A Systematic Review and Meta-Analysis of Systemic and Local Antibiotic Therapy in the Surgical Treatment of Peri-Implantitis
<p>PRISMA 2020 flow diagram for new systematic reviews that included searches of databases.</p> "> Figure 2
<p>Quality and bias risk evaluation using Cochrane risk-of-bias tool for randomized controlled trials (Higgins et al., 2011 [<a href="#B15-antibiotics-12-01223" class="html-bibr">15</a>]). Papers [<a href="#B1-antibiotics-12-01223" class="html-bibr">1</a>,<a href="#B11-antibiotics-12-01223" class="html-bibr">11</a>,<a href="#B12-antibiotics-12-01223" class="html-bibr">12</a>,<a href="#B14-antibiotics-12-01223" class="html-bibr">14</a>,<a href="#B16-antibiotics-12-01223" class="html-bibr">16</a>] are considered as having a low (green), unclear (orange) or high (red) risk of bias.</p> "> Figure 3
<p>Quality evaluation of the non-RCTs using the Critical Appraisal Skills Program (CASP) (Zeng et al., 2015 [<a href="#B17-antibiotics-12-01223" class="html-bibr">17</a>]). The risk of bias in the included studies [<a href="#B10-antibiotics-12-01223" class="html-bibr">10</a>,<a href="#B13-antibiotics-12-01223" class="html-bibr">13</a>,<a href="#B18-antibiotics-12-01223" class="html-bibr">18</a>,<a href="#B19-antibiotics-12-01223" class="html-bibr">19</a>,<a href="#B20-antibiotics-12-01223" class="html-bibr">20</a>,<a href="#B21-antibiotics-12-01223" class="html-bibr">21</a>,<a href="#B22-antibiotics-12-01223" class="html-bibr">22</a>,<a href="#B23-antibiotics-12-01223" class="html-bibr">23</a>,<a href="#B24-antibiotics-12-01223" class="html-bibr">24</a>] was observed as low (green), unclear (orange) or high (red).</p> "> Figure 4
<p>Probing pocket depth forest plot including only RCT (local antibiotics vs. systemic antibiotics) [<a href="#B1-antibiotics-12-01223" class="html-bibr">1</a>,<a href="#B12-antibiotics-12-01223" class="html-bibr">12</a>,<a href="#B14-antibiotics-12-01223" class="html-bibr">14</a>,<a href="#B16-antibiotics-12-01223" class="html-bibr">16</a>]. The weighted mean is presented at 95% CI. Heterogeneity was determined using Higgins (I<sup>2</sup>). A random-effects model was applied. Statistical significance was set at 0.05.</p> "> Figure 5
<p>Probing pocket depth forest plot including all studies (local antibiotics vs. systemic antibiotics vs. local and systemic antibiotics vs. no antibiotics) [<a href="#B1-antibiotics-12-01223" class="html-bibr">1</a>,<a href="#B10-antibiotics-12-01223" class="html-bibr">10</a>,<a href="#B12-antibiotics-12-01223" class="html-bibr">12</a>,<a href="#B14-antibiotics-12-01223" class="html-bibr">14</a>,<a href="#B16-antibiotics-12-01223" class="html-bibr">16</a>,<a href="#B18-antibiotics-12-01223" class="html-bibr">18</a>,<a href="#B19-antibiotics-12-01223" class="html-bibr">19</a>,<a href="#B23-antibiotics-12-01223" class="html-bibr">23</a>,<a href="#B24-antibiotics-12-01223" class="html-bibr">24</a>]. The weighted mean is presented at 95% CI. Heterogeneity was determined using Higgins (I<sup>2</sup>). A random-effects model was applied. Statistical significance was set at 0.05.</p> "> Figure 6
<p>Bleeding on probing forest plot including only RCT (local antibiotics vs. systemic antibiotics) [<a href="#B1-antibiotics-12-01223" class="html-bibr">1</a>,<a href="#B12-antibiotics-12-01223" class="html-bibr">12</a>,<a href="#B14-antibiotics-12-01223" class="html-bibr">14</a>,<a href="#B16-antibiotics-12-01223" class="html-bibr">16</a>]. The weighted mean is presented at 95% CI. Heterogeneity was determined using Higgins (I<sup>2</sup>). A random-effects model was applied. Statistical significance was set at 0.05.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Quality Assessment and Risk of Bias
2.3. Outcomes Regarding PPD
2.4. Outcomes Regarding BoP
3. Discussion
Author | Study Design | Patients and Implants | Test Group | Control Group | Follow-Up | BoP Reduction in Test Group | BoP Reduction in Control Group | PPD Reduction in Test Group | PPD Reduction in Control Group |
---|---|---|---|---|---|---|---|---|---|
Heitz-Mayfield et al. 2012 [21] | Prospective clinical study | 24 patients (36 implants) | Amoxicillin (500 mg) and metronidazole (400 mg) 3 times a day, for 7 days | None | 12 months | % for sites 4 sites: 22% implants to 3% implants 3 sites: 28% implants to 8% implants 2 sites: 31% implants to 25% implants 1 site: 19% implants to 17% implants 0 sites: 57% (only after treatment) No average reduction specified | None | 5.3 mm ± 1.8 to 2.9 mm ± 0.8 No average reduction specified | None |
Heitz-Mayfield et al. 2016 [22] | Prospective clinical study | 24 patients (36 implants) | Systemic amoxicillin (500 mg) and metronidazole (400 mg), 3 times a day for 7 days | None | 5 years | % for sites (baseline vs. 5 years) 4 sites: 22% implants to 12.5% implants 3 sites: 28% implants to 4% implants 2 sites: 31% implants to 4% implants 1 site: 19% implants to 37.5% implants 0 sites: 57% (only after treatment) to 42% implants No average reduction specified | None | 5.3 mm ± 1.8 (baseline) to 2.9 mm ± 0.8 (1 year) to 3.2 ± 1.0 (5 years) No average reduction specified | None |
Carcuac et al. 2016 [1] | Randomised controlled clinical trial | 100 patients (179 implants) Test group: 52 patients (93 implants) Control group: 48 patients (86 implants) | 10 d systemic antibiotic regimen (amoxicillin 2 × 750 mg daily) commenced 3 d prior to surgery G1: surgical treatment + CHX + systemic antibiotic G2: surgical treatment + saline + systemic antibiotic | Chlorhexidine or saline solution G3: surgical treatment + CHX G4: surgical treatment + saline | 12 months | G1: 18 (39.1) G2: 16 (34.8) No average reduction specified | G3: 20 (44.4) G4: 18 (51.4) No average reduction specified | G1: 7.85 ± 1.57 changes −2.80 ± 1.87 G2: 7.93 ± 1.50 changes −3.44 ± 1.66 | G3: 7.79 ± 1.69 changes −2.16 ± 1.79 G4: 7.78 ± 1.25 changes −1.69 ± 2.22 |
Carcuac et al. 2017 [11] | Randomised controlled clinical trial | 67 patients (121 implants) Antibiotics group: 68 implants No antibiotics: 53 implants | 10 d systemic antibiotic regimen (amoxicillin 2 × 750 mg daily) commenced 3 d prior to surgery | No antibiotics | 36 months | BoP (%): 1Y vs. 3Y 22% to 45% No average reduction specified | BoP (%): 1Y vs. 3Y 18% to 28% No average reduction specified | Probing depth changes (mm) baseline to 3Y −3.00 ± 2.24 | Probing depth changes (mm) baseline to 3Y −2.38 ± 2.55 |
Hallström et al. 2017 [16] | Randomised controlled clinical trial | 39 patients (only 1 implant per individual) Test group: 20 patients Control group: 19 patients | Zithromax® 250 mg × 2 at the day of surgery, and 250 mg × 1 per day during four additional days | No antibiotics | 12 months | 100% to 12.4 ± 9.2% No average reduction specified | 100% to 13.3 ± 11.1% No average reduction specified | 5.7 ± 1.0 to 4.0 ± 1.1 Mean difference (reduction) in PPD values between baseline and month 12 in the test group was 1.7 mm (SD ± 1.1, 95% CI: 1.1, 2.3, p < 0.001). | 5.8 ± 0.9 to 4.2 ± 1.5 The corresponding reduction in the control group was 1.6 mm (SD ± 1.5, 95% CI: 0.8, 2.4, p < 0.001) |
Mercado et al. 2018 [13] | Prospective cohort study | 30 patients (30 implants) | One capsule of Doxycycline 100 mg was added to BioOss (Geistlich, Switzerland) | None | 36 months | 100% to 20% No average reduction specified | None | 8.9 mm ± 1.9 to 3.50 mm ± 0.50 No average reduction specified | None |
Nart et al. 2018 [10] | Prospective case series study | 13 patients (17 implants) | Vancomycin (OSTEOmycin V®, European Cell and Tissue Bank, Wels, Austria) + Tobramycin (OSTEOmycin T®, European Cell and Tissue Bank, Wels, Austria) | None | 12 months | 100% to 29.4% Mean reduction 70.6% | None | Distal: 7.88 ± 1.22 to 3.66 ± 0.59. Mesial: 6.48 ± 1.26 mm to 3.45 ± 0.43 PPDd and PPDm, which were significantly reduced (4.23 ± 1.47 mm, p = 0.001 and 3.03 ± 1.21 mm, p = 0.001, respectively) | None |
Berglundh et al. 2018 [19] | Retrospective study | 50 patients (95 implants) Test group: 36 patients Control group: 14 patients | 10 days of amoxicillin 2 × 750 mg daily, commencing 3 days prior to surgery | No antibiotics | 2–11 years | 100% to 61.1% No average reduction specified | 100% to 69.2% No average reduction specified | Antibiotic group: 7.2 ± 1.3 to 4.6 ± 1.9 PPD changes −2.6 ± 2.4 | Non-antibiotic group: 7.0 ± 0.9 to 4.6 ± 1.3 PPD changes −2.5 ± 1.7 |
Cha et al. 2019 [12] | Randomised controlled clinical trial | 50 patients (50 implants) Test group: 25 patients Control group: 25 patients | Minocycline ointment (Periocline; Sunstar) | Placebo | 6 months | Reduction of BoP was observed in the test group (42.72% ± 34.97%) | No reduction in the control group (63.64% ± 37.48%) | PPD (mm) at deepest site at baseline 7.33 ± 2.33 mm to 3.75 ± 1.30 Mean changes 3.58 ± 2.32 Mean changes in the mean at 4 sites 2.68 ± 1.73 | PPD (mm) at deepest site at baseline 7.10 ± 2.10 mm to 4.64 ± 1.55 mm 2.45 ± 2.13 Mean changes in the mean at 4 sites 1.55 ± 1.86 |
Emanuel et al. 2020 [14] | Randomised controlled clinical trial | 27 patients (32 implants) Test group: 14 patients (18 implants) Control group: 13 patients (14 implants) | D-PLEX500 (local doxycycline) | No antibiotics | 12 months | Average of all sites: 36.3% | Average of all sites: 15.2% | 6.76 ± 1.74 to 4.36 ± 1.41 PPD changes −2.40 ± 1.16 | 6.39 ± 1.78 to 5.43 ± 1.92 PPD changes −0.96 ± 1.70 |
Gonzalez-Regueiro et al. 2021 [18] | Prospective case series study | 43 patients (43 implants) | Piperacillin/tazobactam 100/12.5 + antibiotic solution (Implacure® [medtech Dental AG, Switzerland]) | None | 15 days after surgery then at 1, 3, 6 and 12 months | From 43 (100%) to 6 (14%) BoP showed a reduction of 86% at patient level (p < 0.001) | None | From 6.4 mm ± 2.1 to 3.2 mm ± 1.0 Mean reduction of 3.2 ± 2.0 mm (p < 0.001) | None |
Wen et al. 2021 [23] | Prospective study | 22 patients (30 implants) | Tetracycline: 250 mg (locally delivered antimicrobial) + 500 mg of amoxicillin 3 times a day for 10 days or 250 mg of Zithromax 6 tablets, 2 to be taken on the first day, and once daily thereafter | None | 8–12 months | 100% to 36.6% Mean reduction 63.3% | None | 5.81 ± 1.48 mm to 2.91± 1.11 Mean gain for the implant sites amounted to 2.93 ± 0.25 at 8 months | None |
Wen et al. 2022 [24] | Prospective case series study | 24 patients (29 implants) | Tetracycline: 250 mg (locally delivered antimicrobial) + systemic antibiotic prescriptions to be taken orally for 10 (500 mg amoxicillin every 8 h) or 5 days (6 Zithromax 250 mg tablets, 2 to be taken on the first day, and once daily thereafter | None | 8–12 months | 100% to 34.5% (12 months) Mean reduction 65.5% | None | 4.73 ± 1.15 mm to 3.22 ± 1 mm Mean reduction 1.51 ± 1.17 | None |
Pilenza 2022 [20] | Retrospective case series study | 11 patients (20 implants) | Eight-day antibiotic therapy using the van Winkelhoff cocktail (375 mg Amoxicillin and 250 mg Metronidazole 3×/day) | None | 12 months | 90% to 20% No average reduction specified | None | 4.9 mm ± 1.35 to 2.7 mm ± 0.66 No average reduction specified | None |
4. Materials and Methods
4.1. Protocol and Registration
4.2. Focus Question
- Population (P): Patients with peri-implantitis.
- Intervention (I): Surgical treatment of peri-implantitis together with the systemic or local administration of antibiotics in patients with pre- and post-surgical evaluation.
- Comparison (C): Surgical treatment of peri-implantitis without the systemic or local administration of antibiotics in patients with pre- and post-surgical evaluation.
- Outcome (O): Results showing changes in the clinical diagnostic parameters of peri-implant health, including PPD and BoP, before and after (at least 6 months) the surgical treatment of peri-implantitis.
- Study (S): Randomized controlled trials (RCTs) and observational studies (cohort and case–control studies, and case series).
4.3. Search Strategy
4.4. Inclusion and Exclusion Criteria for Studies
- Randomized controlled clinical trials or observational studies (cohort and case–control studies and case series) conducted on adult patients where at least 6 months of follow-up is reported.
- Studies that provide all the necessary data to establish a correct diagnosis of peri-implantitis.
- Studies that correctly explain the surgical technique performed and that indicate the name of the antibiotic and the regimen administered.
- Studies that provide all the necessary data for assessing the effectiveness and efficacy of the treatment by comparing the changes observed in the clinical parameters and always including PPD and BoP.
- Studies with less than 6 months follow-up.
- In vitro studies.
- Studies conducted on animals.
- Literature reviews.
- Systematic reviews.
4.5. Study Selection and Data Extraction
4.6. Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carcuac, O.; Derks, J.; Charalampakis, G.; Abrahamsson, I.; Wennstrom, J.; Berglundh, T. Adjunctive Systemic and Local Antimicrobial Therapy in the Surgical Treatment of Peri-implantitis: A Randomized Controlled Clinical Trial. J. Dent. Res. 2016, 95, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, A.; Fretwurst, T.; Schwarz, F. Efficacy of alternative or adjunctive measures to conventional non-surgical and surgical treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant Dent. 2021, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Manresa, C.; Sanz-Miralles, E.C.; Twigg, J.; Bravo, M. Supportive periodontal therapy (SPT) for maintaining the dentition in adults treated for periodontitis. Cochrane Database Syst. Rev. 2018, 1, CD009376. [Google Scholar] [CrossRef] [PubMed]
- Roccuzzo, A.; Stähli, A.; Monje, A.; Sculean, A.; Salvi, G.E. Peri-Implantitis: A Clinical Update on Prevalence and Surgical Treatment Outcomes. J. Clin. Med. 2021, 10, 1107. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-Implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Roccuzzo, M.; Layton, D.M.; Roccuzzo, A.; Heitz-Mayfield, L.J. Clinical outcomes of peri-implantitis treatment and supportive care: A systematic review. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 331–350. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Abrahamsson, I.; Wennström, J.L.; Berglundh, T. Risk for recurrence of disease following surgical therapy of peri-implantitis-A prospective longitudinal study. Clin. Oral Implant. Res. 2020, 31, 1072–1077. [Google Scholar] [CrossRef]
- Ardila, C.M.; Vivares-Builes, A.M. Antibiotic Resistance in Patients with Peri-Implantitis: A Systematic Scoping Review. Int. J. Environ. Res. Public Health. 2022, 19, 15609. [Google Scholar] [CrossRef]
- Øen, M.; Leknes, K.N.; Lund, B.; Bunæs, D.F. The efficacy of systemic antibiotics as an adjunct to surgical treatment of peri-implantitis: A systematic review. BMC Oral Health 2021, 21, 666. [Google Scholar] [CrossRef]
- Nart, J.; de Tapia, B.; Pujol, À.; Pascual, A.; Valles, C. Vancomycin and tobramycin impregnated mineralized allograft for the surgical regenerative treatment of peri-implantitis: A 1-year follow-up case series. Clin. Oral Investig. 2018, 22, 2199–2207. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Abrahamsson, I.; Wennström, J.L.; Petzold, M.; Berglundh, T. Surgical treatment of peri-implantitis: 3-year results from a randomized controlled clinical trial. J. Clin. Periodontol. 2017, 44, 1294–1303. [Google Scholar] [CrossRef]
- Cha, J.K.; Lee, J.S.; Kim, C.S. Surgical Therapy of Peri-Implantitis with Local Minocycline: A 6-Month Randomized Controlled Clinical Trial. J. Dent. Res. 2019, 98, 288–295. [Google Scholar] [CrossRef]
- Mercado, F.; Hamlet, S.; Ivanovski, S. Regenerative surgical therapy for peri-implantitis using deproteinized bovine bone mineral with 10% collagen, enamel matrix derivative and Doxycycline-A prospective 3-year cohort study. Clin. Oral Implant. Res. 2018, 29, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, N.; Machtei, E.E.; Reichart, M.; Shapira, L. D-PLEX500: A local biodegradable prolonged release doxycycline-formulated bone graft for the treatment for peri-implantitis. A randomized controlled clinical study. Quintessence Int. 2020, 51, 546–553. [Google Scholar] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Hallström, H.; Persson, G.R.; Lindgren, S.; Renvert, S. Open flap debridement of peri-implantitis with or without adjunctive systemic antibiotics: A randomized clinical trial. J. Clin. Periodontol. 2017, 44, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, Y.; Kwong, J.S.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evid. Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef]
- González Regueiro, I.; Martínez Rodriguez, N.; Barona Dorado, C.; Sanz-Sánchez, I.; Montero, E.; Ata-Ali, J.; Duarte, F.; Martínez-González, J.M. Surgical approach combining implantoplasty and reconstructive therapy with locally delivered antibiotic in the treatment of peri-implantitis: A prospective clinical case series. Clin. Implant Dent. Relat. Res. 2021, 23, 864–873. [Google Scholar] [CrossRef]
- Berglundh, T.; Wennström, J.L.; Lindhe, J. Long-term outcome of surgical treatment of peri-implantitis. A 2-11-year retrospective study. Clin. Oral Implant. Res. 2018, 29, 404–410. [Google Scholar] [CrossRef]
- Pilenza, D.; Filippi, A.; Walter, C.; Zitzmann, N.U.; Bornstein, M.M.; Kühl, S. Surgical therapy of peri-implantitis with adjunctive hydroxyapatite and enamel matrix derivative: A 1-year retrospective case series. Swiss Dent. J. 2022, 132, 238–246. [Google Scholar]
- Heitz-Mayfield, L.J.A.; Salvi, G.E.; Mombelli, A.; Faddy, M.; Lang, N.P. Anti-infective surgical therapy of peri-implantitis. A 12-month prospective clinical study. Clin. Oral Implant. Res. 2012, 23, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Heitz-Mayfield, L.J.A.; Salvi, G.E.; Mombelli, A.; Loup, P.J.; Heitz, F.; Kruger, E.; Lang, N.P. Supportive peri-implant therapy following anti-infective surgical peri-implantitis treatment: 5-year survival and success. Clin. Oral Implant. Res. 2018, 29, 1–6. [Google Scholar] [CrossRef]
- Wen, S.C.; Barootchi, S.; Huang, W.X.; Wang, H.L. Surgical reconstructive treatment for infraosseous peri-implantitis defects with a submerged healing approach: A prospective controlled study. J. Periodontol. 2022, 93, 195–207. [Google Scholar] [CrossRef]
- Wen, S.C.; Barootchi, S.; Wang, H.L.; Huang, W.X. Non-submerged reconstructive approach for peri-implantitis osseous defect with removal of implant crowns: One-year outcomes of a prospective case series study. J. Periodontol. 2022, 93, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Luengo, F.; Solonko, M.; Sanz-Esporrín, J.; Sanz-Sánchez, I.; Herrera, D.; Sanz, M. Clinical, Microbiological, and Biochemical Impact of the Surgical Treatment of Peri-Implantitis—A Prospective Case Series. J. Clin. Med. 2022, 11, 4699. [Google Scholar] [CrossRef] [PubMed]
- López-Valverde, N.; López-Valverde, A.; Blanco-Rueda, J.A. Efficacy of adjuvant metronidazole therapy on peri-implantitis: A systematic review and meta-analysis of randomized clinical studies. Front. Cell. Infect. Microbiol. 2023, 13, 1149055. [Google Scholar] [CrossRef]
- Boccia, G.; Di Spirito, F.; D’Ambrosio, F.; Di Palo, M.P.; Giordano, F.; Amato, M. Local and Systemic Antibiotics in Peri-Implantitis Management: An Umbrella Review. Antibiotics 2023, 12, 114. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, L.; Tao, X.; Qiang, X.; Li, R.; Ma, J.; Shi, D.; Qiu, Z. Efficacy of surgical methods for peri-implantitis: A systematic review and network meta-analysis. BMC Oral Health 2023, 23, 227. [Google Scholar] [CrossRef]
- Shrivastava, P.K.; Mahmood, A.; Datta, S.; Sengar, P.; Sybil, D. Tetracycline impregnated bone grafts in the management of peri-implantitis and guided bone regeneration around dental implants: A systematic review. Saudi Dent. J. 2022, 34, 689–698. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, M.T.; Vallecillo-Rivas, M.; Toledano-Osorio, M.; Rodríguez-Archilla, A.; Toledano, R.; Osorio, R. Efficacy of local antibiotic therapy in the treatment of peri-implantitis: A systematic review and meta-analysis. J. Dent. 2021, 113, 103790. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baus-Domínguez, M.; Bakkali, S.; Hermida-Cabrera, P.; Serrera-Figallo, M.-A.; Gutiérrez-Pérez, J.-L.; Torres-Lagares, D. A Systematic Review and Meta-Analysis of Systemic and Local Antibiotic Therapy in the Surgical Treatment of Peri-Implantitis. Antibiotics 2023, 12, 1223. https://doi.org/10.3390/antibiotics12071223
Baus-Domínguez M, Bakkali S, Hermida-Cabrera P, Serrera-Figallo M-A, Gutiérrez-Pérez J-L, Torres-Lagares D. A Systematic Review and Meta-Analysis of Systemic and Local Antibiotic Therapy in the Surgical Treatment of Peri-Implantitis. Antibiotics. 2023; 12(7):1223. https://doi.org/10.3390/antibiotics12071223
Chicago/Turabian StyleBaus-Domínguez, María, Sara Bakkali, Paula Hermida-Cabrera, María-Angeles Serrera-Figallo, José-Luis Gutiérrez-Pérez, and Daniel Torres-Lagares. 2023. "A Systematic Review and Meta-Analysis of Systemic and Local Antibiotic Therapy in the Surgical Treatment of Peri-Implantitis" Antibiotics 12, no. 7: 1223. https://doi.org/10.3390/antibiotics12071223
APA StyleBaus-Domínguez, M., Bakkali, S., Hermida-Cabrera, P., Serrera-Figallo, M. -A., Gutiérrez-Pérez, J. -L., & Torres-Lagares, D. (2023). A Systematic Review and Meta-Analysis of Systemic and Local Antibiotic Therapy in the Surgical Treatment of Peri-Implantitis. Antibiotics, 12(7), 1223. https://doi.org/10.3390/antibiotics12071223