cycloserine Action: Alanine Racemase from Escherichia coli W. J. Bacteriol. 1972, 110, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Mike, L.A.; Mashruwala, A.A.; Dutter, B.F.; Dunman, P.M.; Sulikowski, G.A.; Boyd, J.M.; Skaar, E.P. A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus. Cell Chem. Biol. 2016, 23, 1351–1361. [Google Scholar] [CrossRef]
- de Chiara, C.; Homšak, M.; Prosser, G.A.; Douglas, H.L.; Garza-Garcia, A.; Kelly, G.; Purkiss, A.G.; Tate, E.W.; de Carvalho, L.P.S. D-Cycloserine Destruction by Alanine Racemase and the Limit of Irreversible Inhibition. Nat. Chem. Biol. 2020, 16, 686–694. [Google Scholar] [CrossRef]
- Fenn, T.D.; Stamper, G.F.; Morollo, A.A.; Ringe, D. A Side Reaction of Alanine Racemase: Transamination of Cycloserine. Biochemistry 2003, 42, 5775–5783. [Google Scholar] [CrossRef] [PubMed]
- Peisach, D.; Chipman, D.M.; Van Ophem, P.W.; Manning, J.M.; Ringe, D. d-Cycloserine Inactivation of d-Amino Acid Aminotransferase Leads to a Stable Noncovalent Protein Complex with an Aromatic Cycloserine-PLP Derivative. J. Am. Chem. Soc. 1998, 120, 2268–2274. [Google Scholar] [CrossRef]
- Amorim Franco, T.M.; Favrot, L.; Vergnolle, O.; Blanchard, J.S. Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine. ACS Chem. Biol. 2017, 12, 1235–1244. [Google Scholar] [CrossRef]
- Lowther, J.; Yard, B.A.; Johnson, K.A.; Carter, L.G.; Bhat, V.T.; Raman, M.C.C.; Clarke, D.J.; Ramakers, B.; McMahon, S.A.; Naismith, J.H.; et al. Inhibition of the PLP-Dependent Enzyme Serine Palmitoyltransferase by Cycloserine: Evidence for a Novel Decarboxylative Mechanism of Inactivation. Mol. Biosyst. 2010, 6, 1682. [Google Scholar] [CrossRef] [PubMed]
- Dindo, M.; Grottelli, S.; Annunziato, G.; Giardina, G.; Pieroni, M.; Pampalone, G.; Faccini, A.; Cutruzzolà, F.; Laurino, P.; Costantino, G.; et al. Cycloserine Enantiomers Are Reversible Inhibitors of Human Alanine:Glyoxylate Aminotransferase: Implications for Primary Hyperoxaluria Type 1. Biochem. J. 2019, 476, 3751–3768. [Google Scholar] [CrossRef]
- Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium tuberculosis d-Alanine: d-Alanine Ligase, a Target of the Antituberculosis Drug d-Cycloserine. Antimicrob. Agents Chemother. 2011, 55, 291–301. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef] [PubMed]
kint (mAU ∙ min−1) | Km (μM) | kcat (min−1) | kcat/Km (min−1 M−1) | |
---|---|---|---|---|
SaSufS (Ala-NDA) | 600 ± 170 | 4.1 ± 0.5 | 6800 ± 2700 | |
BsSufS (Ala-NDA) | 440 ± 190 | 4.9 ± 0.7 | 11,100 ± 6400 | |
SaSufS (0–40 s) | 350 ± 18 | 570 ± 100 | ||
SaSufS (40–120 s) | 205 ± 8 | 1030 ± 120 | ||
SaSufS + TCEP (0–40 s) | 350 ± 13 | 337 ± 52 | ||
SaSufS + TCEP (40–120 s) | 173 ± 8 | 616 ± 93 |
Inhibitor | Structure | IC50 (μM) |
---|---|---|
LCS | 62 ± 23 (Spec) 33 ± 12 (Ala-NDA) | |
DCS | 2170 ± 920 (Spec) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabo, E.; Nelson, C.; Tyagi, N.; Stark, V.; Aasman, K.; Morrison, C.N.; Boyd, J.M.; Holz, R.C. Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus. Antibiotics 2025, 14, 129. https://doi.org/10.3390/antibiotics14020129
Sabo E, Nelson C, Tyagi N, Stark V, Aasman K, Morrison CN, Boyd JM, Holz RC. Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus. Antibiotics. 2025; 14(2):129. https://doi.org/10.3390/antibiotics14020129
Chicago/Turabian StyleSabo, Emily, Connor Nelson, Nupur Tyagi, Veronica Stark, Katelyn Aasman, Christine N. Morrison, Jeffrey M. Boyd, and Richard C. Holz. 2025. "Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus" Antibiotics 14, no. 2: 129. https://doi.org/10.3390/antibiotics14020129
APA StyleSabo, E., Nelson, C., Tyagi, N., Stark, V., Aasman, K., Morrison, C. N., Boyd, J. M., & Holz, R. C. (2025). Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus. Antibiotics, 14(2), 129. https://doi.org/10.3390/antibiotics14020129