Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides
<p>Comparative binding positions of cognate inhibitor (light green) and redocked inhibitor (purple) bound to RT active site, RMSD of 0.3571.</p> "> Figure 2
<p>Comparative binding positions of Rilpivirine (magenta); doxorubicin (orange); and karavilosides VIII, X, and XI (green), bound to RT active site.</p> "> Figure 3
<p>PCA representation of the components loaded with DVs in component 1 and 2.</p> "> Figure 4
<p>Chemical structures of NNRTI Rilpivirine (RPV). The torsion angles defining the rotatable bonds are labeled using purple-colored arrows in Karaviloside VIII, X, and XI. The equivalent torsion angle RPV is labeled using magenta-colored arrows. The structures of karavilosides, apart from karaviloside VIII, can be divided into three functional regions—a steroidal central ring, a hexose sugar/ethylene glycol left wing, and a hexose sugar right wing.</p> "> Figure 5
<p>Karavilosides bound to RT active site. (<b>A</b>) Karaviloside X. (<b>B</b>) Karaviloside XI. (<b>C</b>) Karaviloside VIII.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Extract Yield and KV Quantity
2.2. Antiviral Activity
2.3. Antimicrobial Activity (MIC and MBC)
2.4. Molecular Docking Studies
2.5. Statistical Models
2.5.1. Correlation Analysis
2.5.2. Principal Component Analysis (PCA)
2.5.3. Paired Samples t-Test
3. Discussion
4. Methods
4.1. Sample Collection and Preparation
4.2. Extraction and Analysis of KVs (Karavilosides)
4.3. Antiviral Activity
4.4. Antimicrobial Activity
4.4.1. Microbial Strains and Media
4.4.2. Standard Inoculum
4.4.3. Determination of MIC and MBC
4.5. Molecular Docking Studies
4.5.1. Molecular Modeling Optimization
4.5.2. Binding Pocket Determination and Validation of Molecular Docking
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCMV | human cytomegalovirus |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
BM | bitter melon |
HIV | human immunodeficiency virus |
LCMSMS | liquid chromatography–tandem mass spectrometry |
KVs | karavilosides |
I | India |
K | Kingdom of Saudi Arabia |
RT | reverse transcriptase |
ELISA | enzyme-linked immunosorbent assay |
SAB | Sabouraud dextrose agar |
MHB | Muller–Hinton broth |
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration |
CA | Candida albicans |
EC | Escherichia coli |
SA | Staphylococcus aureus |
RCSB | Research Collaboratory for Structural Bioinformatics |
PDB | Protein Data Bank |
NNRTI | non-nucleoside reverse transcriptase inhibitor |
RMSD | root mean square deviation |
vdw | van der Waals |
SD | standard deviation |
PCA | principal component analysis |
GLU | glutamic acid |
LYS | lysine |
VAL | valine |
LEU | leucine |
Phe | phenylalanine |
TYR | tyrosine |
MET | methionine |
References
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014. [Google Scholar]
- Okeke, I.N.; Laxminarayan, R.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Pablos-Mendez, A.; Klugman, K.P. Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect. Dis. 2005, 5, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Aldholmi, M.; Marchand, P.; Ourliac-Garnier, I.; Le Pape, P.; Ganesan, A. A Decade of Antifungal Leads from Natural Products: 2010–2019. Pharmaceuticals 2019, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Bose, S.; Banerjee, S.; Vishnuprasad, C.N.; del Pilar Rodriguez-Torres, M.; Shin, H. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phyther. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef] [PubMed]
- Su, X.-Z.; Miller, L.H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Astani, A.; Reichling, J.; Schnitzler, P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phyther. Res. 2010, 24, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ma, A.; Wang, X.; Yang, C.; Chen, X.; Li, G.; Qiu, F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front. Chem. 2022, 10, 1005360. [Google Scholar] [CrossRef]
- Wohlfarth, C.; Efferth, T. Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacol. Sin. 2009, 30, 25–30. [Google Scholar] [CrossRef]
- Gayathry, K.S.; John, J.A. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 2022, 4, 10. [Google Scholar] [CrossRef]
- Ingle, A.; Kapgatte, R. Phytochemical screening and antimicrobial activity of Momordica charantia Linn. Int. J. Pharmacol. Res. 2018, 8, 63–65. [Google Scholar]
- Leelaprakash, G.; Rose, J.C.; Gowtham, B.M.; Javvaji, P.K.; Prasad, S.A. In vitro antimicrobial and antioxidant activity of Momordica charantia leaves. Pharmacophore 2011, 2, 244–252. [Google Scholar]
- Jagessar, R.C.; Mohamed, A.; Gomes, G. An evaluation of the antibacterial and antifungal activity of leaf extracts of Momordica charantia against Candida albicans, Staphylococcus aureus and Escherichia coli. Nat. Sci. 2008, 6, 1–14. [Google Scholar]
- Masithoh, D.A.; Kusdarwati, R.; Handijatno, D. Antibacterial activity of bitter gourd (Momordica charantia L.) leaf extract against Aeromonas hydrophila. IOP Conf. Ser. Earth Environ. Sci. 2019, 236, 012096. [Google Scholar] [CrossRef]
- Mahmood, A.; Raja, G.K.; Mahmood, T.; Gulfraz, M.; Khanum, A. Isolation and characterization of antimicrobial activity conferring component (s) from seeds of bitter gourd (Momordica charantia). J. Med. Plants Res. 2012, 6, 566–573. [Google Scholar] [CrossRef]
- Grover, J.; Yadav, S. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 2004, 93, 123–132. [Google Scholar] [CrossRef] [PubMed]
- NG, T.B.; WONG, C.M.; LI, W.W.; YEUNG, H.W. Isolation and characterization of a galactose binding lectin with insulinomimetic activities. Int. J. Pept. Protein Res. 1986, 28, 163–172. [Google Scholar] [CrossRef]
- Yao, X.; Li, J.; Deng, N.; Wang, S.; Meng, Y.; Shen, F. Immunoaffinity purification of α-momorcharin from bitter melon seeds (Momordica charantia). J. Sep. Sci. 2011, 34, 3092–3098. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Ng, T.B. Examination of Lectins, Polysaccharopeptide, Polysaccharide, Alkaloid, Coumarin and Trypsin Inhibitors for Inhibitory Activity Against Human Immunodeficiency Virus Reverse Transcriptase and Glycohydrolases. Planta Med. 2001, 67, 669–672. [Google Scholar] [CrossRef]
- Jiratchariyakul, W.; Wiwat, C.; Vongsakul, M.; Somanabandhu, A.; Leelamanit, W.; Fujii, I.; Suwannaroj, N.; Ebizuka, Y. HIV Inhibitor from Thai Bitter Gourd. Planta Med. 2001, 67, 350–353. [Google Scholar] [CrossRef]
- Alves, M.; Froufe, H.; Costa, A.; Santos, A.; Oliveira, L.; Osório, S.; Abreu, R.; Pintado, M.; Ferreira, I. Docking Studies in Target Proteins Involved in Antibacterial Action Mechanisms: Extending the Knowledge on Standard Antibiotics to Antimicrobial Mushroom Compounds. Molecules 2014, 19, 1672–1684. [Google Scholar] [CrossRef]
- Das, K.; Bauman, J.D.; Clark, A.D.; Frenkel, Y.V.; Lewi, P.J.; Shatkin, A.J.; Hughes, S.H.; Arnold, E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. USA 2008, 105, 1466–1471. [Google Scholar] [CrossRef]
- Das, K.; Clark, A.D.; Lewi, P.J.; Heeres, J.; de Jonge, M.R.; Koymans, L.M.H.; Vinkers, H.M.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; et al. Roles of Conformational and Positional Adaptability in Structure-Based Design of TMC125-R165335 (Etravirine) and Related Non-nucleoside Reverse Transcriptase Inhibitors That Are Highly Potent and Effective against Wild-Type and Drug-Resistant HIV-1 Varian. J. Med. Chem. 2004, 47, 2550–2560. [Google Scholar] [CrossRef] [PubMed]
- Shivanagoudra, S. Differential Inhibition of Carbolytic Enzymes and Suppression of LPS-Induced Inflammation by Isolated Compounds from Bitter Melon (Momordica charantia). Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2019. [Google Scholar]
- Li, Z.; Xia, A.; Li, S.; Yang, G.; Jin, W.; Zhang, M.; Wang, S. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Curr. Pharmacol. Rep. 2020, 6, 103–109. [Google Scholar] [CrossRef]
- Bourinbaiar, A.S.; Lee-Huang, S. The Activity of Plant-Derived Antiretroviral Proteins MAP30 and GAP31 against Herpes Simplex Virus Infectionin Vitro. Biochem. Biophys. Res. Commun. 1996, 219, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Huang, P.L.; Chen, H.-C.; Huang, P.L.; Bourinbaiar, A.; Huang, H.I.; Kung, H. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene 1995, 161, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Su, W.-M.; Wang, C.-W.; Fang, Y.-H.; Jian, Y.-W.; Hsu, H.-J.; Peng, C.-W. Momordica anti-HIV protein MAP30 abrogates the Epstein-Barr virus nuclear antigen 1 dependent functions in host cells. Heliyon 2023, 9, e21486. [Google Scholar] [CrossRef]
- Eryılmaz Pehlivan, F. Bitter Melon: A Multifunctional Medicinal Plant with Powerful Bioactive Compounds. In Functional Foods—Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021. [Google Scholar]
- Guarniz, W.A.S.; Canuto, K.M.; Ribeiro, P.R.V.; Dodou, H.V.; Magalhaes, K.N.; Miranda Sa, K.; do Nascimento, P.G.G.; Silva, K.L.; Passos Sales, G.W.; Monteiro, M.P.; et al. Momordica charantia L. Variety from Northeastern Brazil: Analysis of Antimicrobial Activity and Phytochemical Components. Pharmacogn. J. 2019, 11, 1312–1324. [Google Scholar] [CrossRef]
- Braca, A.; Siciliano, T.; D’Arrigo, M.; Germanò, M.P. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 2008, 79, 123–125. [Google Scholar] [CrossRef]
- Ahmad, R.; Aldholmi, M.; Mostafa, A.; Alqathama, A.; Aldarwish, A.; Abuhassan, A.; Alateeq, L.; Bubshait, S.; Aljaber, M.; Aldossary, S. A novel green extraction and analysis technique for the comprehensive characterization of mangiferin in different parts of the fresh mango fruit (Mangifera indica). LWT 2022, 159, 113176. [Google Scholar] [CrossRef]
- Ahmad, R.; Aldholmi, M.; Alqathama, A.; Aldossary, S.; Bubshait, S.; Aljaber, M.; Abuhassan, A.; Aldarwish, A.; Alateeq, L. Green and novel ultrasonic extraction with UHPLC-MSMS analysis of natural sweetener (Glycyrrhizic acid) from Glycyrrhiza glabra; a multifactorial mechanistic evaluation based on statistical analysis. Ultrason. Sonochem. 2021, 77, 105696. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Aldholmi, M.; Alqathama, A.; Al Nahab, H.Z.; Almutawah, A.I. A comprehensive LCMS/MS characterization for the green extracted cucurbitane-triterpenoid glycosides from bitter melon (Momordica charantia) fruit. Food Chem. 2024, 445, 138479. [Google Scholar] [CrossRef]
- Harnett, S.M.; Oosthuizen, V.; van de Venter, M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J. Ethnopharmacol. 2005, 96, 113–119. [Google Scholar] [CrossRef]
- Kapewangolo, P.; Hussein, A.A.; Meyer, D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J. Ethnopharmacol. 2013, 149, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Kapewangolo, P.; Kandawa-Schulz, M.; Meyer, D. Anti-HIV Activity of Ocimum labiatum Extract and Isolated Pheophytin-a. Molecules 2017, 22, 1763. [Google Scholar] [CrossRef]
- Matotoka, M.M.; Ndhlala, A.R.; Masoko, P. In vitro inhibition of HIV-1 reverse transcriptase and anti-inflammatory activities of some herbal concoctions sold in the Limpopo Province. S. Afr. J. Bot. 2019, 126, 65–69. [Google Scholar] [CrossRef]
- Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; NCCLS Document; NCCLS: Wayne, PA, USA, 1999; ISBN 9781562383848. [Google Scholar]
- Kuroda, D.G.; Bauman, J.D.; Challa, J.R.; Patel, D.; Troxler, T.; Das, K.; Arnold, E.; Hochstrasser, R.M. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat. Chem. 2013, 5, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef]
- Kwofie, S.; Dankwa, B.; Odame, E.; Agamah, F.; Doe, L.; Teye, J.; Agyapong, O.; Miller, W.; Mosi, L.; Wilson, M. In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa. Molecules 2018, 23, 1550. [Google Scholar] [CrossRef]
Compounds | Glide Score Docking Energy (Kcal/mol) | Free Binding Energy (Kcal/mol) | H-Bond Interactions | Pi- Interactions | Van Der Waals Interactions |
---|---|---|---|---|---|
KV-VIII | −9.213 | −60.74 | LEU100 and GLU138 | PHE227, TYR181, TYR188 and LYS103 | GLU138, PHE227, LYS103, PHE227 and LEU234 |
KV-X | −11.829 | −76.91 | TYR181, TYR188 and MET230 | TYR181 and PHE227 | GLU138, PHE227, LYS103, VAL106 VAL179, LEU100 and LEU234 |
KV-XI | −12.732 | −93.23 | TYR181, TYR188, TRP229 and LYS101 | TYR181 and PHE227 | GLU138, PHE227, LYS103, VAL106, VAL179, LEU100 and LEU234 |
Rilpivirine | −13.350 | −116.07 | LYS101 and GLU138 | TYR181 | PRO236 and LYS101 |
Doxorubicin | −8.352 | −40.34 | LEU100, LYS103, GLU138, GLY99 and ILE180 | PHE227 | TYR188, LEU234 and VAL179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldholmi, M.; Ahmad, R.; Shaikh, M.H.; Salem, A.M.; Alqurashi, M.; Alturki, M. Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics 2024, 13, 544. https://doi.org/10.3390/antibiotics13060544
Aldholmi M, Ahmad R, Shaikh MH, Salem AM, Alqurashi M, Alturki M. Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics. 2024; 13(6):544. https://doi.org/10.3390/antibiotics13060544
Chicago/Turabian StyleAldholmi, Mohammed, Rizwan Ahmad, Mohammad Habeeb Shaikh, Ayad Mohammed Salem, Maher Alqurashi, and Mansour Alturki. 2024. "Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides" Antibiotics 13, no. 6: 544. https://doi.org/10.3390/antibiotics13060544
APA StyleAldholmi, M., Ahmad, R., Shaikh, M. H., Salem, A. M., Alqurashi, M., & Alturki, M. (2024). Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics, 13(6), 544. https://doi.org/10.3390/antibiotics13060544