Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review
"> Figure 1
<p>Chemical groups of each acid derivative.</p> "> Figure 2
<p>(<b>a</b>) Ellagic acid structure. (<b>b</b>) Chlorogenic acid structure.</p> "> Figure 3
<p>Flavylium ion structure and chemical groups of the anthocyanidins present in red fruits.</p> "> Figure 4
<p>Cyanidin-3-glucoside.</p> "> Figure 5
<p>Chemical reaction involved in the most used scavenging assays [<a href="#B30-antioxidants-06-00007" class="html-bibr">30</a>,<a href="#B31-antioxidants-06-00007" class="html-bibr">31</a>,<a href="#B32-antioxidants-06-00007" class="html-bibr">32</a>,<a href="#B33-antioxidants-06-00007" class="html-bibr">33</a>,<a href="#B34-antioxidants-06-00007" class="html-bibr">34</a>,<a href="#B35-antioxidants-06-00007" class="html-bibr">35</a>].</p> "> Figure 6
<p>Scheme of the extraction of antioxidants from red fruits.</p> ">
Abstract
:1. Introduction
2. Phenolic Acids and Anthocyanidins in Red Fruits
3. Berries and Red Fruits: General Characteristics and Antioxidant Compounds
3.1. Fragaria spp.
3.2. Rubus idaeus
3.3. Rubus fruticosus
3.4. Vaccinium corymbosum
3.5. Vaccinium myrtillus
3.6. Vaccinium macrocarpon (America)/Vaccinium oxycoccos (Europe)
4. Most Common Antioxidant Content Determination and Radical Scavenging Assays in Red Fruits
4.1. Antioxidant Content Determination
4.1.1. TPC
4.1.2. TAC
4.1.3. Ascorbic Acid Content
4.2. Radical Scavenging Assays
5. Common Methods for the Extraction of Antioxidants from Red Fruits
5.1. Physical Extraction
5.2. Solvent Extraction
5.2.1. Effect of Solid-to-Solvent Ratio
5.2.2. Effect of Temperature and Time
5.3. Ultrasound Assisted Extraction
Effect of Sonication
5.4. Microwave Assisted Extraction
5.5. Pressure Assisted Extraction
5.5.1. Pressurized Liquid Extraction
5.5.2. Sub/Supercritical CO2 Extraction
5.6. Pulsed Electric Fields
6. Applications
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Botanical Name | Common Name |
---|---|
Aristotelia chilensis (Molina) Stuntz | Maqui |
Aronia melanocarpa (Michx.) Elliott | Chokeberry |
Dovyalis hebecarpa (Gardner) Warb. | Ceylon gooseberry |
Euterpe oleracea Mart. | Açaí |
Fragaria spp. | Strawberry |
Hippophae rhamnoides L. | Seabuckthorn |
Lonicera caerulea L. | Honeyberry |
Luma apiculata (DC.) Burret | Chilean myrtle |
Lycium barbarum L. | Goji berry |
Morus alba L. | White mulberry |
Morus nigra L. | Mulberry |
Myrciaria cauliflora (Mart.) O. Berg | Jabuticaba |
Prunus cerasus L. | Cherries |
Prunus spinosa L. | Blackthorns |
Ribes nigrum L. | Blackcurrant |
Ribes rubrum L. | Redcurrant |
Rubus caucasicus Focke | Caucasian raspberry |
Rubus coreanus Miq. | Korean black raspberry |
Rubus ellipticus Sm. | Golden Himalayan raspberry |
Rubus fruticosus L. | Blackberry |
Rubus glaucus Benth. | Andean blackberry |
Rubus idaeus L. | Raspberry |
Rubus niveus Thunb. | Ceylon raspberry |
Sambucus Nigra L. | Elderberry |
Smilax aspera L. | Rough bindweed |
Synsepalum dulcificum (Schumach.) Daniell | Miracle-fruit |
Vaccinium arctostaphylos L. | Caucasian whortleberry |
Vaccinium corymbosum L. | Blueberry |
Vaccinium macrocarpon Aiton | Cranberry |
Vaccinium meridionale Sw. | Andean blueberry |
Vaccinium myrtillus L. | Bilberry |
Vaccinium oxycoccos L. | Small cranberry |
Vaccinium vitis-idaea L. | Cowberry |
Appendix B
Abbreviation | Meaning |
---|---|
AAE | Ascorbic Acid Equivalents |
ABTS | 2,2-Azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) |
BHAE | BHA equivalents |
C3G | Cyanidin-3-glucoside equivalents |
CA | Chlorogenic Acid |
CE | Catechin Equivalents |
Cy | Cyanidin |
DAD | Diode-Array-Detector |
Dp | Delphinidin |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
DW | Dry Weight |
FRAP | Ferric Reducing Antioxidant Power |
FS | Frozen Sample |
FW | Fresh Weight |
GAE | Gallic Acid Equivalents |
GRAS | Generally Recognized As Safe |
HAT | Hydrogen Atom Transfer |
HPLC | High Performance Liquid Chromatography |
IC50 | Concentration at which 50% of radicals are scavenged |
MAE | Microwave-Assisted Extraction |
max. | Maximum |
MHG | Microwave Hydrodiffusion and Gravity |
MS | Mass Spectroscopy |
Mv | Malvidin |
ORAC | Oxygen Radical Absorbance Capacity |
ovn. | Overnight |
PEF | Pulsed Electric Field |
Pg | Pelargonidin |
PLE | Pressurized Liquid Extraction |
Pn | Peonidin |
Pt | Petunidin |
QE | Quercitin Equivalents |
r.t. | Room temperature |
RSM | Response Surface Methodology |
SE | Solvent Extraction |
SET | Single Electron Transfer |
SFE-CO2 | Supercritical carbon dioxide extraction |
SubC-CO2 | Subcritical carbon dioxide extraction |
TAC | Total Anthocyanin Content |
TAE | Tannic Acid Equivalents |
TE | Trolox Equivalents |
TFC | Total Flavonoid Content |
TPC | Total Phenolic Content |
UAE | Ultrasound Assisted Extraction |
References
- Galván D’Alessandro, L.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Périno-Issartier, S.; Abert-Vian, M.; Chemat, F. Solvent Free Microwave-Assisted Extraction of Antioxidants from Sea Buckthorn (Hippophae rhamnoides) Food By-Products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar] [CrossRef]
- Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Törrönen, A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Ścibisz, I.; Mitek, M. The changes of antioxidant properties in highbush blueberries (Vaccinium corymbosum L.) During freezing and long-term frozen storage. ACTA Acta Sci. Pol. Technol. Aliment 2007, 6, 75–82. [Google Scholar]
- Chen, H.; Yang, H.; Gao, H.; Long, J.; Tao, F.; Fang, X.; Jiang, Y. Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits. Chem. Cent. J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Ambroziak, W.; Czyzowska, A.; Adamiec, J. Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.S. Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 2016, 25, 55–61. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar]
- Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chem. Eng. Res. Des. 2014, 92, 1818–1826. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Canuto, G.A.B.; Oliveira, D.R.; Da Conceição, L.S.M.; Farah, J.P.S.; Tavares, M.F.M. Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chem. 2016, 192, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.C.; de Castro, M.D.L. Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. J. Chromatogr. A 2005, 1100, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef] [PubMed]
- Golmohamadi, A.; Möller, G.; Powers, J.; Nindo, C. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason. Sonochem. 2013, 20, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Medina-Meza, I.G.; Boioli, P.; Barbosa-Cánovas, G.V. Assessment of the Effects of Ultrasonics and Pulsed Electric Fields on Nutritional and Rheological Properties of Raspberry and Blueberry Purees. Food Bioprocess Technol. 2016, 9, 520–531. [Google Scholar] [CrossRef]
- Ştefănuţ, M.N.; Căta, A.; Pop, R.; Moşoarcă, C.; Zamfir, A.D. Anthocyanins HPLC-DAD and MS Characterization, Total Phenolics, and Antioxidant Activity of Some Berries Extracts. Anal. Lett. 2011, 44, 2843–2855. [Google Scholar] [CrossRef]
- Piovezan, M.; García-Seco, D.; Micke, G.A.; Gutiérrez-Mañero, J.; Ramos-Solano, B. Method development for determination of (+)-catechin and (−)-epicatechin by micellar electrokinetic chromatography: Annual characterization of field grown blackberries. Electrophoresis 2013, 34, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Central Composite Design Applied to Optimize the Hydroalcoholic Extraction of Bilberry (Vaccinium Myrtillus L.) Fruits. J. Food Biochem. 2015, 39, 179–188. [Google Scholar] [CrossRef]
- Borowska, E.J.; Mazur, B.; Kopciuch, R.G.; Buszewski, B. Polyphenol, anthocyanin and resveratrol mass fractions and antioxidant properties of cranberry cultivars. Food Technol. Biotechnol. 2009, 47, 56–61. [Google Scholar]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crops Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Short Communication: Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Stoica, R.; Senin, R.M.; Ion, R. Ethanol Concentration Effect on the Extraction of Phenolic Compounds from Ribes nigrum Assessed by Spectrophotometric and HPLC-DAD Methods. Rev. Chim. 2013, 64, 620–624. [Google Scholar]
- Bendich, A.; Machlin, L.J.; Scandurra, O.; Burton, G.W.; Wayner, D.D.M. The antioxidant role of vitamin C. Adv. Free Radic. Biol. Med. 1986, 2, 419–444. [Google Scholar] [CrossRef]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Deighton, N.; Brennan, R.; Finn, C.; Davies, H.V. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 2000, 80, 1307–1313. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Danet, A.F.; Kalinowski, S. Ascorbic Acid determination in commercial fruit juice samples by cyclic voltammetry. J. Autom. Methods Manag. Chem. 2008, 2008, 937651. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.L.; Lozano, C.; Julià, L.; Sánchez-Baeza, F.J.; Anglada, J.M.; Centelles, J.J.; Cascante, M. Cysteinyl-flavan-3-ol conjugates from grape procyanidins. Antioxidant and antiproliferative properties. Bioorg. Med. Chem. 2002, 10, 2497–2509. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frasquet, I.; Frígola, A. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chem. 2007, 103, 1365–1374. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 21–60. [Google Scholar] [CrossRef]
- Cao, S.; Hu, Z.; Zheng, Y.; Yang, Z.; Lu, B. Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit. Food Chem. 2011, 125, 145–149. [Google Scholar] [CrossRef]
- Bhat, R.; Stamminger, R. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci. Technol. Int. 2015, 21, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Shi, L.; Chen, W.; Cao, S.; Su, X.; Yang, Z. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 2014, 175, 181–186. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Huang, Q.; Wang, J.; Lin, Q.; Liu, M.; Lee, W.Y.; Song, H. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. PLoS ONE 2016, 11, e0153457. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Kagliwal, L.D.; Pol, A.S.; Patil, S.C.; Singhal, R.S.; Patravale, V.B. Antioxidant-Rich Extract from Dehydrated Seabuckthorn Berries by Supercritical Carbon Dioxide Extraction. Food Bioprocess Technol. 2012, 5, 2768–2776. [Google Scholar] [CrossRef]
- Adjé, F.; Lozano, Y.F.; Lozano, P.; Adima, A.; Chemat, F.; Gaydou, E.M. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Ind. Crops Prod. 2010, 32, 439–444. [Google Scholar] [CrossRef]
- Arimboor, R.; Venugopalan, V.; Sarinkumar, K.; Arumughan, C.; Sawhney, R.C. Integrated processing of fresh Indian sea buckthorn (Hippophae rhamnoides) berries and chemical evaluation of products. J. Sci. Food Agric. 2006, 86, 2345–2353. [Google Scholar] [CrossRef]
- Snoussi, A.; Haj, B.; Hayet, K.; Essaidi, I.; Zgoulli, S.; Moncef, C.M.; Thonart, P.; Bouzouita, N. Improvement of the Composition of Tunisian Myrtle Berries (Myrtus communis L.) Alcohol Extracts. J. Agric. Food Chem. 2012, 60, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Demirdoven, A.; Karabiyikli, S.; Tokatli, K.; Oncul, N. Inhibitory effects of red cabbage and sour cherry pomace anthocyanin extracts on food borne pathogens and their antioxidant properties. LWT-Food Sci. Technol. 2015, 63, 8–13. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Wang, D.; Huo, Y.; Ji, B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: Antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J. Sci. Food Agric. 2016, 96, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Shortle, E.; O’Grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Fernandes, F.A.N.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Ivanovic, J.; Tadic, V.; Dimitrijevic, S.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind. Crops Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Meng, X.; Liu, S.; Mu, J.; Ning, C. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem. 2016, 197, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.; Carvalho, A.P.; Magalhães, J.M.C.S.; Moreira, M.; Guido, L.; Gomes, A.M.; Delerue-Matos, C. Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innov. Food Sci. Emerg. Technol. 2016, 33, 319–326. [Google Scholar] [CrossRef]
- De Cássia Rodrigues Batista, C.; De Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; Da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho, R.N. Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids 2015, 107, 364–369. [Google Scholar] [CrossRef]
- Babova, O.; Occhipinti, A.; Capuzzo, A.; Maffei, M.E. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J. Supercrit. Fluids 2016, 107, 358–363. [Google Scholar] [CrossRef]
- Martini, S.; D’Addario, C.; Colacevich, A.; Focardi, S.; Borghini, F.; Santucci, A.; Figura, N.; Rossi, C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicrob. Agents 2009, 34, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Berka-Zougali, B.; Hassani, A.; Besombes, C.; Allaf, K. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology. J. Chromatogr. A 2010, 1217, 6134–6142. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.U.; Kim, Y.M.; Park, Y.J.; Heo, B.G.; Park, Y.S.; Gorinstein, S. Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (Morus alba L.). Eur. Food Res. Technol. 2009, 230, 231–237. [Google Scholar] [CrossRef]
- Dhar, R.S.; Khan, S.; Khajuria, R.K.; Bedi, Y.S. Dynamics of squalene content in different tissues of Ashwagandha (Withania somnifera L. Dunal) during its growth phases. Ind. Crops Prod. 2016, 84, 375–380. [Google Scholar] [CrossRef]
- Mackėla, I.; Kraujalis, P.; Baranauskienė, R.; Venskutonis, P.R. Biorefining of blackcurrant (Ribes nigrum L.) buds into high value aroma and antioxidant fractions by supercritical carbon dioxide and pressurized liquid extraction. J. Supercrit. Fluids 2015, 104, 291–300. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT-Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.E.; Mazza, G. Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Hangun-Balkir, Y.; McKenney, M.L. Determination of antioxidant activities of berries and resveratrol. Green Chem. Lett. Rev. 2012, 5, 147–153. [Google Scholar] [CrossRef]
- Aaby, K.; Grimmer, S.; Holtung, L. Extraction of phenolic compounds from bilberry (Vaccinium myrtillus L.) press residue: Effects on phenolic composition and cell proliferation. LWT-Food Sci. Technol. 2013, 54, 257–264. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Elfakir, C. Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophaë rhamnoides L.) berries: Pressurised solvent-free microwave assisted extraction. Food Chem. 2011, 126, 1380–1386. [Google Scholar] [CrossRef]
- Longo, L.; Vasapollo, G. Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem. 2006, 94, 226–231. [Google Scholar] [CrossRef]
- Bochi, V.C.; Barcia, M.T.; Rodrigues, D.; Speroni, C.S.; Giusti, M.M.; Godoy, H.T. Polyphenol extraction optimisation from Ceylon gooseberry (Dovyalis hebecarpa) pulp. Food Chem. 2014, 164, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Forino, M.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chem. 2016, 194, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, L.; Valdenegro, M.; Gómez, M.G.; Ayala-Raso, A.; Quiroga, E.; Martínez, J.P.; Vinet, R.; Caballero, E.; Figueroa, C.R. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America. Food Chem. 2016, 196, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Ivancic, A.; Schmitzer, V.; Veberic, R.; Stampar, F. Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. Food Chem. 2016, 200, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.E.; Mazza, G. Extraction of anthocyanins and other phenolics from black currants with sulfured water. J. Agric. Food Chem. 2002, 50, 5939–5946. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.A.; Hayirlioglu-Ayaz, S.; Gruz, J.; Novak, O.; Strnad, M. Separation, Characterization, and Quantitation of Phenolic Acids in a Little-Known Blueberry (Vaccinium arctostaphylos L.) Fruit by HPLC-MS. J. Agric. Food Chem. 2005, 53, 8116–8122. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.P.; Sinha, A.K. Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). J. Agric. Food Chem. 2008, 56, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Antioxidant and enzyme inhibitory activities of blueberry anthocyanins prepared using different solvents. J. Agric. Food Chem. 2013, 61, 4441–4447. [Google Scholar] [CrossRef] [PubMed]
- Bochi, V.C.; Barcia, M.T.; Rodrigues, D.; Godoy, H.T. Biochemical Characterization of Dovyalis hebecarpa Fruits: A Source of Anthocyanins with High Antioxidant Capacity. J. Food Sci. 2015, 80, C2127–C2133. [Google Scholar] [CrossRef] [PubMed]
- Badhani, A.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Variation in Chemical Constituents and Antioxidant Activity in Yellow Himalayan (Rubus ellipticus Smith) and Hill Raspberry (Rubus Niveus Thunb.). J. Food Biochem. 2015, 39, 663–672. [Google Scholar] [CrossRef]
- Güder, A.; Gür, M.; Engin, M.S. Antidiabetic and Antioxidant Properties of Bilberry (Vaccinium myrtillus Linn.) Fruit and Their Chemical Composition. J. Agric. Sci. Technol. 2015, 17, 401–414. [Google Scholar]
- Saini, R.; Dangwal, K.; Singh, H.; Garg, V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol. 2012, 51, 3369–3375. [Google Scholar] [CrossRef] [PubMed]
- Ag, S.; Wu, X.; Rl, P.; Ou, B.; Huang, D.; Owens, J.; Agarwal, A.; Gs, J.; Shanbrom, E. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae mart. (Acai). J. Agric. Food Chem. 2008, 54, 8604–8610. [Google Scholar]
- Bae, S.-H.; Suh, H.-J. Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Céspedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008, 107, 820–829. [Google Scholar] [CrossRef]
- Yildiz, H.; Sengul, M.; Celik, F.; Hegedus, A.; Ercisli, S.; Tosun, M. Some phytochemical and antioxidant characteristics of wild and cultivated blackberry (Rubus caucasicus) fruits. J. Food Agric. Environ. 2010, 8, 156–159. [Google Scholar]
- Garzón, G.A.; Narváez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Wang, S.Y.; Camp, M.J.; Ehlenfeldt, M.K. Antioxidant capacity and α-glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars. Food Chem. 2012, 132, 1759–1768. [Google Scholar] [CrossRef]
- Rugină, D.; Sconţa, Z.; Leopold, L.; Pintea, A.; Bunea, A.; Socaciu, C. Antioxidant Activities of Chokeberry Extracts and the Cytotoxic Action of Their Anthocyanin Fraction on HeLa Human Cervical Tumor Cells. J. Med. Food 2012, 15, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Dragišić Maksimović, J.J.; Milivojević, J.M.; Poledica, M.M.; Nikolić, M.D.; Maksimović, V.M. Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka). J. Food Compos. Anal. 2013, 31, 173–179. [Google Scholar] [CrossRef]
- Jiang, D.-Q.; Guo, Y.; Xu, D.-H.; Huang, Y.-S.; Yuan, K.; Lv, Z.-Q. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem. Toxicol. 2013, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Yoon, W.B.; Lee, O.-H.; Cha, S.J.; Kim, J.D. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem. 2014, 146, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mandave, P.C.; Pawar, P.K.; Ranjekar, P.K.; Mantri, N.; Kuvalekar, A.A. Comprehensive evaluation of in vitro antioxidant activity, total phenols and chemical profiles of two commercially important strawberry varieties. Sci. Hortic. 2014, 172, 124–134. [Google Scholar] [CrossRef]
- Du, L.; Shen, Y.; Zhang, X.; Prinyawiwatkul, W.; Xu, Z. Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts. Food Chem. 2014, 153, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrason. Sonochem. 2015, 27, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Ehala, S.; Vaher, M.; Kaljurand, M. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J. Agric. Food Chem. 2005, 53, 6484–6490. [Google Scholar] [CrossRef] [PubMed]
- Kryzevicujte, N.; Kraujalis, P.; Venskutonis, R.P. Optimization of high pressure extraction processes for the separation of raspberry pomace into lipophilic and hydrophilic fractions. J. Supercrit. Fluids 2016, 108, 61–68. [Google Scholar] [CrossRef]
- Cossuta, D.; Simandi, B.; Hohmann, J.; Doleschall, F.; Keve, T. Supercritical carbon dioxide extraction of sea buckthorn (Hippophae rhamnoides L.) pomace. J. Sci. Food Agric. 2007, 87, 2472–2481. [Google Scholar] [CrossRef]
- Laroze, L.E.; Díaz-Reinoso, B.; Moure, A.; Zúñiga, M.E.; Domínguez, H. Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 2010, 231, 669–677. [Google Scholar] [CrossRef]
- Cerón, I.X.; Higuita, J.C.; Cardona, C.A. Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus Benth) using an enhanced-fluidity liquid extraction process with CO2 and ethanol. J. Supercrit. Fluids 2012, 62, 96–101. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Satkauskas, S.; Viskelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2014, 52, 5898–5905. [Google Scholar] [CrossRef] [PubMed]
- Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kumari, R.; Dhaka, N. Potential applications of antioxidants—A review. J. Pharm. Res. 2013, 7, 828–835. [Google Scholar] [CrossRef]
- Vauchel, P.; Galván D’Alessandro, L.; Dhulster, P.; Nikov, I.; Dimitrov, K. Pilot scale demonstration of integrated extraction-adsorption eco-process for selective recovery of antioxidants from berries wastes. J. Food Eng. 2015, 158, 1–7. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Dekanski, D.; Ristić, S.; Radonjić, N.V.; Petronijević, N.D.; Giampieri, F.; Astolfi, P.; González-Paramás, A.M.; Santos-Buelga, C.; Tulipani, S.; et al. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PLoS ONE 2011, 6, e25878. [Google Scholar] [CrossRef] [PubMed]
- Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The Effect of Bioactive Compounds on In Vitro and In Vivo Antioxidant Activity of Different Berry Juices. PLoS ONE 2012, 7, e47880. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
Hydroxybenzoic Acid Derivatives | R1 | R2 | R3 | Hydroxycinnamic Acid Derivatives | R1 | R2 | R3 |
---|---|---|---|---|---|---|---|
p-Hydroxybenzoic | H | OH | H | p-Coumaric | H | OH | H |
Protocatechuic | OH | OH | H | Caffeic | OH | OH | H |
Vanillic | OCH3 | OH | H | Ferulic | OCH3 | OH | H |
Syringic | OCH3 | OH | OCH3 | Sinapic | OCH3 | OH | OCH3 |
Gallic | OH | OH | H |
Anthocyanidin | R1 | R2 | R3 |
---|---|---|---|
Pelargonidin (Pg) | H | OH | H |
Cyanidin (Cy) | OH | OH | H |
Delphinidin (Dp) | OH | OH | OH |
Peonidin (Pn) | OCH3 | OH | H |
Petunidin (Pt) | OCH3 | OH | OH |
Malvidin (Mv) | OCH3 | OH | OCH3 |
Tipical Values for 100 g | Energy (kJ) | Carbohydrate (g) | Fat (g) | Protein (g) | Vitamin C (mg) |
---|---|---|---|---|---|
Strawberry (Fragaria x ananassa) | 136 | 7.68 | 0.3 | 0.67 | 58.8 |
Raspberry (Rubus idaeus) | 196 | 11.94 | 0.65 | 1.20 | 26.2 |
Blueberry (Vaccinium corymbosum) | 240 | 14.49 | 0.33 | 0.74 | 9.7 |
Blackberry (Rubus fruticosus) | 180 | 9.61 | 0.49 | 1.39 | 21.0 |
Cranberry (Vaccinium macrocarpon) | 190 | 12.20 | 0.13 | 0.39 | 13.3 |
Assay | Pros | Cons | Results Expressed as |
---|---|---|---|
DPPH | Simple, quick 1, inexpensive | Only organic solvents (lipophilic antioxidants), narrow pH range. | Inhibition %, IC50, mg AAE/L, mg GAE/L |
ABTS | Very fast 2, wide pH range, hydrophilic and lipophilic molecules allowed | Long reaction time (>6 min) could give incorrect results due to short assay | Mol Trolox equivalents/L |
ORAC | Involves variation of value with time, radical behavior similar to authentic radicals | High variability in results | Mol Trolox Equivalents/L |
FRAP | Iron-containing food oxidation studies can benefit from this assay | Not all Fe3+ reductants are antioxidants, and some antioxidants are not able to reduce Fe3+ | Mol Fe2+ equivalents |
Extraction Method | Pros | Cons |
---|---|---|
Maceration a | No additional energy needed | Very long extraction times. |
Solvent extraction a | Easy industrial scale-up. Well known technique | Long extraction times. Some solvents not valid for food/cosmetic industry |
Ultrasound assisted | Higher efficiency (less extraction time and solvent consumption requirements b). Safe extraction of heat labile compounds | Expensive scale-up |
Microwave assisted | Quicker heating. Reduced equipment size. No added solvent needed | Risk of burning the sample and denaturalizing compounds |
Pressure assisted | SFE-CO2 extraction: CO2 no toxicity, extraction in absence of air and light, very pure extracts | Expensive scale-up |
Pulsed electric fields | Already acquired by some food industries to scale-up processes | Need of very specialized equipment |
Red Fruit | Extraction Conditions and Efficiency | Antioxidant Content | Radical Scavenging Assays | References |
---|---|---|---|---|
SOLVENT EXTRACTION | ||||
Hippophae rhamnoides | MeOH (80%), 1:10, 5 min Yield: 17.6% DW | TPC: 741.9 mg GAE/g DW | DPPH: 5.36 mmol GAE/L | [2] |
Euterpe oleracea | EtOH (70%–80%, acidified 0.065–0.074 M HCl), 1:4, 58 °C, 4 h | TPC: 432.13 mg GAE/100 g FW. TAC: 239.14 mg/100 g FW | ORAC: 6.87 mmol TE/100 g FW | [63] |
Aronia melanocarpa | EtOH (80%), 1:25, 85 °C, 2 h | TPC: 919.7 mg of GAE/g DW. TAC: 1146–3715 mg C3G/100 g | [8] | |
Ribes nigrum | EtOH (60%), 1:100, 20 °C, 60 h | TPC: 37.85 mg CA/g FS DW. TAC: 13.59 mg C3G/g FS DW | [64] | |
Rosaceae Fragaria, Vaccinium corymbosum, Rubus idaeus, Rubus fruticosus and Euterpe oleracea | EtOH (80%), 15 min | DPPH (IC50 mg/mL): 0.70, 0.80, 1.40, 5.60 and >10 for Vaccinium corymbosum, Rubus idaeus, Rubus fruticosus, Rosaceae Fragaria and Euterpe oleracea, respectively | [65] | |
Vaccinium myrtillus | Water, 1:3, 80–100 °C, 4–15 min. Yield: 40%–68% | TPC: 576 mg GAE/100 g FW (1153 mg GAE/L extract). TAC: 332 mg C3G/100 g FW (625 mg CGE/L extract) | [66] | |
Hippophae rhamnoides | Water, 4:5, r.t., 10 min | DPPH: 71% | [67] | |
Smilax aspera | MeOH (acidified 0.1% HCl), r.t., 20 h | TAC: 23.7 mg CGE/g skin | [68] | |
Dovyalis hebecarpa | Acetone (20%, acidified 0.35% formic acid), 1:120, 17.6 min | TPC: 1421 mg GAE/100 g pulp FW. TAC: 319 mg C3G/100 g pulp FW | [69] | |
Lycium barbarum | MeOH (80%), 1:5, ovn. | DPPH: 80%–96% | [70] | |
Luma apiculata | MeOH (80%), 1:6, 1 h | TPC: 48–57 mg GAE/g FW. TFC: 0.55–0.98 mg QE/mL extract | DPPH (IC50): 17–21 mg/mL. ABTS: 9–16 TE/g FW. FRAP: 10–20 μM FeSO4/g FW. ORAC: 62.48 μmol TE/g DW | [71] |
Sambucus spp. | Water, 1:5, r.t., 30 min | TPC: 3687–6831 mg GAE/kg FW | ABTS: 3.2–39.59 mM TE/kg FW | [72] |
Crataegus monogyna | EtOH (45%), 1:10, r.t., 4 weeks | TPC: 0.8 mg GAE/mL | DPPH: 1147.67 mg AAE/L. FRAP: 531.42 mg AAE/L | [49] |
Prunus cerasus | EtOH (42.39%, acidified 1% formic acid), 1:15, 40 °C, 75 min | TPC: 493.09 mg/L. TAC: 36.01 mg/L | ABTS: 59.61 mM Trolox/mL | [47] |
Ribes nigrum | Aqueous SO2 (1000–1200 ppm), 1:19, 35 °C, 60 h | TPC: 89.4 mg CA/g FS DW. TAC: 15.8 mg C3G/g FS DW | [73] | |
Vaccinium arctostaphylos | MeOH (80%), 8:15 | TPC: 11,291.4 ng/g FW | [74] | |
Hippophae rhamnoides | Soxhlet extraction: EtOH, 1:30, 8 h. Maceration: EtOH, 1:10, r.t., ovn. | TPC. Soxhlet: 4.9 mg GAE/g DW. Maceration: 2.3 mg GAE/g DW | DPPH: Soxhlet: 21.37 mg TE/g DW. Maceration: 14.28 mg TE/g DW. ABTS: Soxhlet: 8.33 mg TE/g DW. Maceration: 2.13 mg TE/g DW | [75] |
Myrtus communis | EtOH (60, 70, 80, and 90%), 13:25, r.t., 40 days | DPPH: 65%–87.5% | [46] | |
Vaccinium spp. | EtOH (80%), 1:10, 24 h | TPC: 382 mg GAE/L extract. TAC: 160 mg/L extract | FRAP: 3.4 mM Fe2+ equivalents | [76] |
Vaccinium myrtillus | EtOH (91.83%), 1.22, 18 °C, 23.5 days (for max. anthocyanin content) or 28 days (for max. phenolic content) | TPC: 3709.51 mg GAE/L extract. TAC: 2810.6 mg C3G/L extract | DPPH: 3689.38 mg AAE/L extract | [20] |
Dovyalis hebecarpa | Acetone (20%, acidified 2% formic acid), 1:120, 20 min | TPC: 195 mg GAE/100 g pulp FW, 555 mg GAE/100 g skin FW. TAC: 69 mg CGE/100 g pulp FW, 284 mg CGE/100 g skin FW | ABTS: 5.8 μmol TE/g pulp FW, 20.8 μmol TE/g skin FW. FRAP: 10.3 μmol TE/g pulp FW, 29.7 μmol TE/g skin FW. ORAC: 50.1 μmol TE/g pulp FW, 135 μmol TE/g skin FW | [77] |
Rubus ellipticus and Rubus niveus | MeOH (80%, acidified 1 N HCl), 2:5, 60 °C, 1 h | TPC: 2.56–3.28 mg GAE/g FW (R. ellipticus), 3.21 mg GAE/g FW (R. niveus). TAC: 0.01–0.28 mg/100 g FW (R. ellipticus), 5.63 mg/100 g FW (R. niveus). TFC: 4.58–4.71 mg QE/g FW (R. ellipticus), 4.91 mg QE/g FW (R. niveus) | DPPH: 26.36–27.72 mM AAE/100 g FW (R. ellipticus), 27.84 mM AAE/100 g FW (R. niveus). ABTS: 3.34–4.58 mM AAE/100 g FW (R. ellipticus), 2.97 mM AAE/100 g FW (R. niveus). FRAP: 2.19–3.43 mM AAE/100 g FW (R. ellipticus), 2.06 mM AAE/100 g FW (R. niveus) | [78] |
Vaccinium myrtillus | Soxhlet extractions MeOH, EtOH, acetone and water, successively, 24 h | TPC: 116.67–182.33 μg CE/mg DW. TAC: 10.52–16.87 mg C3G/L extract. TFC: 23.94–37.49 μg CE/mg DW | DPPH: 13.59–25.40 μg/mL extract. FRAP: 53.73%–92.74% (using EtOH 89.70%) | [79] |
Rubus ellipticus | MeOH (80%, acidified or not), 1:5, r.t., 30 min | TPC: 550–690 mg GAE/100 g FW. TFC: 179–276.6 mg CE/100 g FW | DPPH: 359.2–502.2 mg CE/100 g FW. ABTS: 619.6–704.9 mg BHAE/100 g FW. FRAP: 695.7–956.7 mg AAE/100 g FW | [80] |
Euterpe oleracea | Acetone (50%), 7:4000, r.t., 1 h | TPC: 13.9 mg GAE/100 g FW. | ORAC: 997 μmol TE/g | [81] |
Morus alba | EtOH (70%), 1:2, r.t., 4 h | TPC: 2235–2570 μg GAE/g DW. TAC: 1229–2057 μg/g DW | DPPH: 60%–80% | [82] |
Aristotelia chilensis | MeOH (acidified 0.1% HCl) | TPC: 15,987 μmol TE/g extract | DPPH (IC50): 1.62 μg/mL. FRAP: 12,973.9 μmol CE/g extract (extract is 25 μg/mL). ORAC: 29,689.5 μmol TE/g extract (extract is 10 μg/mL) | [83] |
Vaccinium oxycoccos | MeOH (acidified 0.1% HCl), 1:8, 15 min | TPC: 374.2 mg GAE/100 g FW. TAC: 77.1 mg C3G/100 g FW | DPPH: 68.8 μmol Trolox/g FW. ABTS: 16.4 μmol Trolox/g FW | [21] |
Rubus caucasicus | Acetone:Water:Acetic acid (70:29.5:0.5), 1 h | TPC: 424 mg GAE/100 g FW. TAC: 168 mg C3G/100 g FW | DPPH: 37.4 μmol/g FW. FRAP: 56.30 μmol TE/g FW | [84] |
Vaccinium meridionale | 4 extractions with MeOH | TPC: 758.6 mg GAE/100 g FW. TAC: 329 mg C3G/100 g FW | ABTS: 45.5 μmol TE/g FW. FRAP: 87 μmol TE/g FW; 116 μmol Fe2+/g FW | [85] |
Vaccinium corymbosum var. Bluecrop | Acetone (50%), 2:25 (peel), 6:25 (flesh) | TPC: 296.9 mg GAE/100 g flesh DW, 4142.3 mg GAE/100 g peel DW. TAC: 255.8 mg C3G/100 g flesh DW, 4750.4 mg C3G/100 g peel DW | ORAC: 287.5 μmol TE/g flesh DW, 958.9 μmol TE/g peel DW | [86] |
Aronia melanocarpa | Absolute MeOH (acidified 0.3% HCl) | TPC: 1713 mg GAE/100 g FW. TAC: 277.13 mg C3G/100 g FW | ABTS: 171.7 μmol TE/g FW. FRAP: 206.2 μmol Fe2+/g FW. ORAC: 41.7 μmol TE/g FW | [87] |
Rubus idaeus | MeOH:Water:Acetic acid (75:30:5) | TPC: 3.72 mg GAE/g FW. TAC: 11.95 mg C3G/100 g FW | ABTS: 2.12 mg AAE/g FW | [88] |
Morus alba | 4 extractions, EtOH (50%), 12 h each | TPC: 690.83 mg GAE/g FW. TAC: 272 mg C3G/g FW | DPPH: 698.57 mg TE/g DW. FRAP: 120.02 mg TE/g DW | [89] |
Aronia melanocarpa and Vaccinium corymbosum | 3 extractions, EtOH (70%), 1:10, 70 °C, 3 h each. 14.2% (Aronia melanocarpa), 8.7% (Vaccinium corymbosum) | TPC. 110 mg GAE/g (Aronia melanocarpa), 27.4 mg GAE/g (Vaccinium corymbosum) | DPPH inhibition at concentration of 10, 50, and 500 μg/mL were: 31.1%, 37% and 72.7% (Aronia melanocarpa), 29.4%, 29.6% and 40.6% (V. corymbosum), respectively. ABTS inhibition at concentration of 10, 50 and 500 μg/mL were: 4.6%, 10.3% and 46.3% (Aronia melanocarpa), 2.3%, 4.2% and 8.6% (V. corymbosum), respectively | [90] |
Fragaria x ananassa var. Camarosa | Absolute EtOH or Acetic acid (0.2%), 1:20, 60 °C, ovn. | TPC (100 μg fruit extract): 207.4 mg GAE/g FW (EtOH), 224 mg GAE/g FW (Acetic acid) | DPPH (IC50): 39.01 mg/mL (EtOH), 29.86 mg/mL (Acetic acid). FRAP (IC50): 24.16 μg (EtOH), 57.11 μg (Acetic acid) | [91] |
Synsepalum dulcificu | 2 extractions absolute MeOH, 2:5, 60 °C, 30 min each | TPC: 1448.3 mg GAE/100 g flesh FW, 306.7 mg GAE/100 g seeds FW. TFC: 9.9 mg QE/100 g flesh FW, 3.8 mg QE/100 g seeds FW | DPPH: 96.3% (flesh). ABTS: 32.5% (flesh). FRAP: 22.9 mmol/100 g flesh extract | [92] |
Sambucus nigra | 6 different solvents: (A) Pure water; (B) 70% ethanol; (C) Pure methanol; (D) 70% Acetone; (E) Acidified methanol; (F) Infusion, 1:20, r.t., 5 days. Best efficiency: (E) (602 mg extract/g fruit DW) | TPC: 8974 mg GAE/100 g extract DW (A). TAC: HPLC (1326 mg C3G/100 g DW extract), pH-differential method (1066.6 mg C3G/100 g DW extract) (B) | DPPH (IC50): 117 μg/mL (D), 123 μg/mL (A). ABTS: 1.96 mM (D), 1.87 mM (A) | [93] |
ULTRASOUND ASSISTED EXTRACTION (UAE) | ||||
Fragaria spp. | MeOH (acidulated 0.20% HCl), 1:2, 20 °C, 10 min. Yield: 83%–99% | TAC: 63.25 μg/g | [13] | |
Rubus fruticosus | EtOH (64%, acidulated 0.01% HCl), 2:5, 35 kHz, 60 W, 25 °C and 40 °C, 15 or 30 min. Yield: 9.44% FW, 6.34% DW (40 °C, 30 min) | TPC: 2658 g GAE/100 g DW (40 °C, 15 min). TAC: 1.38 g C3G/100 g DW (40 °C, 30 min) | DPPH: 96 μg/mL (25 °C, 30 min). FRAP: around 190 μmol Fe2+/L at all conditions | [51] |
Myrciaria cauliflora | EtOH (46%), 1:20, 25 kHz, 150 W, 30 °C, 60 min | TPC: 92.8 mg GAE/g DW. TAC: 4.9 mg C3G/g DW | [50] | |
Aronia melanocarpa | EtOH (50%), 1:20, 30.8 kHz, 100 W, 40 °C, 15 min. Yield: 84% | TPC: 1000 mg GAE/L extract (ratio 1:10), 600 mg GAE/L extract (ratio 1:20) | DPPH (IC50): 250 mg GAE/L extract | [1] |
Lonicera caerulea | EtOH (80%, acidulated 0.5% formic acid), 1:25, 40 kHz, 100 W, 35 °C, 20 min | TPC: 107.93–527.50 mg GAE/100 g FW. TAC: 22.73 mg C3G/g DW, 99–329 mg C3G/100 g FW | [94] | |
Rubus idaeus | 150 mL fruit puree without added solvent, 20 kHz, 400 W, 35 °C, 10 min | TPC: 1529 mg GAE/L. TAC: 317 mg C3G/L | DPPH: 7260 μmol/L | [16] |
Rubus strigosus and Vaccinium corymbosum | Water, 1:1, 24 kHz, 400 W, 25 °C, 20 min | TPC *: 460 μg GAE/mL (Rubus strigosus), 500 μg GAE/mL (Vaccinium corymbosum). TAC *: 75 mg C3G/L (Rubus strigosus), 750 mg C3G/L (Vaccinium corymbosum) | DPPH *: 525 μmol TE/L (Rubus strigosus), 440 μmol TE/L (Vaccinium corymbosum) | [17] |
Rubus fruticosus, Morus nigra, V. myrtillus and Prunus spinosa | MeOH (acidified 0.1% HCl), 1:4, 59 kHz, 25 °C, 60 min | TAC: 457.6, 301.9, 3888.1 and 476 mg C3G/L fruit extract for Rubus fruticosus, Morus nigra, V. myrtillus and Prunus spinosa, respectively | DPPH: 6.4, 1.6, 8.3 and 8.4 μmol TE/100 g FS for Rubus fruticosus, Morus nigra, V. myrtillus and Prunus spinosa, respectively | [18] |
Lonicera caerulea | MeOH (acidified 0.1% HCl), 1:10, 90 min | TPC: 470–798 mg GAE/g DW. TAC: 401–457 mg C3G/L extract | ORAC: 52–68 μmol TE/g FW | [52] |
Crataegus monogyna | EtOH (45%), 1:10, 30 min | TPC: 0.032 mg GAE/mL | DPPH: 56.73 mg AAE/L extract. FRAP: 105.25 mg AAE/L extract | [49] |
Aronia melanocarpa | Water or EtOH (25% or 50%), 1:40, 30.8 kHz, 50 or 100 W, 45 °C, 240 min | TPC: >70 mg GAE/g DW. TAC: >13 mg CGE/g DW | DPPH: >450 μmol TE/g DW | [10] |
Prunus cerasus | EtOH (40%), 1:15, 37 kHz, 40 °C, 40 min | TPC: 493.84 mg/L. TAC: 38.20 mg/L | ABTS: 105.87 mM Trolox/mL | [47] |
Hippophae rhamnoides | Absolute EtOH, 1:10, 30 °C, 60 min | TPC: 3.8 mg GAE/g pulp DW, 4.4 mg GAE/g fruit DW | ORAC: 7.07 mg/g pulp DW, 16.72 mg/g fruit DW. ABTS: 4.86 mg/g pulp DW, 6.13 mg/g fruit DW | [75] |
Rubus spp., Vaccinium spp., Fragaria x ananassa and Aronia melanocarpa | EtOH:Water:HCl (70:29:1), 1:10, 30 °C, 2 h | TPC *: 800, 700, 700 and 600 mg GAE/g DW for Rubus spp., Vaccinium spp., Fragaria x ananassa and Aronia melanocarpa, respectively. TAC *: 520, 610, 210 and 520 mg C3G/g DW for Rubus spp., Vaccinium spp., Fragaria x ananassa and Aronia melanocarpa, respectively | DPPH *: 5400, 3750, 4250 and 5500 μmol TE/g extract weight for Rubus spp., Vaccinium spp., Fragaria x ananassa and Aronia melanocarpa, respectively. ORAC *: 9000, 6750, 6900 and 4500 μmol TE/g extract weight for Rubus spp., Vaccinium spp., Fragaria x ananassa and Aronia melanocarpa, respectively | [48] |
Ribes nigrum | EtOH (70%), 1:10, 100 kHz, 23–25 °C, 30 min | TPC: 3136.6 mg GAE/100 g DW. TAC: 182.4 mg cyanidin-3-rutinoside/100 g DW | DPPH: 94.7% | [24] |
Rubus coreanus | EtOH, 40 kHz, 250 W, 54 °C, 37 min. Yield: 22.78% | DPPH: 80.94 μmol TE/g DW | [40] | |
MICROWAVE ASSISTED EXTRACTION (MAE) | ||||
Hippophae rhamnoides | 400 g press cake without added solvents (57% moisture content), 2.45 GHz, 1 W/g, 400 W, 15 min. Yield: 3% DW | TPC: 1147 mg GAE/g DW | DPPH (IC50): 0.71 g extract/L, 4.78 mmol GAE/L | [2] |
Lycium barbarum | MeOH (25%–50%), 1:20, 0.38 W/g, 100 °C, 10 min | TPC: 9.2 mg GAE/g DW | ABTS: 7.6 mg AAE/g DW | [54] |
Hippophae rhamnoides | 4 g berries without added solvent (72% moisture content), 5 cycles of 1000 W (5 s), cooling system 20–25 °C between cycles | DPPH: 90% | [67] | |
Vaccinium myrtillus, Vaccinium vitis-idaea, Vaccinium oxycoccos, Fragaria x ananassa, Ribes nigrum, Ribes rubrum | 3 extractions EtOH (70%), 1:2, 180 W, 3 min | TPC: 10.33–43.43 mg TAE/100 g FS | ABTS: 0.57–1.89 µM AAE/100 g FS | [95] |
Hippophae rhamnoides | Absolute EtOH, 1:10, 150 W, 60 °C, 20 min | TPC: 9.3 mg GAE/g DW | DPPH: 28.40 mg TE/g DW. ABTS: 18.81 mg TE/g DW | [75] |
PRESSURIZED LIQUID EXTRACTION (PLE) | ||||
Vaccinium myrtillus | Absolute EtOH, EtOH (50%), Acidified water, EtOH (50%, acidified water), Acetone, 0.5–40 MPa, 25–180 °C, 15 min. Yield: 4.2% FS (Absolute EtOH), 8% FS (Acidified water) | TPC: 102 mg GAE/g DW, 87.1 mg GAE/g FW (absolute EtOH) | DPPH: 1867 μmol TE/g DW. ABTS: 103 μmol TE/g DW (absolute EtOH) | [3] |
Sambucus nigra | EtOH (80%), 60 bar, 100 °C, 10 min | HPLC: 0.5288 g TAC/100 g, 0.2518 g C3G/100 g, 0.2018 g TFC/100 g | DPPH: 67.69% | [62] |
SUPERCRITICAL FLUID EXTRACTION-CARBON DIOXIDE (SFE-CO2) | ||||
Hippophae rhamnoides | SFE-CO2 with entrainer EtOH (30%), 345 bar, 44 °C, 80 min. Recovery of 90.82% tocopherol, 67.12% carotene | DPPH (IC50): 18.85 mg/mL | [43] | |
Euterpe oleracea | SFE-CO2 (900 kg/m3) 490 bar, 70 °C, 30 min. Yield: 45% DW | TPC: 5457–7565 mg GAE/100 g sample. (900 kg/m3, 350 bar, 70 °C). TAC: 96.1–137.5 mg/100 g sample. (700 kg/m3 220 bar, 50 °C) | [55] | |
Rubus idaeus | SFE-CO2 (2 L/min) 45 MPa, 60 °C, 120 min. Yield: 14.61%. Residues re-extracted with MeOH:EtOH (50:50), 10.3 MPa, 30–110 °C, 5–25 min. Yield: 15% (hexane fraction), 25% (methanol fraction) | TPC: 26.31–38.95 mg GAE/g DW (MeOH), 5.37–10.15 mg GAE/g DW (Hexane) | ABTS: 308–561 μmol TE/g (MeOH), 48.5–122.7 μmol TE/g (Hexane). ORAC: 936.2 μmol TE/g (EtOH), 151.07 μmol TE/g (SFE-CO2) | [96] |
Vaccinium myrtillus | CO2:Water:EtOH (90:5:5), 20 MPa, 40 °C, 1.4 × 10−4 kg/s. Yield: 1.96% | TPC: 134 mg GAE/g FW. TAC: 1071 mg/100 g FW | DPPH: 1658 μmol TE/g FW. ABTS: 199 μmol TE/g FW | [3] |
Vaccinium myrtillus | SFE-CO2, EtOH (10%) first 30 min, then 2 SubC extractions with less EtOH each, 25 MPa, 45 °C | TPC: 72.18 mg GAE/g DW. TAC: 0.62 mg C3G/g DW | DPPH (IC50): 102.66 μg DW (SubC-CO2). ABTS (IC50): 8.49 μg DW (SubC-CO2). FRAP (IC50): 10.30 μg DW (SubC-CO2) | [56] |
Hippophae rhamnoides | SFE-CO2, 46 MPa, 333 K, 6–7 h. Yield: 158.84 g/kg DW | 424.1 mg total tocopherol/kg DW | [97] | |
Raspberry, blueberry and cranberry (species not specified) | SFE-CO2, 80–300 bar, 60 °C, 2.5 L CO2/h, 2 h. Yield: 5.20% (raspberry, 200 bar), 3.89% (cranberry, 250 bar), 1.4% (blueberry, 200 bar) | TPC (mg GAE/100 g pomace): 76.8 (raspberry, 80 bar), 29.5 (blueberry, 80 bar), 84 (cranberry, 250 bar) | DPPH (μg DPPH scavenged/g GAE): 89.5 (raspberry, 300 bar), 81.5 (blueberry, 250 bar), 109.9 (cranberry, 250 bar). ABTS (μg Trolox/g GAE): 21.79 (raspberry, 80 bar), 25.9 (blueberry, 200 bar), 5.35 (cranberry, 80 bar) | [98] |
Crataegus monogyna | SFE-CO2, 5 L/min, 310 bar, 60 °C, 20 min | TPC: 0.303 mg GAE/mL extract | DPPH: 66.23 mg AAE/L extract. FRAP: 182.13 mg AAE/L extract | [49] |
Rubus glaucus | SFE-CO2:EtOH (80:20), 140 bar, 32 °C, 65 min. Yield improved up to 59.3% | TAC: 85.4 mg C3G/kg FW | [99] | |
PULSED ELECTRIC FIELDS (PEF) | ||||
Vaccinium myrtillus | Juice: 3 kV/cm. 55.5% yield. Cake press extract: 5 kV/cm. Treatment time: 1–23 μs | TPC: 109.1 mg GAE/100 mL juice, 1782.6 mg GAE/100 g FW berry press cake. TAC: 50.23 mg C3G/100 mL juice, 1699 mg C3G/100 g FW berry press cake | FRAP: 5–6.7 μmol TE/mL juice, 40–72 μmol TE/g FW berry press cake | [100] |
Rubus strigosus and Vaccinium corymbosum | 4 L puree + water, 1:1, 25 kV, 300 W, 66 μs | TPC *: 460 μg GAE/mL (Rubus strigosus), 490 μg GAE/mL (Vaccinium corymbosum). TAC *: 150 mg C3G/L (Rubus strigosus), 725 mg C3G/L (Vaccinium corymbosum) | DPPH *: 510 μmol TE/L (Rubus strigosus), 440 μmol TE/L (Vaccinium corymbosum) | [17] |
Extraction Method | Conditions | TPC, TAC 1 | DPPH, ABTS 2, FRAP 3 | References |
---|---|---|---|---|
Solvent extraction | Water, 80–100 °C, 4–15 min | 1153 mg GAE/L extract | - | [66] |
EtOH, 28 days | 3709.51 mg GAE/L extract | 3689.38 mg AAE/L extract | [20] | |
Ultrasound assisted | MeOH acidified 0.1%, 59 kHz, 60 min | 1 3888.1 mg C3G/L extract | 8.3 μmol TE/100 g FS | [18] |
Microwave assisted | EtOH, 180 W, 3 min | 43.43 mg TAE/100 g FS | 2 1.89 μM AAE/100 g FS | [95] |
Pressure assisted | PLE, EtOH | 102 mg GAE/g DW | 1867 μmol TE/g DW | [3] |
Sub/Supercritical CO2 | 72.18 mg GAE/g DW | IC50: 102.66 μg DW | [56] | |
Sub/Supercritical CO2 | 134 mg GAE/g FW | 1658 μmol TE/g FW | [3] | |
Pulsed electric fields | Berry press cake, 5 kV/cm | 1782.6 mg GAE/100 g FW | 3 40–72 μmol TE/g FW | [100] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, G.-I.; Almajano, M.P. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. https://doi.org/10.3390/antiox6010007
Hidalgo G-I, Almajano MP. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants. 2017; 6(1):7. https://doi.org/10.3390/antiox6010007
Chicago/Turabian StyleHidalgo, Gádor-Indra, and María Pilar Almajano. 2017. "Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review" Antioxidants 6, no. 1: 7. https://doi.org/10.3390/antiox6010007
APA StyleHidalgo, G.-I., & Almajano, M. P. (2017). Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants, 6(1), 7. https://doi.org/10.3390/antiox6010007