Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome
<p>Kaplan–Meier survival plot and post-irradiation (post-IR) events in mouse model of the hematopoietic acute radiation syndrome (hARS). 1—Radiolysis due to pulse-irradiation and associated formation of (i) electrophilic and nucleophilic species; (ii) reactive oxygen and nitrogen species (ROS and RNS); (iii) electrophil-derived danger-associated molecular patterns (DAMPs), pro-inflammatory oxysterols, and clastogenic plasma factors in the target-cells and fluids. Time-lag is minutes; 2—Induction of cell and organ system responses to the targeted and non-targeted effects including redox-stress due to disruption of mitochondrial redox circuitry in the photon-targeted mitochondria; electrophilic stress; epigenetic changes. Time-lag is hours; 3—Direct cytocidal response (time lag is from hours through two to three days, end of prodrome); Development of clonogenic suppression, acute phase response, non-septic inflammation, lymphopenia, neutropenia, immunosuppression (time lag is days); 4—Protracted oxidative, nitrative, electrophilic and proteotoxic stress; development of clastogenic, metabolic and epigenetic responses; tissue remodeling and repopulation. Time lag for the reactive response is days; 5—Morbidity latent period: regressive hematological changes, development of coagulopathy and anemia, impairment of tissue barriers. Time-lag is 1–1.5 week; 6—Enteric bacteria breach the gut barriers; development of bacteremia, interstitial hemorrhage, moribundity and mortality (time-lag is 1–1.5 week); 7—Recovery during post-survival period (time-lag is days). The survival plot is adapted with modifications from: Kiang <span class="html-italic">et al.</span>, 2014 [<a href="#B23-antioxidants-04-00134" class="html-bibr">23</a>]. Experimental conditions: hARS was induced by exposure of B6D2F<sub>1</sub>/J mice to 9.5 Gy whole-body bilateral <sup>60</sup>Co gamma-photon radiation, delivered at a dose rate of 0.4 Gy/min (LD<sub>50/30</sub>).</p> "> Figure 2
<p>Development of hemorrhagic vasculopathy in irradiated B6D2F1/J mice at the mortality period. Gross pathology and histopathology assessment (hematoxylin and eosin staining, <span class="html-italic">i.e.</span>, H & E) of intracranial hemorrhage in moribund B6D2F1/J mice subjected to hARS. Panel <b>A</b>. (1) Images a mouse skull: dorsal plane (left) and lateral plan (right); (2) Image of tongue; (3) Image of a fragment of skull shown in (1). Brownish areas of extravasated blood are indicated with red arrows. Panels <b>B1</b> and <b>B2</b> are specimens from a sham animal. Tongue is indicated with a black arrow in <b>B1</b>. Panels <b>C1</b>, <b>C2</b>, and <b>D</b> are specimens from an irradiated animal. A fragment of cranium is indicated with a black arrow in <b>C1</b> where the presence of epidural hemorrhage is observable. Panels <b>B2</b> and <b>C2</b> display H & E-staining images of coronal sections through the cerebellar cortex. Panel <b>D</b> displays gross-image of coronal sections through entire brain. As shown in <b>C1</b> and <b>D</b> subdural and interstitial hemorrhage randomly occurred in different part of the brain; predominantly affecting cerebellum and olfactory. Experimental conditions: as indicated in the <a href="#antioxidants-04-00134-f001" class="html-fig">Figure 1</a>.</p> "> Figure 3
<p>Radiation-induced depletion of bone marrow tissue with hematopoietic cells occurs in mice experienced hARS. Hematopoietic cells are indicated with white arrows in a “sham” specimen (left panel). Depletion with hematopoietic cells is observed after IR (ionizing irradiation ) with 9.5 Gy (gray). The myeloablation reveals the presence of the open reticular meshwork of the stromal cells. The stromal cells (in blue) are indicated with black arrows in the right panel. A large macrophage containing phagocytized hematopoietic cells is shown with a red arrow in the right panel. Collected at 22nd day following IR. Hematoxylin and eosin staining. Experimental conditions are indicated in <a href="#antioxidants-04-00134-f001" class="html-fig">Figure 1</a>.</p> ">
Abstract
:1. Introduction
2. Radiation-Related Multistage Activation of Oxidative Reactions and Their Role in hARS
3. Radiation-Induced Oxidative Reactions and Related Alterations in Tissue Barriers
4. Conclusions
Conflicts of Interest
References
- Lawrence, J.H.; Tennant, R. The comparative effects of neutrons and X-rays on the whole body. J. Exp. Med. 1937, 66, 667–688. [Google Scholar] [CrossRef] [PubMed]
- Grahn, D. Acute radiation response of mice from a cross between radiosensitive and radioresistant strains. Genetics 1958, 43, 835–843. [Google Scholar] [PubMed]
- Mettler, F.A., Jr.; Upton, A.C. Radiation effects on cell and organ systems. In Medical Effects of Ionizing Radiation, 3rd ed.; Mettler, F.A., Upton, W.B., Eds.; Elsevier: Philadelphia, PA, USA, 2008; pp. 17–21. [Google Scholar]
- Siegal, T.; Pfeffer, M.R.; Meltzer, A.; Shezen, E.; Nimrod, A.; Ezov, N.; Ovadia, H. Cellular and secretory mechanisms related to delayed radiation-induced microvessel dysfunction in the spinal cord of rats. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Chen, P.; Jain, V.; Reilly, R.M.; Wong, C.S. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat. Res. 2004, 161, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Barjaktarovic, Z.; Schmaltz, D.; Shyla, A.; Azimzadeh, O.; Schulz, S.; Haagen, J.; Dörr, W.; Sarioglu, H.; Schäfer, A.; Atkinson, M.J.; et al. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 2011, 6, e27811. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.K.; Pathak, R.; Zandkarimi, F.; Kaur, P.; Alkhalil, L.; Singh, R.; Zhong, X.; Ghosh, S.; Aykin-Burns, N.; Hauer-Jensen, M. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J. Proteome Res. 2014, 13, 3065–3074. [Google Scholar] [CrossRef] [PubMed]
- Rodemann, H.P. Role of radiation-induced signaling proteins in the response of vascular and connective tissues. In Modification of Radiation Response; Nieder, C., Milas, L., Ang, K.K., Eds.; Springer-Verlag: Berlin, Germary, 2003; pp. 15–28. [Google Scholar]
- Storer, J.B. Acute responses to ionizing radiation. Biology of the Laboratory Mouse; Green, E.L., Ed.; The Jackson Laboratory: Bar Harbor, ME, USA, 2007. Chapter 22. 2nd ed. Available online: http://www.informatics.jax.org/greenbook/frames/frametitle.shtml (accessed on 12 February 2015).
- Brook, I.; Elliott, T.B.; Ledney, G.D. Infection after ionizing radiation. In Handbook of Animal Models of Infection; Zak, O., Merle, A., Sande, M.A., Eds.; Academic Press: San Diego, CA, USA; London, UK, 1999; Chapter 17; pp. 151–161. [Google Scholar]
- Potten, C.S.; Grant, H.K. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br. J. Cancer 1998, 78, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Moroni, M.; Lombardini, E.; Salber, R.; Kazemzedeh, M.; Nagy, V.; Olsen, C.; Whitnall, M.H. Hematological changes as prognostic indicators of survival: Similarities between Gottingen minipigs, humans, and other large animal models. PLoS One 2011, 6, e25210. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.M.; Sontag, M.R.; Kiani, M.F. Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat. Res. 1999, 151, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Lorne, E.; Dupont, H.; Abraham, E. Toll-like receptors 2 and 4: Initiators of non-septic inflammation in critical care medicine? Intensive Care Med. 2010, 36, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Torrice, C.D.; Bell, J.F.; Monahan, K.B.; Jiang, Q.; Wang, Y.; Ramsey, M.R.; Jin, J.; Wong, K.K.; Su, L.; et al. Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J. Clin. Investig. 2010, 120, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Hei, T.K.; Zhou, H.; Chai, Y.; Ponnaiya, B.; Ivanov, V.N. Radiation induced non-targeted response: Mechanism and potential clinical implications. Curr. Mol. Pharmacol. 2011, 4, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Brunswig-Spickenheier, B.; Cappallo-Obermann, H.; Eggert, K.; Gehling, U.M.; Rudolph, C.; Schlegelberger, B.; Cornils, K.; Zustin, J.; Spiess, A.N.; et al. Radiation rescue: Mesenchymal stromal cells protect from lethal irradiation. PLoS One 2011, 6, e14486. [Google Scholar] [CrossRef] [PubMed]
- Kiang, J.G.; Fukumoto, R.; Gorbunov, N.V. Lipid peroxidation after ionizing irradiation leads to apoptosis and autophagy. In Lipid Peroxidation; Angel, C., Ed.; InTech Open Access Publisher: Rijeka, Croatia, 2012; pp. 261–278. [Google Scholar]
- Brook, I.; Elliott, T.B.; Ledney, G.D.; Shoemaker, M.O.; Knudson, G.B. Management of postirradiation infection: Lessons learned from animal models. Mil. Med. 2004, 169, 194–197. [Google Scholar] [PubMed]
- Berbée, M.; Fu, Q.; Boerma, M.; Wang, J.; Kumar, K.S.; Hauer-Jensen, M. γ-tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA reductase-dependent mechanism. Radiat. Res. 2009, 171, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Kiang, J.G.; Zhai, M.; Liao, P.J.; Bolduc, D.L.; Elliott, T.B.; Gorbunov, N.V. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn. Oxid. Med. Cell. Longev. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Wattel, F.; Mathieu, D.; Nevière, R.; Bocquillon, N. Role of microcirculation in multiorgan failure of infectious origin. Bull. Acad. Natl. Med. 2000, 184, 1609–1619. [Google Scholar] [PubMed]
- Kiang, J.G.; Zhai, M.; Liao, P.-J.; Elliott, T.B.; Gorbunov, N.V. Ghrelin therapy improves survival after whole-body ionizing irradiation or combined with burn or wound: Amelioration of leukocytopenia, thrombocytopenia, splenomegaly, and bone marrow injury. Oxid. Med. Cell. Longev. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Fuks, Z.; Persaud, R.S.; Alfieri, A.; McLoughlin, M.; Ehleiter, D.; Schwartz, J.L.; Seddon, A.P.; Cordon-Cardo, C.; Haimovitz-Friedman, A. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994, 54, 2582–9025. [Google Scholar] [PubMed]
- Wen, S.; Goldberg, L.R.; Dooner, M.S.; Reagan, J.L.; Quesenberry, P.J. Mesenchymal stem cell-derived vesicles reverse hematopoietic radiation damage. Blood 2013, 122, 2459. [Google Scholar]
- Georgakilas, A.G.; O’Neill, P.; Stewart, R.D. Induction and repair of clustered DNA lesions: What do we know so far? Radiat. Res. 2013, 180, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef] [PubMed]
- Hatzi, V.I.; Laskaratou, D.A.; Mavragani, I.V.; Nikitaki, Z.; Mangelis, A.; Panayiotidis, M.I.; Pantelias, G.E.; Terzoudi, G.I.; Georgakilas, A.G. Non-targeted radiation effects in vivo: A critical glance of the future in radiobiology. Cancer Lett. 2015, 356, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Non-Target and Delayed Effects of Exposure to Ionizing Radiation. UNCEAR 2006 Report Vol II Annex C. Available online: http://www.unscear.org/unscear/en/publications/2006_2.html (accessed on the 26 January 2015).
- Roots, R.; Okada, S. Protection of DNA molecules of cultured mammalian cells from radiation induced single strand scissions by various alcohols and SH compounds. Int. J. Radiat. Biol. 1972, 21, 329–342. [Google Scholar] [CrossRef]
- LaVerne, J.A. OH Radicals and Oxidizing Products in the Gamma Radiolysis of Water. Radiat. Res. 2000, 153, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Forni, L.G.; Willson, R.L. Vitamin E analogue Trolox CEsr and pulse-radiolysis studies of free-radical reactions. Biochem. J. 1988, 255, 513–522. [Google Scholar] [PubMed]
- Stadtman, E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 1993, 62, 797–821. [Google Scholar] [CrossRef] [PubMed]
- Duran, L.; Tappel, A.L. Production of carbonyl compounds and sulfur compounds on irradiation of amino acids. Radiat. Res. 1958, 9, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Schopfer, F.J.; Cipollina, C.; Freeman, B.A. Formation and signaling actions of electrophilic lipids. Chem. Rev. 2011, 111, 5997–6021. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Wondrak, G.T.; Laurean, D.C.; Jacobson, M.K.; Jacobson, E.L. DNA damage by carbonyl stress in human skin cells. Mutat. Res. 2003, 522, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K. Redox-derived damage-associated molecular patterns: Ligand function of lipid peroxidation adducts. Redox Biol. 2013, 1, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Ilnytskyy, Y.; Kovalchuk, O. Non-targeted radiation effects-an epigenetic connection. Mutat. Res. 2011, 714, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Stewart, J.; Ware, J.H.; Zhou, Z.; Donahue, J.J.; Kennedy, A.R. Effects of dietary supplements on the space radiation-induced reduction in total antioxidant status in CBA mice. Radiat. Res. 2006, 165, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Landauer, M.R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 2000, 899, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Pasquali, E.; Leonardi, S.; Rebessi, S.; Tanori, M.; Giardullo, P.; Borra, F.; Pazzaglia, S.; Naus, C.C.; di Majo, V.; et al. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo. Oncogene 2011, 30, 4601–4608. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.E.; Kim, H.; Rajagopalan, M.S.; Stone, B.; Salimi, U.; Rwigema, J.C.; Epperly, M.W.; Shen, H.; Goff, J.P.; Franicola, D.; et al. Repopulation of the irradiation damaged lung with bone marrow-derived cells. In Vivo 2012, 26, 9–18. [Google Scholar] [PubMed]
- Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med. 2010, 48, 348–356. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Pang, X.; Su, Y.; Ai, G.; Wang, T. ER stress induced by ionising radiation in IEC-6 cells. Int. J. Radiat. Biol. 2010, 86, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Naik, E.; Dixit, V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011, 208, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.K.; van Tuyle, G.; Lin, P.S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 2001, 61, 3894–3901. [Google Scholar] [PubMed]
- Leach, J.K.; Black, S.M.; Schmidt-Ullrich, R.K.; Mikkelsen, R.B. Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J. Biol. Chem. 2002, 277, 15400–15406. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yu, H.; Liang, P.H.; Cheng, H.; XuFeng, R.; Yuan, Y.; Zhang, P.; Smith, C.A.; Cheng, T. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells. Blood 2012, 119, 3629–3637. [Google Scholar] [CrossRef] [PubMed]
- Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev. 2004, 23, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Robbins, M.E. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 2009, 16, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, S.; Suzuki, K.; Yamashita, S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem. Biophys. Res. Commun. 2011, 414, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.W.; Banati, R.B. Effects of ionizing radiation on mitochondria. Free Radic. Biol. Med. 2013, 65, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, Y.M.; Park, J.W. Regulation of ionizing radiation-induced apoptosis by a manganese porphyrin complex. Biochem. Biophys. Res. Commun. 2005, 334, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Stoyanovsky, D.A.; Huang, Z.; Jiang, J.; Belikova, N.A.; Tyurin, V.; Epperly, M.W.; Greenberger, J.S.; Bayir, H.; Kagan, V.E. A manganese-porphyrin complex decomposes H2O2, inhibits apoptosis, and acts as a radiation mitigator in vivo. ACS Med. Chem. Lett. 2011, 2, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Zabbarova, I.; Kanai, A. Targeted delivery of radioprotective agents to mitochondria. Mol. Interv. 2008, 8, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.V.; Pogue-Geile, K.L.; Epperly, M.W.; Bigbee, W.L.; Draviam, R.; Day, B.W.; Wald, N.; Watkins, S.C.; Greenberger, J.S. Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat. Res. 2000, 154, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.E.; Kim, B.Y.; Kwak, S.Y.; Bae, I.H.; Han, Y.H. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1. Apoptosis 2013, 18, 896–909. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Xufeng, R.; Park, M.R.; Gu, H.; Hu, L.; Kang, J.W.; Ma, S.; Liang, P.H.; Li, Y.; Cheng, H.; et al. Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol. Ther. 2013, 21, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Burdelya, L.G.; Brackett, C.M.; Kojouharov, B.; Gitlin, I.I.; Leonova, K.I.; Gleiberman, A.S.; Aygun-Sunar, S.; Veith, J.; Johnson, C.; Haderski, G.J.; et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc. Natl. Acad. Sci. USA 2013, 110, E1857–E1866. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.V.; Elliott, T.B.; McDaniel, D.P.; Zhai, M.; Liao, P.-J.; Kiang, J.G. Up-regulation of autophagy defense mechanisms in mouse mesenchymal stromal cells in response to ionizing irradiation followed by bacterial challenge. In Autophagy—A Double-Edged Sword—Cell Survival or Death? Yannick, B., Ed.; InTech Open Access Publisher: Rijeka, Croatia, 2013; pp. 331–350. [Google Scholar]
- Gorbunov, N.V.; Garrison, B.R.; McDaniel, D.P.; Zhai, M.; Liao, P.J.; Nurmemet, D.; Kiang, J.G. Adaptive redox response of mesenchymal stromal cells to stimulation with lipopolysaccharide inflammagen: Mechanisms of remodeling of tissue barriers in sepsis. Oxid. Med. Cell. Longev. 2013, 186795, 1–16. [Google Scholar] [CrossRef]
- Friedenstein, A. Stromal-hematopoietic interrelationships: Maximov’s ideas and modern models. Haematol. Blood Transfus. 1989, 32, 159–167. [Google Scholar] [PubMed]
- Powell, D.W.; Pinchuk, I.V.; Saada, J.I.; Chen, X.; Mifflin, R.C. Mesenchymal cells of the intestinal lamina propria. Ann. Rev. Physiol. 2011, 3, 213–237. [Google Scholar] [CrossRef]
- Peterson, L.W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Breen, A.P.; Murphy, J.A. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 1995, 18, 1033–1077. [Google Scholar] [CrossRef] [PubMed]
- Østdal, H.; Davies, M.J.; Andersen, H.J. Reaction between protein radicals and other biomolecules. Free Radic. Biol. Med. 2002, 33, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bild, W.; Ciobica, A.; Padurariu, M.; Bild, V. The interdependence of the reactive species of oxygen, nitrogen, and carbon. J. Physiol. Biochem. 2013, 69, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 2002, 32, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.; Marcocci, L.; Liu, L.; Suzuki, Y.J. Cell signaling by protein carbonylation and decarbonylation. Antioxid. Redox Signal. 2010, 12, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 2008, 295, C849–C868. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M.; Nauser, T.; Domazou, A.; Steinmann, D.; Bounds, P.L.; Koppenol, W.H. Reduction of protein radicals by GSH and ascorbate: Potential biological significance. Amino Acids 2010, 39, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J.L. Oxidative damage to DNA: Formation, measurement and biochemical features. Mutat. Res. 2003, 531, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Higdon, A.; Diers, A.R.; Oh, J.Y.; Landar, A.; Darley-Usmar, V.M. Cell signalling by reactive lipid species: New concepts and molecular mechanisms. Biochem. J. 2012, 442, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Tyurina, Y.Y.; Tyurin, V.A.; Epperly, M.W.; Greenberger, J.S.; Kagan, V.E. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic. Biol. Med. 2008, 44, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Anuranjani; Bala, M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines-implication in modification of radiation damage. Redox Biol. 2014, 2, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.V.; Kiang, J.G. Up-regulation of autophagy in small intestine paneth cells in response to total-body γ-irradiation. J. Pathol. 2009, 219, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Barshishat-Kupper, M.; McCart, E.A.; Mueller, G.P.; Regina, M.; Day, R.M. Bone marrow protein oxidation in response to ionizing radiation in C57BL/6J mice. Proteome 2014, 2, 291–302. [Google Scholar] [CrossRef]
- Grimsrud, P.A.; Xie, H.; Griffin, T.J.; Bernlohr, D.A. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 2008, 283, 21837–21841. [Google Scholar] [CrossRef] [PubMed]
- Haberzettl, P.; Hill, B.G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 2013, 1, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Picklo, M.J.; Azenkeng, A.; Hoffmann, M.R. Trans-4-oxo-2-nonenal potently alters mitochondrial function. Free Radic. Biol. Med. 2011, 50, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Tulard, A.; Hoffschir, F.; de Boisferon, F.H.; Luccioni, C.; Bravard, A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Radic. Biol. Med. 2003, 35, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, O.; Miyahara, M.; Shiraishi, N.; Nakazawa, T. Radiation-induced damage to mitochondrial d-β-hydroxybutyrate dehydrogenase and lipidperoxidation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1985, 48, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Brady, N.R.; Elmore, S.P.; van Beek, J.J.; Krab, K.; Courtoy, P.J.; Hue, L.; Westerhoff, H.V. Coordinated behavior of mitochondria in both space and time: A reactive oxygen species-activated wave of mitochondrial depolarization. Biophys. J. 2004, 87, 2022–2034. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial ROS-induced ROS release: An update and review. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 509–517. [Google Scholar] [CrossRef]
- Warren, S.L.; Whipple, G.H. Roentgen ray intoxication: IV. Intestinal lesions and acute intoxication produced by radiation in a variety of animals. J. Exp. Med. 1923, 38, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.B.; Ledney, G.D. Therapy for bacterial infections following ionizing radiation injury. In Medical Consequences of Radiological and Nuclear Weapons; Mickelson, A.B., Ed.; Office of The Surgeon General United States Army: Falls Church, VA, USA; Borden Institute: Fort Detrick, MD, USA, 2012; pp. 81–100. [Google Scholar]
- Sakaguchi, S.; Furusawa, S. Oxidative stress and septic shock: Metabolica spects of oxygen-derived free radicals generated in the liver during endotoxemia. FEMS Immunol. Med. Microbiol. 2006, 47, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Towner, R.A.; Garteiser, P.; Bozza, F.; Smith, N.; Saunders, D.; d’ Avila, J.C.; Magno, F.; Oliveira, M.F.; Ehrenshaft, M.; Lupu, F.; et al. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping. Free Radic. Biol. Med. 2013, 65, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Leibowitz, B.J.; Wei, L.; Zhang, L.; Ping, X.; Epperly, M.; Greenberger, J.; Cheng, T.; Yu, J. Ionizing irradiation induces acute haematopoietic syndrome and gastrointestinal syndrome independently in mice. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, N.V.; Garrison, B.; Kiang, J.G. Response of crypt paneth cells in the small intestine following total-body γ-irradiation. Int. J. Immunopathol. Pharmacol. 2010, 23, 971–983. [Google Scholar] [PubMed]
- Tapio, S. Ionizing radiation effects on cells, organelles and tissues on proteome level. Adv. Exp. Med. Biol. 2013, 990, 37–48. [Google Scholar] [PubMed]
- Criswell, T.; Leskov, K.; Miyamoto, S.; Luo, G.; Boothman, D.A. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 2003, 22, 5813–5827. [Google Scholar] [CrossRef] [PubMed]
- Kempf, S.J.; Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Long-term effects of ionising radiation on the brain: Cause for concern? Radiat. Environ. Biophys. 2013, 52, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Greenberger, J.S.; Epperly, M. Bone marrow-derived stem cells and radiation response. Semin. Radiat. Oncol. 2009, 9, 133–139. [Google Scholar] [CrossRef]
- Ahmad, T.; Mukherjee, S.; Pattnaik, B.; Kumar, M.; Singh, S.; Kumar, M.; Rehman, R.; Tiwari, B.K.; Jha, K.A.; Barhanpurkar, A.P.; et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014, 33, 994–1010. [Google Scholar] [PubMed]
- Azzam, E.I.; de Toledo, S.M.; Little, J.B. Stress signaling from irradiated to non-irradiated cells. Curr. Cancer Drug Targets 2004, 4, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.R.; Dias, I.H.; Willetts, R.S.; Devitt, A. Redox regulation of protein damage in plasma. Redox Biol. 2014, 2, 430–435. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbunov, N.V.; Sharma, P. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome. Antioxidants 2015, 4, 134-152. https://doi.org/10.3390/antiox4010134
Gorbunov NV, Sharma P. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome. Antioxidants. 2015; 4(1):134-152. https://doi.org/10.3390/antiox4010134
Chicago/Turabian StyleGorbunov, Nikolai V., and Pushpa Sharma. 2015. "Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome" Antioxidants 4, no. 1: 134-152. https://doi.org/10.3390/antiox4010134
APA StyleGorbunov, N. V., & Sharma, P. (2015). Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome. Antioxidants, 4(1), 134-152. https://doi.org/10.3390/antiox4010134