Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth
"> Figure 1
<p>The experimental workflow.</p> "> Figure 2
<p>Correlograms illustrate the correlation between aBL and stressors: (<b>a</b>) H<sub>2</sub>O<sub>2</sub>, (<b>b</b>) O<sub>2</sub><sup>−</sup>, (<b>c</b>) NO•, (<b>d</b>) Acidic pH, (<b>e</b>) membrane stress, and (<b>f</b>) •OH. The X-axis represents aBL sensitivity values [log<sub>10</sub> CFU/mL], while the Y-axis growth defect [%] for each stressor.</p> "> Figure 3
<p>Scree plot. The X-axis shows the number of dimensions, while the Y-axis shows the percentage of variance explained by each dimension. The scree point is observed where variance starts to level off after the second dimension.</p> "> Figure 4
<p>Cosine distances heatmap: On the X-axis, mutants are listed from left to right in order: <span class="html-italic">tolA</span>, <span class="html-italic">pfkA</span>, <span class="html-italic">yhhH</span>, <span class="html-italic">narL</span>, <span class="html-italic">rpe</span>, <span class="html-italic">metR</span>, <span class="html-italic">deoB</span>, <span class="html-italic">rnt</span>, <span class="html-italic">oxyR</span>, <span class="html-italic">nuoN</span>, <span class="html-italic">cydD</span>, <span class="html-italic">holD</span>, <span class="html-italic">atpC</span>, <span class="html-italic">thyA</span>, <span class="html-italic">dacA</span>, <span class="html-italic">pgi</span>, <span class="html-italic">pgm</span>, <span class="html-italic">atpG</span>, <span class="html-italic">truA</span>, <span class="html-italic">phoQ</span>, <span class="html-italic">umuD</span>, <span class="html-italic">gmhB</span>, <span class="html-italic">rfaD</span>, <span class="html-italic">tpiA</span>, <span class="html-italic">yihE</span>, <span class="html-italic">rfaE</span>, <span class="html-italic">rfaG</span>, <span class="html-italic">atpE</span>, <span class="html-italic">yfgL</span>, <span class="html-italic">ybaP</span>, <span class="html-italic">atpB</span>, <span class="html-italic">atpH</span>, <span class="html-italic">dnaJ</span>, <span class="html-italic">yfbB</span>, <span class="html-italic">priA</span>, <span class="html-italic">rbfA</span>, <span class="html-italic">ubiC</span>, <span class="html-italic">yegS</span>, <span class="html-italic">atpF</span>, <span class="html-italic">rfaC</span>, <span class="html-italic">cpxA</span>, <span class="html-italic">yccM</span>, <span class="html-italic">ppc</span>, <span class="html-italic">yjeK</span>, <span class="html-italic">pyrE</span>, <span class="html-italic">sstT</span>, <span class="html-italic">dnaK</span>, <span class="html-italic">yheM</span>, <span class="html-italic">ecnB</span>, <span class="html-italic">ydcX</span>, <span class="html-italic">atpD</span>, <span class="html-italic">ydcE</span>, <span class="html-italic">atpA</span>, ypjD, <span class="html-italic">fabH</span>, <span class="html-italic">surA</span>, <span class="html-italic">purA</span>, <span class="html-italic">fimB</span>, <span class="html-italic">ydeU</span>, <span class="html-italic">yigL</span>, <span class="html-italic">gntK</span>, <span class="html-italic">yfeH</span>, <span class="html-italic">yncA</span>. The Y-axis mutants are presented in the opposite order than on the X-axis.</p> "> Figure 5
<p>The WSS plot for determining the number of clusters. WSS—Within-Cluster Sum of Squares. The number of 3 clusters was chosen as the optimal value.</p> "> Figure 6
<p>Silhouette plot for determining the number of clusters. The Y-axis shows the silhouette score for each cluster shown on the X-axis.</p> "> Figure 7
<p>Results of k-means++ algorithm for both principal components (PC1—X-axis and PC2—Y-axis) summarizing clustering analysis. Bolded dots in the center of each cluster represent their centroids placed at the longest distance from other clusters.</p> "> Figure 8
<p>Cluster silhouette plot representing the silhouette width for each mutant in every cluster. The red line indicates the average value for the entire set.</p> "> Figure 9
<p>Growth defects of mutants by clusters: (<b>a</b>) characterization of growth defect profiles for 3 clusters; and (<b>b</b>) characterization of cluster profiles for each stressor.</p> "> Figure 10
<p>Protein–protein functional interaction networks and gene co-expression. Protein–protein functional interaction networks of the proteins are divided into 3 clusters: (<b>a</b>) Gene co-expression within cluster 1; (<b>b</b>) protein–protein functional interaction networks within cluster 1; (<b>c</b>) gene co-expression within cluster 2; (<b>d</b>) protein–protein functional interaction networks within cluster 2; (<b>e</b>) gene co-expression within cluster 3; (<b>f</b>) protein–protein functional interaction networks within cluster 3. The analysis was performed with the STRING database (<a href="https://string-db.org" target="_blank">https://string-db.org</a>). The colors of the lines denote the following: light blue, interactions known from curated databases; pink, interactions experimentally determined; bright green, predicted reaction (gene neighborhood); red, gene fusions; dark blue, gene co-occurrence; green, textmining; black, co-expression; and blue, protein homology.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Reagents
2.3. Determining aBL Sensitivity
2.4. Screening Against Defined Stressors
2.5. Statistical Analysis
3. Results
3.1. Growth Defects of aBL Hypersensitive Mutants Exposed to a Single Stressor
3.2. Correlation Between aBL and Stressors
- There is a negative, statistically significant correlation between aBL and H2O2 (ρ = −0.45, p < 0.001).
- There is a negative, statistically significant correlation between aBL and membrane stress (ρ = −0.31, p < 0.05).
3.3. Evaluation of the Probability That a Mutant That Is Sensitive to One Stressor Is Sensitive to Another Stressor
- Mutants sensitive to H2O2 are also sensitive to acidic pH and •OH with more than 90% probability and to O2− and NO• with more than 60% probability.
- Mutants sensitive to O2− are also sensitive to H2O2, NO•, acidic pH, and •OH with more than 90% probability.
- NO• sensitive mutants are also sensitive to H2O2, acidic pH, and •OH with more than 90% probability and to O2− with more than 75% probability.
- Mutants sensitive to acidic pH are sensitive to H2O2 and •OH with more than 90% probability, and to O2− and NO• with more than 60% probability.
- Mutants sensitive to membrane stress are also sensitive to H2O2 with a probability of 0.88, to acidic pH and •OH with a probability greater than 80%, and to O2− and NO• with a probability of more than 50%.
- Mutants sensitive to •OH are also sensitive to H2O2 and acidic pH with more than 90% probability and to O2− and NO• with more than 65% probability.
3.4. Cluster Analysis
- When exposed to an acidic pH, the median growth defect for all mutants across the clusters was less than 0. However, the first cluster exhibited the highest median growth defect at −46.39 [−59.36; −38.08], which was statistically significantly higher than that of the other clusters. The medians of the second and third clusters did not differ significantly from each other, with values of −81.65 [−89.11; −70.02] for cluster 2 and −91.61 [−101.53; −83.61] for cluster 3.
- In the presence of H2O2, the median growth defect remained less than 0 in all clusters, with statistically significant differences observed between each pair of clusters. The second cluster showed the largest growth defect, at −177.62 [−219.96; −154.38], while the first cluster exhibited the smallest defect at −29.96 [−55.11; −21.01].
- When exposed to membrane stress, the median growth defect for the first cluster was positive (5.67 [−3.02, 15.68]), but it was not statistically significantly different from the second cluster, which had a median of −6.38 [−15.16, 13.71]. The third cluster, however, showed a statistically significantly smaller median defect (−40.22 [−50.5; −10.42]) compared to the other two clusters.
- Upon exposure to nitric oxide (NO•), the median growth defect for all clusters was greater than 0, with significant differences between each pair of clusters. The first cluster exhibited the largest growth defect (48.35 [38.55; 54.74]), whereas the second cluster had the smallest (30.29 [8.39; 35.42]).
- In response to O2⁻, the median growth defect was greater than 0 for all clusters. The first cluster showed the largest and most statistically significantly different median (53.98 [31.89; 65.82]), while the medians for the second and third clusters were not significantly different from each other.
- Lastly, when mutants were exposed to hydroxyl radicals (•OH), the median growth defect was again greater than 0 across all clusters. The second cluster exhibited the largest median defect (95.89 [76.47; 97.31]), which was statistically significantly different from the other two clusters, whose medians were not significantly different from each other.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Bacterial Priority Pathogens List; World Health Organization: Geneva, Switzerland, 2024; pp. 12–13. [Google Scholar]
- Hoenes, K.; Bauer, R.; Meurle, T.; Spellerberg, B.; Hessling, M. Inactivation effect of violet and blue light on ESKAPE pathogens and closely related non-pathogenic bacterial species–a promising tool against antibiotic-sensitive and antibiotic-resistant microorganisms. Front. Microbiol. 2021, 11, 612367. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, C.; Wang, Y.; Truong-Bolduc, Q.C.; Bolduc, P.K.; Liu, M.; Hooper, D.C.; Anderson, R.R.; Dai, T.; Leanse, L.G. Blue Light Compromises Bacterial β-Lactamases Activity to Overcome β-Lactam Resistance. Lasers Surg. Med. 2024, 56, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chu, Z.; Ruan, Z.; Wang, X.; Dai, T.; Hu, X. Changes of intracellular porphyrin, reactive oxygen species, and fatty acids profiles during inactivation of methicillin-resistant Staphylococcus aureus by antimicrobial blue light. Front. Physiol. 2018, 9, 1658. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ferrer-Espada, R.; Baglo, Y.; Gu, Y.; Dai, T. Antimicrobial blue light inactivation of Neisseria gonorrhoeae: Roles of wavelength, endogenous photosensitizer, oxygen, and reactive oxygen species. Lasers Surg. Med. 2019, 51, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Pieranski, M.; Woziwodzka, A.; Bielawski, K.P.; Grinholc, M. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci. Rep. 2019, 9, 9423. [Google Scholar] [CrossRef]
- Dos Anjos, C.; Leanse, L.G.; Ribeiro, M.S.; Sellera, F.P.; Dropa, M.; Arana-Chavez, V.E.; Lincopan, N.; Baptista, M.S.; Pogliani, F.C.; Dai, T.; et al. New insights into the bacterial targets of antimicrobial blue light. Microbiol. Spectr. 2023, 11, e02833-22. [Google Scholar] [CrossRef]
- Ferrer-Espada, R.; Wang, Y.; Goh, X.S.; Dai, T. Antimicrobial blue light inactivation of microbial isolates in biofilms. Lasers Surg. Med. 2020, 52, 472–478. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Chen, H.; Yang, X.; Guo, L.; Ju, R.; Dai, T.; Li, G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. J. Photochem. Photobiol. B Biol. 2024, 259, 113023. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006-0008. [Google Scholar] [CrossRef] [PubMed]
- Kruszewska-Naczk, B.; Grinholc, M.; Waleron, K.; Bandow, J.E.; Rapacka-Zdończyk, A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol. Spectr. 2024, 12, e02490-23. [Google Scholar] [CrossRef]
- Krewing, M.; Jarzina, F.; Dirks, T.; Schubert, B.; Benedikt, J.; Lackmann, J.W.; Bandow, J.E. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms. J. R. Soc. Interface 2019, 16, 20180846. [Google Scholar] [CrossRef]
- Dragosits, M.; Mozhayskiy, V.; Quinones-Soto, S.; Park, J.; Tagkopoulos, I. Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol. Syst. Biol. 2013, 9, 643. [Google Scholar] [CrossRef]
- Lubart, R.; Lipovski, A.; Nitzan, Y.; Friedmann, H. A possible mechanism for the bactericidal effect of visible light. Laser Ther. 2011, 20, 17–22. [Google Scholar] [CrossRef]
- Yoshida, A.; Sasaki, H.; Toyama, T.; Araki, M.; Fujioka, J.; Tsukiyama, K.; Hamada, N.; Yoshino, F. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci. Rep. 2017, 7, 5225. [Google Scholar] [CrossRef]
- Marshall, M.V.; Cancro, L.P.; Fischman, S.L. Hydrogen peroxide: A review of its use in dentistry. J. Periodontol. 1995, 66, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, M.; Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.Y. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms. J. Antimicrob. Chemother. 2010, 65, 2108–2115. [Google Scholar] [CrossRef]
- Medina-Cordoba, L.K.; Valencia-Mosquera, L.L.; Tarazona-diaz, G.P.; Arias-Palacios, J.D.C. Evaluation of the efficacy of a hydrogen peroxide disinfectant. Int. J. Pharm. Pharm. Sci. 2018, 10, 104. [Google Scholar] [CrossRef]
- Kruk, I. Biological Damages Caused by Reactive Oxygen Species. In Environmental Toxicology and Chemistry of Oxygen Species; Springer: Berlin/Heidelberg, Germany, 1998; pp. 89–138. [Google Scholar]
- Imlay, J.A. Oxidative stress. EcoSal Plus 2009, 3, 10–1128. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, J.; Amin, R.; Lu, M.; Bhayana, B.; Zhao, J.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; et al. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: In vitro and in vivo studies. J. Infect. Dis. 2016, 213, 1380–1387. [Google Scholar] [CrossRef]
- Yin, R.; Dai, T.; Avci, P.; Jorge, A.E.S.; De Melo, W.C.; Vecchio, D.; Huang, Y.Y.; Gupta, A.; Hamblin, M.R. Light based anti-infectives: Ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr. Opin. Pharmacol. 2013, 13, 731–762. [Google Scholar] [CrossRef] [PubMed]
- Gülden, M.; Jess, A.; Kammann, J.; Maser, E.; Seibert, H. Cytotoxic potency of H2O2 in cell cultures: Impact of cell concentration and exposure time. Free. Radic. Biol. Med. 2010, 49, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.; Truscott, T.G. The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion—Examples of their roles in biology and medicine. Oxygen 2021, 1, 77–95. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide anion chemistry—Its role at the core of the innate immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef] [PubMed]
- Leanse, L.G.; Anjos, C.D.; Kaler, K.R.; Hui, J.; Boyd, J.M.; Hooper, D.C.; Anderson, R.R.; Dai, T. Blue light potentiates antibiotics in bacteria via parallel pathways of hydroxyl radical production and enhanced antibiotic uptake. Adv. Sci. 2023, 10, 2303731. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Hines, H.B.; Cheng, R.Y.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; Ridnour, L.A.; Colton, C.A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 2011, 89, 873–891. [Google Scholar] [CrossRef] [PubMed]
- Poh, W.H.; Rice, S.A. Recent developments in nitric oxide donors and delivery for antimicrobial and anti-biofilm applications. Molecules 2022, 27, 674. [Google Scholar] [CrossRef] [PubMed]
- Sorbo, L.D.; Michaelsen, V.S.; Ali, A.; Wang, A.; Ribeiro, R.V.; Cypel, M. High doses of inhaled nitric oxide as an innovative antimicrobial strategy for lung infections. Biomedicines 2022, 10, 1525. [Google Scholar] [CrossRef]
- Liebmann, J.; Born, M.; Kolb-Bachofen, V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J. Investig. Dermatol. 2010, 130, 259–269. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.; Maclean, M.; Timoshkin, I.V.; MacGregor, S.J.; Anderson, J.G. Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int. J. Food Microbiol. 2014, 170, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Coulson, G.B.; Johnson, B.K.; Zheng, H.; Colvin, C.J.; Fillinger, R.J.; Haiderer, E.R.; Hammer, N.D.; Abramovitch, R.B. Targeting Mycobacterium tuberculosis sensitivity to thiol stress at acidic pH kills the bacterium and potentiates antibiotics. Cell Chem. Biol. 2017, 24, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014, 22, 174–186. [Google Scholar] [CrossRef]
- Sim, P.; Strudwick, X.L.; Song, Y.; Cowin, A.J.; Garg, S. Influence of acidic pH on wound healing in vivo: A novel perspective for wound treatment. Int. J. Mol. Sci. 2022, 23, 13655. [Google Scholar] [CrossRef]
- Wallace, L.A.; Gwynne, L.; Jenkins, T. Challenges and opportunities of pH in chronic wounds. Ther. Deliv. 2019, 10, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Krumova, K.; Cosa, G. Overview of reactive oxygen species. In Singlet Oxygen: Applications in Biosciences and Nanosciences; Comprehensive Series in Photochemical & Photobiological Sciences; Royal Society of Chemistry: London, UK, 2016. [Google Scholar] [CrossRef]
- Dahan-Grobgeld, E.; Livneh, Z.; Maretzek, A.F.; Polak-Charcon, S.; Eichenbaum, Z.; Degani, H. Reversible induction of ATP synthesis by DNA damage and repair in Escherichia coli: In vivo NMR studies. J. Biol. Chem. 1998, 273, 30232–30238. [Google Scholar] [CrossRef] [PubMed]
- Seregina, T.A.; Petrushanko, I.Y.; Shakulov, R.S.; Zaripov, P.I.; Makarov, A.A.; Mitkevich, V.A.; Mironov, A.S. The inactivation of LPS biosynthesis genes in E. coli cells leads to oxidative stress. Cells 2022, 11, 2667. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Abrahamse, H. Can light-based approaches overcome antimicrobial resistance? Drug Dev. Res. 2019, 80, 48–67. [Google Scholar] [CrossRef]
- Storz, G.; Imlayt, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188–194. [Google Scholar] [CrossRef]
- Cabiscol Catalā, E.; Tamarit Sumalla, J.; Ros Salvador, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl. Microbiol. 2000, 3, 3–8. [Google Scholar]
- Imlay, J.A. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2006, 1758, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Y.; Cheng, C.W.; Yu, C.H.; Chen, L.Y. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli. J. Photochem. Photobiol. B Biol. 2015, 143, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.J.; Pierson, M.D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241. [Google Scholar] [CrossRef]
- Möller, M.N.; Cuevasanta, E.; Orrico, F.; Lopez, A.C.; Thomson, L.; Denicola, A. Diffusion and transport of reactive species across cell membranes. In Bioactive Lipids in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–19. [Google Scholar]
- Sen, A.; Imlay, J.A. How microbes defend themselves from incoming hydrogen peroxide. Front. Immunol. 2021, 12, 667343. [Google Scholar] [CrossRef]
- Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, C.S.; Pauleta, S.R. Reduction of hydrogen peroxide in gram-negative bacteria–bacterial peroxidases. Adv. Microb. Physiol. 2019, 74, 415–464. [Google Scholar] [PubMed]
- Mishra, S.; Imlay, J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 2012, 525, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Girotti, A. Photosensitized lipid peroxidation in biological membranes. Photodyn. Ther. Neoplast. Dis. 1990, 1, 229–245. [Google Scholar]
- Glaeser, J.; Nuss, A.M.; Berghoff, B.A.; Klug, G. Singlet oxygen stress in microorganisms. Adv. Microb. Physiol. 2011, 58, 141–173. [Google Scholar] [PubMed]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [PubMed]
Stressor | Substance | Concentration |
---|---|---|
NO• | Sodium nitroprusside | 0.5 mM |
O2− | Paraquat | 1 mM |
Membrane stress | TritonX | 0.125% |
Acid stress | HCl | 7 mM |
H2O2 | 1 mM | |
•OH | CuCl2, H2O2 | 2.5 mM CuCl2 + 1.5 mM H2O2 |
Stressors | |||||||
---|---|---|---|---|---|---|---|
Mutant | aBL Sensitivity | H2O2 | O2− | NO• | Acidic pH | Membrane Stress | •OH |
atpA | 4.61 | −134.65 (±37.8) | −2.2 (±10.43) | 12.35 (±18.21) | −90.3 (±37.87) | −1.78 (±8.48) | 95.48 (±3.28) |
atpB | 1.00 | −13.9 (±149.98) | −4.03 (±45.42) | −6.06 (±41.91) | −75.59 (±26.4) | 18.49 (±9.59) | 95.89 (±3.28) |
atpC | 3.93 | −168.96 (±36.7) | 59.31 (±20.35) | 51 (±29.07) | −26.43 (±19.82) | 43.94 (±8.45) | 51.06 (±47.38) |
atpD | 3.85 | −227.06 (±51.25) | 6.47 (±13.64) | 7.63 (±34.86) | −84.74 (±25.35) | −2.32 (±26.9) | −52.43 (±24.94) |
atpE | 2.76 | 2.02 (±125.97) | 32.85 (±40.98) | 8.39 (±36.26) | −55.05 (±31.93) | 31.19 (±27.72) | 95.97 (±1.91) |
atpF | 1.00 | 91.81 (±3.33) | −30.66 (±30.57) | 40.24 (±23.59) | −54.69 (±38.16) | 30.21 (±13.47) | 95.89 (±3.79) |
atpG | 3.96 | −51.25 (±155.4) | 69.61 (±23.38) | 46.51 (±20.24) | −65.69 (±47.99) | −9.68 (±31.25) | 96.68 (±2.02) |
atpH | 1.23 | −0.02 (±129.74) | −18.11 (±31.97) | −2.82 (±36.1) | −80.81 (±40.86) | 25.36 (±12.23) | 95.8 (±5.45) |
cpxA | 3.16 | −102.12 (±108.26) | 34.43 (±18.78) | 16.84 (±29.9) | −81.65 (±16) | 12.67 (±12.29) | 97.31 (±2.04) |
cydD | 4.28 | −218.89 (±16.31) | 52.31 (±20.19) | 87.11 (±8.58) | −95.42 (±24.8) | −3.58 (±8.36) | 77.15 (±45.4) |
dacA | 3.59 | −128.05 (±50.37) | 80.23 (±6.83) | 63.23 (±8.5) | −52.23 (±8.09) | 11.04 (±19.48) | 71.53 (±47.16) |
deoB | 4.08 | −172.58 (±43.14) | 29.26 (±27.82) | 42.02 (±16.05) | −29.15 (±38.28) | 2.88 (±27.49) | −124 (±11.84) |
dnaJ | 3.78 | −36.93 (±133.44) | 29.25 (±32.98) | −5.97 (±29.17) | −82.4 (±38.27) | −0.61 (±12.8) | 98.58 (±1.38) |
dnaK | 1.26 | −189 (±25.15) | 19.47 (±25.12) | 5.93 (±26.75) | −87.37 (±30.17) | 0.75 (±28.14) | −122.76 (±10.51) |
ecnB | 4.75 | −207.51 (±26.82) | 4.05 (±11.31) | 25.26 (±20.25) | −86.37 (±25.34) | 16.66 (±3.25) | 23.94 (±114.4) |
fabH | 2.82 | −30.08 (±142.87) | 19.4 (±23.52) | 3.76 (±25.18) | −88.74 (±38.58) | −9.42 (±32.18) | 46.18 (±68.28) |
fimB | 3.78 | −166.25 (±68.29) | 17.69 (±33.13) | 9.32 (±29.85) | −141.79 (±44.04) | −65.31 (±53.56) | 97.3 (±2.45) |
gmhB | 3.93 | −148.78 (±36.83) | 33.44 (±55.38) | 55.39 (±16.57) | −77.78 (±43.53) | 60.66 (±6.07) | 97.42 (±2.21) |
gntK | 4.51 | −143.54 (±61.26) | 16.33 (±22.69) | 11.45 (±30.13) | −77.17 (±39.44) | −43.69 (±4.8) | 29.19 (±98.23) |
holD | 3.79 | −190.55 (±69.39) | 28.85 (±9.87) | 40.55 (±42.29) | −30.97 (±18.8) | 13.3 (±22.79) | 76.81 (±44.43) |
metR | 4.72 | −119.01 (±73.02) | 10.25 (±40.14) | 48.18 (±9.14) | −45.78 (±44.83) | −4.28 (±27.65) | −88.81 (±48.94) |
narL | 4.91 | −163.49 (±47.2) | 23.64 (±27.57) | 62.32 (±14.41) | −46.47 (±28.79) | 6.47 (±26.48) | −115.65 (±22.38) |
nuoN | 6.03 | −118.98 (±30.6) | 55.65 (±15.03) | 41.32 (±15.03) | −52.15 (±11.24) | 4.87 (±14.32) | 20.86 (±104.77) |
oxyR | 5.69 | −164.37 (±75.84) | 62.53 (±15.66) | 36.03 (±32.12) | −45.03 (±34.09) | 27.51 (±23.22) | 2.42 (±61.69) |
pfkA | 3.80 | −134.27 (±48.88) | 40.11 (±30.89) | 57.22 (±8.21) | −46.31 (±42.02) | 12.18 (±21.63) | −75 (±57.62) |
pgi | 2.79 | −113.64 (±45.57) | 37.64 (±16.31) | 52.77 (±8.07) | −41.07 (±10.14) | 4.1 (±21.54) | 48.78 (±108.45) |
pgm | 3.43 | −140.32 (±84.01) | 38.95 (±15.56) | 35.61 (±16.85) | −59.53 (±36.21) | 17.47 (±22.74) | 46.1 (±73.31) |
phoQ | 3.87 | −84.48 (±139.55) | 66.91 (±46.06) | 48.66 (±12.1) | −58.83 (±38.61) | −5.88 (±27.88) | 54.54 (±95.91) |
ppc | 6.80 | −154.47 (±169.15) | 44.06 (±25.28) | 35.24 (±8.34) | −90.37 (±45.68) | −39.37 (±37.86) | −210.34 (±77.81) |
priA | 5.45 | −53.04 (±84.24) | 7.59 (±60.1) | 36.27 (±6.14) | −77.97 (±37.42) | −6.38 (±6.64) | 100.09 (±1.12) |
purA | 5.54 | −128.16 (±132.92) | −0.56 (±16.97) | −15.44 (±31.35) | −80.22 (±24.5) | −12.57 (±37.88) | 24.72 (±102.15) |
pyrE | 4.74 | −309.35 (±19.3) | 2.3 (±32.84) | −27.4 (±37.32) | −76.66 (±107.67) | −75.19 (±47.46) | −7.77 (±151.65) |
rbfA | 2.86 | 21.01 (±166.8) | 8.06 (±10.56) | 33.65 (±12.02) | −82.54 (±58.02) | −15.16 (±34.11) | 97.41 (±2.85) |
rfaC | 3.45 | 97.14 (±1.12) | 15.54 (±14.47) | 5.71 (±29.65) | −56.98 (±4.34) | 7.27 (±23.69) | −87.13 (±9.31) |
rfaD | 2.89 | −67.18 (±93.64) | 31.37 (±13.92) | 48.52 (±10.63) | −37.98 (±29.32) | 49.3 (±10.15) | 57.13 (±91.19) |
rfaE | 3.07 | −128.04 (±21.89) | 14.07 (±8.66) | 35.87 (±12.35) | −72.34 (±50.57) | 25.47 (±17.14) | 76.47 (±46.67) |
rfaG | 3.31 | −44.48 (±131.42) | 23.03 (±9.84) | 36.55 (±16.5) | −59.04 (±27.59) | −10.47 (±21.51) | 48.36 (±73.29) |
rnt | 3.16 | −149.17 (±62.64) | 40.77 (±20.82) | 24.6 (±24.89) | −56.45 (±93.29) | 16.47 (±2.83) | −101.47 (±14.6) |
rpe | 6.17 | −219.05 (±39.01) | 58.63 (±12.95) | 50.89 (±11.9) | −41.58 (±59.99) | −8.78 (±26.48) | −77.51 (±25.54) |
sstT | 5.27 | −210.03 (±204.21) | −24.06 (±20.82) | 26.66 (±17.35) | −138.41 (±60.75) | −49.4 (±38.47) | −123.18 (±68.15) |
surA | 3.89 | −65.17 (±154.66) | −20.62 (±33.54) | 32.45 (±24.58) | −138.14 (±59.38) | 13.71 (±38.37) | 94.49 (±4.25) |
thyA | 4.33 | −136.19 (±42.18) | 60.58 (±30.63) | 81.64 (±8.19) | −29.87 (±27.49) | 1.01 (±33.81) | 47.66 (±62.09) |
tolA | 3.75 | −205.09 (±40.21) | 28.77 (±17.16) | 28.96 (±36.67) | −8.43 (±96.09) | 8.6 (±20.65) | 65.12 (±45.69) |
tpiA | 3.00 | −73.66 (±103.76) | 81.33 (±10.03) | 64.24 (±10.77) | −66.96 (±24.71) | −1.32 (±2.73) | 79.21 (±44.3) |
truA | 3.13 | −78.67 (±60.31) | 74.54 (±17.93) | 33.11 (±16.65) | −63.16 (±25.4) | 2.47 (±4.11) | 97.34 (±0.83) |
ubiC | 5.05 | −68.31 (±161.13) | 43.08 (±23.62) | 20.37 (±25.65) | −70.02 (±14.93) | −22.36 (±24.72) | 97.74 (±2.09) |
umuD | 4.35 | −21.3 (±68.99) | 72.87 (±16.18) | 50.65 (±10.61) | −3.18 (±27.29) | −26.02 (±26.69) | 66.74 (±69.81) |
ybaP | 3.67 | −55.11 (±138.78) | 30.34 (±29.77) | 24.66 (±9.9) | −89.11 (±37.37) | −13.5 (±5.31) | 97.1 (±2.44) |
yccM | 4.04 | 62.93 (±70.19) | 80 (±2.26) | 31.49 (±14.63) | −117.78 (±43.5) | −32.86 (±31.47) | 97.05 (±4.61) |
ydcE | 5.00 | −281.61 (±123.85) | 27 (±34.7) | 3.93 (±36.09) | −99.98 (±50.99) | −48.81 (±35.15) | −66.91 (±160.6) |
ydcX | 4.95 | −217.59 (±32.43) | −4.93 (±12.79) | −11.21 (±34.76) | −32.58 (±88.8) | −31.43 (±35.46) | −6.77 (±105.28) |
ydeU | 3.93 | −156.77 (±78.48) | −10.67 (±21.77) | 7.5 (±20.75) | −99.88 (±51.27) | −41.07 (±37.79) | 77.3 (±43.22) |
yegS | 3.71 | 62.76 (±71.68) | 45.29 (±24.26) | 32.98 (±18.99) | −112.6 (±89.9) | −15.79 (±28.14) | 77.42 (±43.28) |
yfbB | 4.18 | 70.57 (±52.43) | 0.41 (±20.9) | 41.36 (±13.22) | −133.11 (±60.68) | −22.42 (±34.34) | 97.64 (±1.29) |
yfeH | 4.94 | −230.42 (±72.37) | −7.21 (±7.94) | −18.13 (±40.46) | −100.87 (±39.21) | −22.6 (±33.19) | 65.5 (±68.98) |
yfgL | 5.24 | −29.96 (±115.43) | 20.86 (±29.65) | 35.42 (±13.97) | −57.53 (±13.77) | −10.85 (±10.49) | 46.19 (±116.29) |
ygfZ | 2.50 | 21.51 (±164.65) | −86.41 (±51) | −40.88 (±39.91) | −259.54 (±72.84) | −199.89 (±92.33) | −531.32 (±89.95) |
yheM | 3.00 | −154.13 (±79.36) | 13.39 (±31.54) | 34.44 (±24.65) | −92.84 (±48.09) | −3.96 (±31.28) | −41.73 (±141.74) |
yhhH | 4.41 | −83.13 (±128.4) | 56.35 (±28.8) | 33.97 (±19.35) | −48.01 (±34.47) | 22.42 (±8.68) | −117.43 (±18.78) |
yigL | 4.28 | −165.97 (±138.93) | −1.23 (±57.34) | 27.78 (±10.29) | −167.66 (±80.66) | −53.8 (±37.53) | 48.89 (±109.08) |
yihE | 4.58 | −21.93 (±113.08) | 75.01 (±12.93) | 44.39 (±13.07) | −38.37 (±58.47) | 8.52 (±3.91) | 44.24 (±109.43) |
yjeK | 3.68 | −48.06 (±133.73) | 26.68 (±37.56) | 37.88 (±23.77) | −81.49 (±23.54) | −3.65 (±36.66) | −130.9 (±19.59) |
yncA | 3.84 | −146.47 (±72.89) | −28.03 (±33.87) | 23.27 (±16.8) | −103.51 (±50.94) | −54.74 (±38.3) | 26.3 (±98.73) |
ypjD | 2.68 | −4.02 (±132.26) | 7.18 (±32.02) | 30.29 (±13.93) | −87.37 (±39.37) | −43.1 (±29.95) | 23.16 (±118.13) |
aBL | Single Stressors | Spearman’s ρ | p-Value | p-Value Significance |
---|---|---|---|---|
aBL sensitivity | H2O2 | −0.450 | 0.0002 | *** |
Membrane stress | −0.310 | 0.0132 | * | |
•OH | −0.230 | 0.0698 | ||
NO• | 0.099 | 0.4380 | ||
O2− | 0.093 | 0.4630 | ||
Acidic pH | 0.060 | 0.6380 |
Stressor A | Stressor B | |||||
---|---|---|---|---|---|---|
H2O2 | O2− | NO• | Acidic pH | Membrane Stress | •OH | |
H2O2 | x | 0.98 (40) | 0.98 (46) | 0.94 (58) | 0.88 (23) | 0.93 (57) |
O2− | 0.67 (40) | x | 0.79 (37) | 0.63 (39) | 0.58 (15) | 0.66 (40) |
NO• | 0.77 (46) | 0.9 (37) | x | 0.73 (45) | 0.69 (18) | 0.74 (45) |
Acidic pH | 0.97 (58) | 0.95 (39) | 0.96 (45) | x | 0.96 (25) | 0.97 (59) |
Membrane stress | 0.38 (23) | 0.37 (15) | 0.38 (18) | 0.4 (25) | x | 0.38 (23) |
•OH | 0.95 (57) | 0.98 (40) | 0.96 (45) | 0.95 (59) | 0.88 (23) | x |
PC1 | PC2 | |||
---|---|---|---|---|
Stressor | Factor Loading | R2 | Factor Loading | R2 |
H2O2 | 0.15 | 0.02 | 0.66 | 0.44 |
O2− | 0.51 | 0.26 | −0.11 | 0.01 |
NO• | 0.50 | 0.25 | −0.06 | 0.00 |
Acidic pH | 0.50 | 0.25 | −0.23 | 0.05 |
Membrane stress | 0.47 | 0.22 | 0.15 | 0.02 |
•OH | 0.05 | 0.00 | 0.69 | 0.48 |
Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|
atpC | atpA | atpD |
atpG | atpB | dnaK |
cydD | atpE | ecnB |
dacA | atpF | fimB |
deoB | atpH | gntK |
gmhB | cpxA | ppc |
holD | dnaJ | purA |
metR | fabH | pyrE |
narL | priA | sstT |
nuoN | rbfA | ydcE |
oxyR | rfaC | ydcX |
pfkA | rfaE | ydeU |
pgi | rfaG | yfeH |
pgm | surA | yheM |
phoQ | ubiC | yigL |
rfaD | ybaP | yncA |
rnt | yccM | |
rpe | yegS | |
thyA | yfbB | |
tolA | yfgL | |
tpiA | ypjD | |
truA | ||
umuD | ||
yhhH | ||
yihE | ||
yjeK |
Group 1 | Group 2 | |||||
---|---|---|---|---|---|---|
Stressor | Cluster | Median (IQR) | Cluster | Median (IQR) | p-Value1 | p-Value Significance 1 |
H2O2 | 1 | −131.16 (−164.15, −79.79) | 2 | −29.96 (−55.11, 21.01) | 0.0000 | **** |
1 | −131.16 (−164.15, −79.79) | 3 | −177.62 (−219.96, −154.38) | 0.0006 | *** | |
2 | −29.96 (−55.11, 21.01) | 3 | −177.62 (−219.96, −154.38) | 0.0000 | **** | |
Membrane stress | 1 | 5.67 (−3.02, 15.68) | 2 | −6.38 (−15.16, 13.71) | 0.0740 | ns |
1 | 5.67 (−3.02, 15.68) | 3 | −40.22 (−50.5, −10.42) | 0.0000 | **** | |
2 | −6.38 (−15.16, 13.71) | 3 | −40.22 (−50.5, −10.42) | 0.0020 | ** | |
NO• | 1 | 48.35 (38.55, 54.74) | 2 | 30.29 (8.39, 35.42) | 0.0000 | **** |
1 | 48.35 (38.55, 54.74) | 3 | 8.47 (0.15, 25.61) | 0.0000 | **** | |
2 | 30.29 (8.39, 35.42) | 3 | 8.47 (0.15, 25.61) | 0.0370 | * | |
O2− | 1 | 53.98 (31.89, 65.82) | 2 | 15.54 (0.41, 30.34) | 0.0000 | **** |
1 | 53.98 (31.89, 65.82) | 3 | 3.18 (−5.5, 16.67) | 0.0000 | **** | |
2 | 15.54 (0.41, 30.34) | 3 | 3.18 (−5.5, 16.67) | 0.1080 | ns | |
•OH | 1 | 48.22 (−76.88, 70.33) | 2 | 95.89 (76.47, 97.31) | 0.0006 | *** |
1 | 48.22 (−76.88, 70.33) | 3 | 8.59 (−56.05, 34.11) | 0.2420 | ns | |
2 | 95.89 (76.47, 97.31) | 3 | 8.59 (−56.05, 34.11) | 0.0002 | *** | |
Acidic pH | 1 | −46.39 (−59.36, −38.08) | 2 | −81.65 (−89.11, −70.02) | 0.0000 | **** |
1 | −46.39 (−59.36, −38.08) | 3 | −91.61 (−101.53, −83.61) | 0.0000 | **** | |
2 | −81.65 (−89.11, −70.02) | 3 | −91.61 (−101.53, −83.61) | 0.0630 | ns |
Cluster | Gene(s) | Function | Associated Pathway | Biological Significance |
---|---|---|---|---|
1 | atpC, atpG, nuoN | ATP synthesis via oxidative phosphorylation | Energy metabolism | Key for ATP production and cellular energy homeostasis. |
pfkA, pgi, pgm, rpe, tpiA | Glycolysis, pentose phosphate pathway | Carbohydrate metabolism | Critical for energy production and biosynthetic precursors. | |
oxyR, narL, cydD | Oxidative stress response | ROS detoxification, nitrogen metabolism | Protects cells under oxidative or nitrogen stress. | |
phoQ, metR | Cellular adaptation, stress response | Phosphate and methionine regulation | Adaptation to nutrient limitations and environmental stress. | |
tolA, rfaD | Membrane integrity, LPS synthesis | Membrane structure and protection | Essential for outer membrane stability and function. | |
2 | atpA, atpB, atpE, atpF, atpH | F1Fo ATP synthase complex | Energy metabolism | Core to ATP generation and proton gradient maintenance. |
cpxA | Sensor for membrane stress | Two-component regulatory system | Activates stress response to misfolded membrane proteins. | |
dnaJ | Molecular chaperone | Heat shock response | Repairs misfolded proteins and supports thermal adaptation. | |
fabH | Fatty acid biosynthesis | Lipid metabolism | Initiates synthesis of membrane lipids, vital for adaptation. | |
3 | dnaK, fimB | Protein folding, repair, adhesion regulation | Heat shock response, fimbriae assembly | Facilitates adaptation to stress and host interactions. |
atpD, gntK, ppc | Energy metabolism and intermediary pathways | Glycolysis, TCA cycle | Supports energy generation and carbon flux management. | |
purA, pyrE | Nucleotide biosynthesis | Purine and pyrimidine metabolism | Provides precursors for DNA, RNA synthesis under stress. | |
yheM, yigL, ydeU | Hypothetical | Unknown | Likely involved in environmental stress response and adaptation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruszewska-Naczk, B.; Grinholc, M.; Rapacka-Zdonczyk, A. Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth. Antioxidants 2024, 13, 1583. https://doi.org/10.3390/antiox13121583
Kruszewska-Naczk B, Grinholc M, Rapacka-Zdonczyk A. Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth. Antioxidants. 2024; 13(12):1583. https://doi.org/10.3390/antiox13121583
Chicago/Turabian StyleKruszewska-Naczk, Beata, Mariusz Grinholc, and Aleksandra Rapacka-Zdonczyk. 2024. "Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth" Antioxidants 13, no. 12: 1583. https://doi.org/10.3390/antiox13121583
APA StyleKruszewska-Naczk, B., Grinholc, M., & Rapacka-Zdonczyk, A. (2024). Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth. Antioxidants, 13(12), 1583. https://doi.org/10.3390/antiox13121583